
Perceptions and Difficulties of Software Engineering Students in
Code Smells Refactoring

Carla Bezerra
Federal University of Ceará

Quixadá, Brazil
carlailane@ufc.br

Humberto Damasceno
Federal University of Ceará

Quixadá, Brazil
hdamasceno1998@gmail.com

João Teixeira
Federal University of Ceará

Quixadá, Brazil
joao.nascimento@alu.ufc.br

Figure 1: Word cloud of skills acquired by students in code smells refactoring.

ABSTRACT
Code smells are bad code structures that can harm the quality and
maintainability of software. To remove these bad structures, devel-
opers use refactoring techniques. Refactoring helps code be easier
to understand and modify by eliminating potential problems and
improving the software quality. Most refactoring activities are usu-
ally performed manually and undisciplined, which can cause code
degradation. Currently, concepts, practices and tools of refactoring
and code smells are little discussed in undergraduate computing
courses. This problem is reflected in the software industry, which
generally does not use refactoring practices to improve code read-
ability and maintainability. In this context, we present in this paper
an experience report on teaching the practice of code smells refac-
toring, investigating the following topics: (i) skills acquired in the
practice of code smells refactoring, (ii) difficulties encountered in
code smells refactoring and (iii) students’ perception of code smells
refactoring practices. The study was carried out in two undergrad-
uate classes with 20 students in the course of software quality. Our
findings contribute to replicating the practice in other courses that
want to delve into code smell refactoring and contribute to the use
of refactoring practices and code quality evaluation in the industry.

KEYWORDS
code smells, refactoring, education

1 INTRODUCTION
Code smells can indicate problems related to aspects of code quality,
such as readability and modifiability of software [7]. Refactoring
can remove code smells and can have a direct impact on code qual-
ity [20]. Fowler [7] defines refactoring as a set of small changes that
are made to the internal structure of the code without changing the
external behavior. Refactorings can serve different purposes. For

example, Move Method [7] is often applied by developers to elimi-
nate the code smell Feature Envy. This refactoring involves moving
a method from one class to another to remove excessive dependen-
cies between the two classes. Refactoring can be done manually, or
it can be supported by semi-automated tools [2]. However, refac-
toring is usually performed manually or undisciplined [5, 9, 13].
There is evidence in the literature that suggests unwanted effects
of misguided refactorings, such as code degradation, especially for
more complex refactorings [4, 10].

In the systematic review carried out by Lacerda et al. [14] on
code smells and refactoring, the authors indicate that the teaching
of code smells refactoring techniques and tools is still an open
problem. Some studies even report the teaching of refactoring and
gamification of these concepts [1, 3, 6, 11, 12]. However, it is known
that these concepts are usually not addressed in the disciplines
of computing courses. This is reflected in the software industry,
as research by Golubev et al. [8] indicates that developers are not
familiar with refactoring and IDEs.

This paper presents an experience report of the teaching and
practice of code smells refactoring, investigating students’ percep-
tions, skills and difficulties in refactoring code smells. The practice
took place in two groups of a software quality course, in which con-
cepts of code smells and refactoring were presented. The practice
consisted of manual code smell refactoring in Java code projects.
The main results of teaching and practicing code smells refactoring
are: (i) students acquire several personal and interpersonal skills
after refactoring code smells, especially problem-solving, analytical
skills and critical thinking skills; (ii) the refactoring of a code smell
can lead to the emergence of another code smell; and (iii) according
to the student’s perception, the refactoring of code smells improves
quality aspects with code readability, but can worsen other aspects
such as code complexity and generate new code smells.

https://orcid.org/0000-0002-5879-5067


VEM 2022, October 3, 2022, Virtual Event, Brazil Bezerra, et al.

2 RELATEDWORK
Abid et al. [1] report the teaching and practice of code refactoring
from the discussion of two different approaches used in the exe-
cution of a course on refactoring and design patterns. The study
was carried out with 23 undergraduate and graduate students with
theoretical and practical workloads. As the main results, the authors
found that making functional changes to the code before executing
the code refactoring is more beneficial for teaching refactoring,
as it facilitates understanding refactoring opportunities and con-
tributes to obtaining higher quality refactorings. Keuning et al. [12]
presented a tutoring system that enables students to exercise code
improvement through small programs that are already working
properly. The system is based on rules that were obtained through
studies carried out with professors in the area and by professional
tools. These rules are responsible for defining how the code should
be rewritten without changing its functionality. As a result, the au-
thors specified the system’s design, presented sessions of practical
examples, and discussed the impact of their contributions. Further-
more, motivating results were obtained by applying an exploratory
study carried out with students without programming experience.
As with Abid et al. [1] and Keuning et al. [12], our work also reports
the teaching of code refactoring based on theoretical and practical
activities. However, instead of focusing on the analysis of the teach-
ing methodology, we focused our study on students’ perception
of refactoring activities, especially in what concerns refer to skills
acquired, difficulties encountered and main practices used.

Agrahari andChimalakonda [3], presented a game (Refactor4Green)
developed to promote the teaching of code smells and refactoring.
Such a game focuses on code smells related to energy efficiency
and, in short, contains learning cards with the definition of some
code smells and their refactoring strategies, followed by challenges
in the form of objective quizzes. Similarly, dos Santos et al. [6]
presented the CleanGame, a gamified platform for practicing code
smell identification. This platform has two major modules, one for
students to review the main concepts about various code smells and
another that focuses on practical tasks of identifying code smells
in the source code of java systems. In both works, the evaluation
carried out with students shows that gamification can be helpful
for teaching code smells and refactoring. As well as these works,
our work also reports the practice of teaching code smells and
refactoring and how it contributes to the student’s experience.

3 METHODOLOGY
This study aims to investigate how the learning and practice of
these concepts influence programming skills and what difficulties
students encounter in refactoring these bad code structures.

3.1 Research Questions
We have elaborated the research questions (RQs) to guide our study:

RQ1 –What skills did students acquire by code smells refactoring?
RQ2 – What are the main difficulties faced by students in the

practice of code smells refactoring?
RQ3 – What is students’ perception about the practice of code

smells refactoring?

3.2 Students
We performed the study in two software quality classes with stu-
dents in the semesters of 2020.2 (C1) and 2021.1 (C2). A total of
20 students effectively participated in the study. Table 1 shows the
division of students by class.

Table 1: Students divided by class

Class Students
Class 1 (C1) P1, P2, P3, P4, P5, P6, P7, P8, P9
Class 2 (C2) P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20

Table 2 presents the profile of students who participated in the
practice of code smells refactoring collected via questionnaire. We
do not consider all students in the class, as many students locked
the course in the pandemic and some students did not complete the
practice.

Table 2: Students profile

ID
Undergraduate

semester
Experience
in years Refactoring Code Smells

P1 4 1 year None None
P2 4 4 years Minimum None
P3 5 1 year Basic Intermediary
P4 6 1 year Intermediary Basic
P5 6 2 years Intermediary Intermediary
P6 6 2 years Minimum Minimum
P7 6 3 years Basic Intermediary
P8 8 3 years Minimum None
P9 4 3 years Basic None
P10 7 5 years Intermediary Intermediary
P11 7 4 years Minimum None
P12 5 3 years Minimum Basic

P13 7 Less than
one year Intermediary Basic

P14 8 3 years Intermediary Basic
P15 7 2 years Basic None
P16 7 3,5 years Minimum Minimum
P17 10 0 years None None
P18 7 3 years Basic Basic
P19 8 1 year Basic None

P20 6 1 year and
8 months None None

3.3 Project Design
To perform code smells refactoring practice with students, we per-
formed the following steps:

Step 1: Training of theoretical and practical content. We
teach theoretical classes in the course of software quality to bring
the necessary concepts to carry out the practice of code smells refac-
toring. We dedicated three weeks of theoretical classes (12 hours)
to the concepts of refactoring and code smells, including training
the JSpIRIT tool to detect code smells. This content corresponds to
a part of the course content taught remotely by Google Meet.

Step 2: Presentation of the code smells refactoring practice.
After passing the concepts and tools to the students, we presented
the code smells refactoring practical activity, which consisted of
the final work of the course. In teams of 2 people or individually,
students would have to select a Java code project to identify and
refactor the code smells of the project. Each team had to refactor at
least 5 different types of code smells, wherein at least 40 occurrences
of code smells of these 5 types would be refactored. The delivery
of the practice was divided: (i) removing all occurrences of at least



Perceptions and Difficulties of Software Engineering Students in Code Smells Refactoring VEM 2022, October 3, 2022, Virtual Event, Brazil

two types of code smells that added together would have at least 20
occurrences, and (ii) removing the rest of the missing code smells.

For project selection, students used the following defined criteria:
(i) JAVA language, (ii) having at least 1,200 code lines, and (iii)
presenting at least five types of code smells with a total of 40
occurrences or more. Students used their projects or open-source
projects selected on GitHub. Table 3 presents the characterization
of the projects selected by the students. The projects are available
in our dataset1.

Table 3: Project characterization

System Teams Students # of classes # LOC
S1 T1 P1, P2 239 2145
S2 T2 P3, P4 112 6599
S3 T3 P5, P6 183 8384
S4 T4 P7, P8 163 8411
S5 T5 P9 82 4946
S6 T6 P10 93 5676
S7 T7 P11, P12 19 2076
S8 T8 P13 152 4923
S9 T9 P14, P15 182 13172
S10 T10 P16, P17 56 4525
S11 T11 P18 320 17081
S12 T12 P19 221 7702
S13 T13 P20 52 1369

Step 3: Code smell detection and refactoring. This step cor-
responds to the first delivery of the work. The students used the
JSpIRIT tool to detect at least 5 types of code smells with at least 40
occurrences in the selected projects. This tool identifies a total of 10
types of code smells. We use the JSpIRIT tool to detect code smells
due to its high level of accuracy [19] and because it has already
been used in similar research [16, 17]. The second work delivery
consisted of partial refactoring of the selected code smells. Students
should refactor at least 20 occurrences of code smells. For the refac-
toring of each code smell, the students described the refactoring
techniques used in the report. The third and final deliverable con-
sisted of refactoring all remaining occurrences of code smells. The
refactoring techniques used in the rest of the code smells are also
complemented. Each team should present the design and rationale
of the refactorings. Table 4 presents the code smells considered in
this study, because the code smells were detected and refactored in
the projects.

Table 4: Code smells detected in this study

Code Smells Description
Feature Envy Method “envying” other classes’ features [7]
God Class Too many software features into a class. It tend to be very large and

hard to read and understand [7]
Dispersed Coupling Method that calls too many methods [7]
Intensive Coupling Method that depends too much from a few others [7]
Shotgun Surgery Method whose changes affect many methods [7]
Long Method Too long and complex method [7]
Brain Method Long and complexmethod that centralizes the intelligence of a class [15]
Refused Parent Bequest Subclass that doesn’t use its superclass’s protected methods [7]

Step 4: Application of the perception questionnaire of code
smells refactorings. Finally, we applied a questionnaire to classes
C1 and C2 to understand what were the difficulties encountered
in refactoring code smells and the importance of refactoring code

1https://github.com/leanresearchlab/VEM-2022

smells in the perception of the students themselves. All data col-
lected from questionnaire data are available in our dataset2.

4 RESULTS
4.1 RQ1: Skills acquired in code smells

refactoring
We solved RQ1 by evaluating student responses generated from
an online questionnaire. The skills were extracted from the sys-
tematic review on skills of software engineers [18]. From this, we
performed a qualitative analysis through the collected responses,
and we obtained 9 main categories of personal and interpersonal
skills acquired by students after code smells refactoring, which are
displayed in Table 5. The first column displays all categories, the
second column presents the skills description and the third contains
the number of students who have acquired these skills.

Table 5: Skills acquired by students after code smells refac-
toring [18]

Skill Description Total
Analytical skills The ability to understand and explain each part of a whole, to

know better than nature, functions, causes, among others
18

Problem solving The ability to understand, articulate and solve complex prob-
lems

17

Critical thinking The ability to determine carefully and deliberately accepted,
refutation or suspension of the trial about a particular piece
of information

12

Change manage-
ment

The ability to propose and/or take any action without need
for others to come to ask or say

7

Team work ability of an individual who is good at working closely with
other people

7

Decision-
making

The ability to make sensible decisions based on available in-
formation

4

Results orienta-
tion

The ability to achieve and/or exceed. Sales goals and/or objec-
tives

4

Methodical The ability to use a set of steps, neatly, arranged, set by meth-
ods (techniques) to solve a particular issue or problem

3

Creativity Not defined 3

Analyzing the information contained in the Table 5, it can be
seen that analytical skills (18), problem solving (17) and critical
thinking (12) were the most cited by students in the questionnaire.
Therefore, this infers that the code smells refactoring activity posi-
tively impacted students in acquiring new skills.

Finding 1: The code smells refactoring activity provided new
skills for students, especially to problem solving, analytical
skills and critical thinking skills.

In the Table 5, it is possible to notice that the students also im-
proved their interpersonal skills. Considering that skills such as
teamwork (7), decision making (4), results orientation (4) and cre-
ativity (3). Therefore, it can be seen that the code smells refactoring
activity improved the students’ interpersonal skills.

Finding 2: Code smells refactoring activity is beneficial for
students’ interpersonal skills.

Implications of RQ1. Our findings indicate that applying code
smells refactoring activity to students was beneficial. Considering

2https://github.com/leanresearchlab/VEM-2022

https://github.com/leanresearchlab/VEM-2022
https://github.com/leanresearchlab/VEM-2022


VEM 2022, October 3, 2022, Virtual Event, Brazil Bezerra, et al.

that both personal and interpersonal skills improved after refactor-
ing code smells. Such benefits underscore the importance of teach-
ing about code smells in computer courses. It is a highly relevant
topic for the academic community mainly because of improving
students’ skills in the industry.

4.2 RQ2: Difficulties identified by students in
the practice of refactoring

We analyzed the RQ2 performing a qualitative analysis of the stu-
dents’ answers about the difficulties identified from the practice
of refactoring the code smells. From the answers collected, we
identified 4 categories of difficulties that most occurred among
the students: (i) difficulty in understanding the source code; (ii)
emergence of new code smells after refactoring a code smell; (iii)
difficulty choosing the refactoring technique; and, (iv) lack of ref-
erence material to aid refactoring. Table 6 presents the categories
identified after analyzing the developers’ responses. The first col-
umn lists the categories found, and the second contains the number
of students who had the respective difficulties listed during the
code smells refactoring.

Table 6: Difficulties identified by students in the practice of
refactoring

Categories Students
Difficulties understanding the source code P4, P5, P8, P10, P11, P19
Emergence of new code smells after refactoring a code smell P1, P2, P9, P12, P13, P14
Difficulty choosing the refactoring technique P3, P5, P10, P11, P20
Lack of reference material to aid refactoring P6, P7, P16

Analyzing the Table 6, we can highlight that 6 students reported
that they had difficulties refactor a code smell without other code
smells occurring after the refactoring. With this, it is possible to
notice that the code smells refactoring process is susceptible to new
code smells. Some student reports support this statement:

P1:“After solving one code smells, another one appeared.”

P12:“I couldn’t remove the code smell without others appearing.”

P13:“In some cases, when refactoring a certain smell, others of another type
emerged.”

Finding 3: Refactoring a code smell can lead to the emergence
of other code smells of different types.

We also identified through the information contained in Table 6
that some students are present in more than one category of diffi-
culties to refactor code smells. As a result, we can see relationships
between the categories of difficulties encountered by students. The
relationship we highlight is that the more difficult the source code
is to understand, the more complicated it will be to refactor the
code smell. Some student reports corroborate this relationship:

P10:“ I had difficulties understanding the source code, and consequently
performing the refactoring.”

D11:“For me, the fact of taking a project with an organization of the code that
is not familiar, made the refactoring more complicated..”

Finding 4: The harder it is to interpret the source code, the
more complicated it is to refactor code smells.

Implications of RQ2. Our findings indicate that the more dif-
ficult it is to understand the source code, the more complicated
the application of the code smells refactoring technique will be.
It is noticeable that students do not feel safe refactoring a certain
code smell when they do not understand the source code. Thus, it
is important to emphasize the importance of good programming
practices to facilitate understanding the source code. Furthermore,
removing a code smell can lead to the emergence of a new code
smell. As a result, it is essential to verify and validate all refactorings
to mitigate possible new code smells.

4.3 RQ3: Students’ perception of refactoring
practices

We approached RQ3 by analyzing the data collected through a
questionnaire. We asked students about their positive or negative
perceptions during and after refactoring the code smells. Table 7
presents the perceptions reported by students.

Table 7: Students’ perceptions about the impacts of code
smells refactoring

Perceptions Students
Improved P1, P6, P7, P8, P12, P14, P18, P19
Improved in parts P2, P3, P9, P11, P13, P16, P17, P20
Indifferent P10, P15
Harmed in parts P2, P3, P9, P11, P13, P16, P17, P20
Harmed P4, P5

Observing the Table 7, it is possible to notice that a considerable
portion of the students (8) judged that the code smells refactoring
had a positive impact on the quality of the system. On the other
hand, only 2 students considered the code smells refactoring to
be totally harmful to the system quality. This suggests that the
code smells refactoring tends to have a positive impact on the
system quality, according to the students’ perceptions. Some student
reports corroborate this statement:

P6:“I noticed that refactoring code smells had improved code readability by
simplifying and rearranging classes, methods and attributes.”

P18:“The code smells refactoring activity has improved my ability to visually
detect code smells that need refactoring.”

Finding 5: Part of the students had the perception of an
improvement in the system’s quality after the code smells
refactorings, such as readability.

Continuing the analysis of the Table 7, part of the students (8)
considered that the code smells refactoring had a positive impact
in some cases. Still, in other cases, it harmed the internal quality
attributes. This infers that the code smells refactoring for developers
and has a negative impact in some aspects. However, it also affects
quality negatively. Some reports strengthen this statement:



Perceptions and Difficulties of Software Engineering Students in Code Smells Refactoring VEM 2022, October 3, 2022, Virtual Event, Brazil

P3:“Code smells refactoring significantly improved cohesion, but the other
attributes got worse overall.”

P9:“Code smells refactoring improved code readability but not complexity.”

P16:“In my project the practice had a balanced performance, for some
scenarios it had an improvement, for others it got worse, with new code smells
appearing.”

P20:“Code smells refactoring made some attributes worse, and improved
others.”

Finding 6: Some of the students considered the refactoring
of code smells improved the internal quality attributes of the
system in some aspects but worsened other aspects, such as:
new code smells appeared and worsened the complexity.

Implications of RQ3. Our findings infer that most students
reported that code smells refactoring improved the system’s quality.
On the other hand, we also noticed that the perceptions of other
students indicated that the refactoring of code smells positively im-
pacted the internal quality attributes in some aspects but negatively
in other criteria, such as increased complexity. Due to these results,
we emphasize to students that the occurrence of any code smell in
a software project can negatively impact it. And that refactoring of
such smells must be performed immediately after detection.

5 FINAL REMARKS
Our study investigated the skills, difficulties and perceptions of Soft-
ware Engineering students in the practice of code smells refactoring.
We considered 8 types of code smell and 20 students carried out the
refactoring of code smells for 2 months in 2 classes of the software
quality course. Our main results were: (i) students acquired several
personal and interpersonal skills after refactoring code smells, espe-
cially problem-solving, analytical skills and critical thinking skills;
(ii) the refactoring of a code smell can lead to the emergence of
another code smell; and, (iii) according to the student’s perception,
the refactoring of code smells improves quality aspects with code
readability, but can worsen other aspects such as code complexity
and generate new code smells.

As limitations of the study, we have: (i) some teams selected
projects from GitHub that they had not had contact with before,
making the activity and refactoring difficult; (ii) lack of student ex-
perience; (iii) we only use one tool to detect code smells; and, (iv) the
students only refactored some code smells from the projects and we
did not collect more detailed information from these refactorings.

In future work, we intend to: (i) use other tools to detect other
code smells that were not included in the study; (ii) use automatic
refactoring tools to remove code smells; and, (iii) perform the prac-
tice also for refactoring co-occurrences of code smells.

REFERENCES
[1] Shamsa Abid, Hamid Abdul Basit, and Naveed Arshad. 2015. Reflections on

Teaching Refactoring: A Tale of Two Projects. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education (Vilnius,
Lithuania) (ITiCSE ’15). Association for Computing Machinery, New York, NY,
USA, 225–230. https://doi.org/10.1145/2729094.2742617

[2] Mansi Agnihotri and Anuradha Chug. 2020. A Systematic Literature Survey of
SoftwareMetrics, Code Smells and Refactoring Techniques. Journal of Information
Processing Systems 16, 4 (2020).

[3] Vartika Agrahari and Sridhar Chimalakonda. 2020. Refactor4Green: a game for
novice programmers to learn code smells. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 324–325.

[4] Jehad Al Dallal and Anas Abdin. 2017. Empirical evaluation of the impact of
object-oriented code refactoring on quality attributes: A systematic literature
review. IEEE Transactions on Software Engineering 44, 1 (2017), 44–69.

[5] Vahid Alizadeh, Mohamed Amine Ouali, Marouane Kessentini, and Meriem
Chater. 2019. RefBot: Intelligent Software Refactoring Bot. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 823–834. https:
//doi.org/10.1109/ASE.2019.00081

[6] Hoyama Maria dos Santos, Vinicius H. S. Durelli, Maurício Souza, Eduardo
Figueiredo, Lucas Timoteo da Silva, and Rafael S. Durelli. 2019. CleanGame:
Gamifying the Identification of Code Smells. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering (Salvador, Brazil) (SBES 2019). Association
for Computing Machinery, New York, NY, USA, 437–446. https://doi.org/10.
1145/3350768.3352490

[7] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[8] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,
and Mohamed Wiem Mkaouer. 2021. One Thousand and One Stories: A Large-
Scale Survey of Software Refactoring. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 1303–1313. https:
//doi.org/10.1145/3468264.3473924

[9] Péter Hegedűs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Empirical
evaluation of software maintainability based on a manually validated refactoring
dataset. Information and Software Technology 95 (2018), 313–327.

[10] Satnam Kaur and Paramvir Singh. 2019. How does object-oriented code refactor-
ing influence software quality? Research landscape and challenges. Journal of
Systems and Software 157 (2019), 110394.

[11] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers Would
Help Students to Improve Their Code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
119–125. https://doi.org/10.1145/3304221.3319780

[12] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A Tutoring System to
Learn Code Refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 562–568. https://doi.org/10.1145/
3408877.3432526

[13] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An
Empirical Study of RefactoringChallenges and Benefits at Microsoft. IEEE Trans-
actions on Software Engineering 40, 7 (2014), 633–649. https://doi.org/10.1109/
TSE.2014.2318734

[14] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610. https:
//doi.org/10.1016/j.jss.2020.110610

[15] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[16] Júlio Martins, Carla Bezerra, Anderson Uchôa, and Alessandro Garcia. 2020. Are
Code Smell Co-Occurrences Harmful to Internal Quality Attributes? A Mixed-
Method Study. In Proceedings of the 34th Brazilian Symposium on Software Engi-
neering (Natal, Brazil) (SBES ’20). Association for Computing Machinery, New
York, NY, USA, 52–61. https://doi.org/10.1145/3422392.3422419

[17] Júlio Martins, Carla Bezerra, Anderson Uchôa, and Alessandro Garcia. 2021. How
Do Code Smell Co-Occurrences Removal Impact Internal Quality Attributes? A
Developers’ Perspective. Association for Computing Machinery, New York, NY,
USA, 54–63. https://doi.org/10.1145/3474624.3474642

[18] Gerardo Matturro, Florencia Raschetti, and Carina Fontán. 2019. A Systematic
Mapping Study on Soft Skills in Software Engineering. J. Univers. Comput. Sci.
25, 1 (2019), 16–41.

[19] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. 2016. An approach
to prioritize code smells for refactoring. Automated Software Engineering 23, 3
(2016), 501–532.

[20] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). 242–251. https://doi.org/10.1109/WCRE.2013.6671299

https://doi.org/10.1145/2729094.2742617
https://doi.org/10.1109/ASE.2019.00081
https://doi.org/10.1109/ASE.2019.00081
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3468264.3473924
https://doi.org/10.1145/3468264.3473924
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1145/3422392.3422419
https://doi.org/10.1145/3474624.3474642
https://doi.org/10.1109/WCRE.2013.6671299

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Research Questions
	3.2 Students
	3.3 Project Design

	4 Results
	4.1 RQ1: Skills acquired in code smells refactoring
	4.2 RQ2: Difficulties identified by students in the practice of refactoring
	4.3 RQ3: Students' perception of refactoring practices

	5 Final Remarks
	References

