
Using Controllers to Adapt Messaging Systems: An Initial
Experience

Nelson S. Rosa
nsr@cin.ufpe.br

Centro de Informática, UFPE
Recife, Pernambuco, Brazil

David J. M. Cavalcanti
djmc@cin.ufpe.br

Centro de Informática, UFPE
Recife, Pernambuco, Brazil

ABSTRACT
Adaptive middleware systems have been designed for various com-
puting environments, including wireless sensor networks, IoT and
cloud computing. Whatever the environment, however, the adapta-
tion logic of these middleware systems rarely adopts control theory
concepts. To shed some light on this topic, this paper presents
the steps to using control theory in implementing an adaptive
mechanism for a popular middleware model: message-oriented
middleware, also known as messaging systems. These steps have
been employed in a widely adopted open-source messaging system
named RabbitMQ. This paper’s contributions are on how to employ
control theory step-by-step in messaging systems, along with some
initial results on using P, PI and PID controllers.

KEYWORDS
Messaging system, Control Theory, Dynamic Configuration.

1 INTRODUCTION
The development of adaptive middleware is not a new topic in
the middleware community [4]. Adaptive middleware systems are
widely utilised in several application domains and computing en-
vironments, such as cloud [6], wireless sensor networks [14] and
Internet of Things [5], just to mention the most important ones. De-
spite the diversity of existing adaptive middleware systems, devel-
oping control-theoretical solutions is not common in this research
field.

However, similarly to other kinds of adaptive software systems
[9, 15, 16, 18], control theory has become an candidate to be adopted
to design adaptive middleware as an alternative to MAPE-K [12].
Most recently, "control" has been recognized as a new wave of
research in self-adaptive systems [18] and can offer insights into
the design of adaptation logic with formal guarantees.

In a simplified way, the use of control theory means that the
software consists of a feedback control loop that includes a plant
(e.g., the middleware), plant operation goals (e.g., throughput >50
messages/s) and a controller that sets configurable plant parameters,
e.g., size of the message queue used in the middleware. Adjustments
(adaptations) are calculated by the controller using monitored data
from the plant itself and the defined control targets. In practice,
using control theory requires defining a mathematical model of
the software and, more broadly, considering “controllability” as a
first-class element in middleware design.

Adopting control theory can improve middleware development
and execution with properties such as stability, quick convergence
to its steady state, and accuracy. Those properties can work as
design goals or be checked in the running middleware. On the other
hand, the adoption of control theory has some associated challenges

[16]: how to create a mathematical model of the middleware and its
components, how to choose the controller to use, build middleware
sensors and actuators, and how to ensure the goals of adaptation.

Considering the challenges, benefits, and the increasing use of
control theory for software systems, this paper utilises this theory
in a messaging system (also known as MOM (Message-Oriented
Middleware)). This initial experience describes the steps to develop
an adaptation logic grounded on control-theoretical concepts for
the widely adopted messaging system RabbitMQ1. Finally, some
initial results about the use of P (Proportional), PI (Proportional-
Integral) and PID (Proportional-Integral-Derivative) controllers are
also presented.

The remaining of this paper is organized as follows: Section 2
introduces basic concepts of RabbitMQ. Next, Section 3 presents
the steps followed to instantiate the control theory to middleware.
Section 4 presents an overview of existing solutions. Finally, Section
5 summarises the conclusion and future developments.

2 RABBITMQ
RabbitMQ is an open-source message broker widely adopted by
enterprises and whose performance has often been evaluated in
several ways [7][10]. A distributed application built atop RabbitMQ
consists of publishers and consumers whose interactions are inter-
mediated by a messaging broker. The broker stores messages on
queues, manages subscribers, and route messages from publishers
to consumers.

A vital aspect of these interactions is when the broker can re-
move messages from the queue, i.e., when the broker can consider
the message handled by the consumer. Two approaches are avail-
able, and they depend on the acknowledgement mode used by the
application. In the first case, a message is removed from a queue
after the broker sends it (automatic ack). Another possibility is to
remove the message from a queue after the consumer explicitly
sends an acknowledgement to the broker (explicit ack).

The broker and consumers can be tuned at runtime in several
ways. The broker tunning usually means configuring the Erlang
virtual machine, e.g., garbage collection, process scheduler settings,
and memory allocation. On the consumer side, it is possible to set
a QoS parameter named channel prefetch count that defines the size
of the Prefetch Buffer, as shown in Figure 1. This parameter specifies
the max number of unacknowledged messages permitted on the
channel. In practice, messages are cached in the consumer by the
RabbitMQ Client until they are processed. It is worth observing that
the broker delivers messages to consumers as fast as the network
conditions or consumer will allow. Furthermore, by default, the
prefetch buffer is unbounded.
1http://rabbitmq.com/



VEM ’22, October 3rd 2022, Virtual Workshop Rosa and Cavalcanti

Message

Broker Consumer

Queue

Connection

& Channels

RabbitMQ

Client

From

Publishers

To

Consumers

Ack

App

Business

Logic

Prefetch

Buffer

Figure 1: General overview of RabbitMQ elements

The best practice is to keep consumers busy while messages are
stored in broker’s queues and available for new consumers. The way
to achieve this behaviour is by adequately configuring the prefetch
count. This procedure may avoid thousand of messages stored in a
given consumer while the queue is empty and new consumers have
no access to delivered messages. Additionally, the configuration of
the prefetch count may avoid overloaded consumers.

3 ADAPTATION UISNG CONTROL THEORY
The development of an adaptation solution using control theory
can follow the general steps proposed in [8]. Initially, one needs to
define the scope of what is to be modelled clearly. In this work, the
RabbitMQ Client is the component of the consumer being controlled.
It is worth noting that the consumer includes a client and the
business logic, and the controller acts on the client to regulate the
number of messages arriving in the business logic. A large number
of messages can overload the business logic, while few messages
lead to poor performance of the business.

Figure 2 shows a general overview of the closed loop associated
with the RabbitMQ Client. After defining the scope, the next step
is identifying a quantifiable system’s goal to be tracked by the
controller. Next, it is also needed to identify one or more knobs that
change the system’s behaviour and impact the goal. After defining
the goal and knob(s), it is time to devise a mathematical model that
captures their relationships. Next, the designer must specify the
controller that acts on the knobs to close the system to the goal.
Finally, the last steps consist of implementing and integrating the
controller and testing and validating the system.

RabbitMQ

Client

Reference

value (v)

+ -
Error (e) Controller

Control

Input (u)

Prefetch

Count

Measured

Output (y)
Arrival
Rate

Figure 2: Closed loop

3.1 Identify goals and knobs
The design of an adaptation manager through a controller in the
consumer helps to avoid flooding it with messages and keep the
arrival rate close to the processing rate of the App (see Figure 1).

The metric associated with this goal is theArrival Rate, which the
consumermeasures. It computes the number ofmessages arriving in
theApp per second after being stored in the prefetch buffer. It should

be maintained close to the processing capacity of the business logic
to keep the consumer in equilibrium.

The most direct way to control the arrival rate is to properly de-
fine the size of the prefetch buffer shown in Figure 1. This parameter
is easily configured in RabbitMQ Clients and substantially impacts
consumers’ performance. A small value of prefetch count usually
means fewer messages arriving in the App and larger queues in the
broker. Meanwhile, a larger prefetch count may lead to consumer
crashes due to memory run-out and empty queues in the broker.

3.2 Devise the model
After determining the scope, goal and knobs, the controller designer
needs to devise a mathematical model able to quantify the effects of
given control input (prefetch count) on a measured output (arrival
rate). In practice, the model can be defined through linear difference
equations representing the RabbitMQ Client’s dynamics.

Due to the complexity of the consumer, the proposed model was
defined as a black-box one that requires only knowledge about the
relationship between inputs and outputs, as shown in Figure 2. This
relationship can be fairly quantified by a simple linear differential
equation that relates the prefetch count (𝑢) that works as a control
input and the consumer arrival rate (𝑦) that is the measured output:

𝑦 (𝑘 + 1) = 𝑎𝑦 (𝑘) + 𝑏𝑢 (𝑘) (1)

This simple first-order model in the time domain (𝑘 is the time
step) defines that the subsequent output, 𝑦 (𝑘 + 1), depends only on
the past input/output from a one-time unit.

According to [11], the following steps are necessary to refine
this model: design experiments, estimate the model’s parameters (𝑎
and 𝑏) and evaluate the model. If the model is acceptable according
to some criteria (e.g., RMSE or 𝑅2), proceed to design the controller.
Otherwise, create new experiments until a proper model is found.

Design experiments. The construction of an accurate model needs
enough data (training data) that allows a reasonable estimation of
parameters 𝑎 and 𝑏 in Equation 1. The data should be generated
through experiments that produce good-quality data. Parameters
shown in Table 1 were used in the experiments.

Table 1: Parameters of the training

Range of control input (u) [1,. . . ,360]
Input signal behaviour Step
Message size 256 (bytes)
No. of simultaneous 25
publishers
Inter-publish time Mean=10ms,

stddv=1ms (Normal distribution)
Sample time 10 seconds
Business logic time 1 ms

The control input 𝑢 was defined to explore several values of the
prefetch count, which was increased step-wisely. The range of 𝑢
was defined after some initial experiments that showed that values



Using Controllers to Adapt Messaging Systems: An Initial Experience VEM ’22, October 3rd 2022, Virtual Workshop

greater than 360 do not impact the arrival rate2. A short message
size allowed to store millions of messages on the broker. The num-
ber of simultaneous publishers and inter-publish time have been
set to generate a heavy workload on the broker. The sample time
was specified to reduce noises commonly found in these kinds of
experiments, e.g., the influence of the garbage collector. Finally, the
business time was defined short so that the consumer quickly sends
the ack to the broker. It is worth observing that different values
should be used to explore other runtime scenarios or may be neces-
sary for more complex environment setups, e.g., 500 simultaneous
publishers or message sizes greater than 256 bytes.

The arrival rate is a linear function of the prefetch count until
𝑢 becomes higher than 22, as shown in Figure 3. From this point,
increasing the prefetch count does not linearly increase the arrival
rate.

Figure 3: Observed data in open loop

Estimation of parameters. The least squares regression method
was adopted using a set of training data [11] to estimate parameters
𝑎 and 𝑏 of Equation 1. The training data consists of 360 observa-
tions and are used to compute five quantities and the respective
parameters 𝑎 and 𝑏 as defined in the following:

𝑎 =
𝑆3𝑆4 − 𝑆2𝑆5
𝑆1𝑆3 − 𝑆22

, 𝑏 =
𝑆1𝑆5 − 𝑆2𝑆4
𝑆1𝑆3 − 𝑆22

,

where 𝑆1, 𝑆2, 𝑆3, 𝑆4 and 𝑆5 are computed as follows:

𝑆1 =
𝑁∑︁
𝑘=1

𝑦2 (𝑘), 𝑆2 =
𝑁∑︁
𝑘=1

𝑢 (𝑘)𝑦 (𝑘), 𝑆3 =
𝑁∑︁
𝑘=1

𝑢2 (𝑘),

𝑆4 =
𝑁∑︁
𝑘=1

𝑦 (𝑘)𝑦 (𝑘 + 1), 𝑆5 =
𝑁∑︁
𝑘=1

𝑢 (𝑘)𝑦 (𝑘 + 1)

Model evaluation. Next, it is necessary to evaluate how good
the model is, i.e., how the model explains the data observed. The
accuracy of a model can be quantified based on the training data or
a separate set of test data. A separate test data and two metrics were
used in the evaluation, namely RMSE (Root Mean Square Error)
and 𝑅2 (Coefficient of determination) [11].

Using the training data, 𝑎 = 0.26 and 𝑏 = 59.73, Equation 1
becomes:

𝑦 (𝑘 + 1) = 0.26𝑦 (𝑘) + 59.73𝑢 (𝑘). (2)
2Data can be found at https://docs.google.com/spreadsheets/d/
1HwCxo0XuX0t1QOZYeSCJ-TcmI39aV3-Z/edit?usp=sharing&ouid=
102929903851857253702&rtpof=true&sd=true

According to this equation, the predicted arrival rate has a weak
relation with the previous one (y) and a strong association with the
prefetch count (u).

Table 2 summarises the evaluation of the devised model. It is
worth observing that it was considered the linearity of the model
in the range [1,22].

Table 2: Model evaluation

Prefetch count (a,b) Data RMSE 𝑅2

[1,22] (0.26, 59.73) Training 8485.95 0.80
Test 8586.84 0.82

Good models have 𝑅2 ≥ 0.8 [11]. As shown in this table, the
Test Data have 𝑅2 = 0.82, which means that the model defined in
Equation 2 is a good approximation of the observed data.

Control Design. Then, it is time to define the controller. Three of
the most popular controllers were designed: Proportional, Propor-
tional-Integral, and Proportional-Integrative-Derivative.

Proportional Control (P): The proportional controller deter-
mines the value of 𝑢(𝑘) based on the following control law: 𝑢 (𝑘) =
𝐾𝑝𝑒 (𝑘), where 𝑒(𝑘) = 𝑟 (𝑘) -𝑦(𝑘) is the error, 𝑟 is the goal and𝐾𝑝 (con-
troller gain) is defined in the process of designing the proportional
controller. This process starts by defining the transfer function of
the closed loop having a proportional controller P. The transfer
function is given by 𝐹 (𝑧) = 𝐾𝑝𝑏

𝑧−𝑎+𝐾𝑝𝑏
. By using the pole placement

design [11], the stability condition of the this closed loop occurs in
𝑎−1
𝑏

< 𝐾𝑝 < 1+𝑎
𝑏

, i.e., −0.01234 < 𝐾𝑝 < 0.02115.
Proportional-Integral Control (PI): The control law of a PI

controller is given by: 𝑢 (𝑘) = 𝑢 (𝑘 − 1) + (𝐾𝑝 +𝐾𝑖 )𝑒 (𝑘) −𝐾𝑝𝑒 (𝑘 − 1).
It is worth observing that the computation of𝑢(𝑘) requires knowing
the values of current/past errors and control inputs. The transfer
function of the closed loop with a PI controller is given by:

𝐹 (𝑧) =
𝑏 (𝐾𝑝 + 𝐾𝑖 )𝑧 − 𝑏𝐾𝑃

𝑧2 + [𝑏 (𝐾𝑝 + 𝐾𝑖 ) − (1 + 𝑎)]𝑧 + 𝑎 − 𝑏𝐾𝑝
(3)

Similarly to the P controller, using the pole placement design,
𝐾𝑝 = 𝑎−0.36

𝑏
and 𝐾𝑖 =

(𝑎+𝐾𝑝𝑏)
𝑏

, i.e., 𝐾𝑝 = −0.0016 and 𝐾𝑖 = 0.0060.
Proportional-Integrative-DerivativeControl (PID): The con-

trol law of this controller is𝑢 (𝑘) = 𝐾𝑝𝑒 (𝑘) +𝐾𝑖
∑𝑘−1
𝑖=0 𝑒 (𝑖) +𝐾𝑖𝑒 (𝑘) +

𝐾𝑑 [𝑒 (𝑘) −𝑒 (𝑘 −1)]. The transfer function of the closed loop having
a PID controller is defined as follows:

𝐹 (𝑧) =
𝑏 ((𝐾𝑝 + 𝐾𝑖 + 𝐾𝑑 )𝑧2 − (𝐾𝑝 + 2𝐾𝑑 )𝑧 + 𝐾𝑑 )

𝐷 (𝑧) ,

where

𝐷 (𝑧) = 𝑧3 + (𝑏 (𝐾𝑝 + 𝐾𝑖 + 𝐾𝑑 ) − (1 + 𝑎))𝑧2+
(𝑎 − 𝑏 (𝐾𝑝 + 2𝐾𝑑 ))𝑧 + 𝑏𝐾𝑑

The solution of 𝐷(𝑧) for 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 yields 𝐾𝑝 = 𝑎−0.063−2𝑏𝐾𝑑
𝑏

,

𝐾𝑖 =
0.3+𝑎−𝑏𝐾𝑝−𝑏𝐾𝑑

𝑏
and 𝐾𝑑 = 0.11

𝑏
. For 𝑎 = 0.26 and 𝑏 = 59.73, the

gains of this PID controller are 𝐾𝑝 = 0.0017761, 𝐾𝑖 = 0.0058096 and
𝐾𝑑 = 0.0018417.

https://docs.google.com/spreadsheets/d/1HwCxo0XuX0t1QOZYeSCJ-TcmI39aV3-Z/edit?usp=sharing&ouid=102929903851857253702&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1HwCxo0XuX0t1QOZYeSCJ-TcmI39aV3-Z/edit?usp=sharing&ouid=102929903851857253702&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1HwCxo0XuX0t1QOZYeSCJ-TcmI39aV3-Z/edit?usp=sharing&ouid=102929903851857253702&rtpof=true&sd=true


VEM ’22, October 3rd 2022, Virtual Workshop Rosa and Cavalcanti

3.3 Implement and integrate the controller
As the controllers were designed, they were implemented in Go
language and integrated into a RabbitMQ consumer. Additionally,
it was necessary to instrument the consumer to collect the metric
(arrival rate). This metric is collected from time to time (config-
urable) and is used to configure the next value of prefetch count.
The next value of the prefetch count (control input) is calculated
by the controller being used.

Next piece of code shows how the arrival rate is computed (Line
1), the value of the prefetch count is calculated (Line 2), and the
new prefetch count is configured (Lines 3-7) inside the consumer:

...
1. s.ArrivalRate = numberOfMessages / monitorInterval
2. u = controller.Update(s.Ctler, s.ArrivalRate)
3. err := s.Ch.Qos (
4. u, // new prefetch count
5. 0, // default
6. false, // default
7. )

3.4 Test and validate the system
Figure 4 shows the setup environment in which the experiments
were carried out. Publishers and consumers were implemented in
Go Language and executed in different hosts, and the RabbiMQ
broker was executed in a Docker container.

Host1
Host2

-Consumer
- Publisher

- Broker
- Docker

Gateway

LAN

Figure 4: Experimental setup

Having implemented the controllers, the consumer’s behaviour
was observed considering them. Figures 5, 6 and 7 show the be-
haviour of the arrival rate having the goal (reference value) set
to 400 msg/s (trend line), and whose closed loops are configured
with P, PI and PID controllers, respectively. The mean arrival rates
in these cases are 414.37 msg/s (P), 397.19 msg/s (PI) and 385.52
msg/s (PID), and their standard deviations are 216.09 msg/s (P),
95.12 msg/s (PI) and 196.03 msg/s (PD).

These figures show that the PI controller can maintain the arrival
rate closer to the goal and should be selected to keep track of
the arrival rate of a closed loop with a RabbitMQ consumer. A
justificative for the best result of the PI controller comes from the
fact that computing systems typically have a significant stochastic
component, and the derivative control (D) may be more sensitive
to this component.

Figure 5: Closed loop using a P controller

Figure 6: Closed loop using PI Controller

Figure 7: Closed loop using a PID controller

4 RELATEDWORKS
Li and Nahrstedt [13] proposed a seminal work in this area. In their
solution, the authors proposed a middleware capable of reconfig-
uring parameters and functionalities of a distributed multimedia
application taking into account changes in CPU availability and
execution environment bandwidth. The application behaviour is
modelled through differential equations, and a PID controller is
used. The controller keeps the number of requests arriving at the
application close to a defined goal.

Having a focus on QoS (Quality of Service), ControlWare [19] is a
middleware that uses control theory to provide performance guar-
antees for services available on the Internet. From the specification
of performance goals by the users, the controllers, sensors and ac-
tuators necessary for the middleware are automatically generated



Using Controllers to Adapt Messaging Systems: An Initial Experience VEM ’22, October 3rd 2022, Virtual Workshop

so that it maintains the desired QoS. A P controller is used and
customized according to defined performance goals. In turn, the
sensors monitor CPU utilization metrics and queue size of service
requests. Adaptations are performed with the controller changing
the request queue management policy.

Abdelzaher [1, 2] also focuses on server performance control,
specifically on Web servers. In this case, controllers are used to
avoid overload and guaranteeing server performance when there is
an unplanned increase in requests. The solution includes defining
the behavioural model of server performance using a PI controller.

Like previous solutions, ACM [17] uses control theory to provide
performance guarantees to distributed applications. The solution
includes two PID controllers that regulate the deadlines for sending
responses to client requests. Both controllers are associated with
CPU utilization and bandwidth availability.

Unlike previous works, which present middleware systems for
service-oriented applications, Banerje et al. [3] propose an adaptive
middleware based on control theory for multimedia applications
in wireless networks. In this case, the middleware uses an integral
controller that defines the frequency of sending information (e.g.,
network traffic and resource availability) from the streams server
to the application. The adaptations avoid network congestion and
guarantee the level of QoS necessary for the application.

An initial difference between the related works and the focus of
this paper is that they typically use control theory to reconfigure the
resources the application uses. Nevertheless, they are not intended
to reconfigure the behaviour of the middleware itself. Furthermore,
they do not focus on messaging systems.

5 CONCLUSION, LESSONS LEARNED AND
FUTUREWORKS

This paper presented the steps of applying control theory to a mes-
saging system. These steps shows an initial experience on incorpo-
rate controllers to manage the execution of a messaging consumer.
While grounded on mathematical principes, the whole solution was
implemented in an existing commercial messaging system.

This initial experience have some learning points. Firstly, to
properly design the experiments that are essential to define the
devised model is a great challenge. Messaging systems are complex
software systems whose set of configurable parameters is usually
very big. Then, to identify the knobs (e.g., prefetch count) that
have greater impact on what is being investigated (e.g., arrival
rate) needs a good knowledge of the messaging system. Secondly, a
first-order linear model is simple but facilitates enourmeously the
use of control theory and helps to define the controllers. Finally,
the integration of control elements into the messaging systems is
facilitated by the proximity with the business logic.

Some important points should be taking in account in the future
works. Firstly, the devised model only consider a given kind of
workload. Then, it is necessary to devise new models considering
workload profiles and then integrate them into the solution. Sec-
ondly, elements external to the closed loop are usually source of
disturbances that should be also considered, e.g., a workload peaks.
For example, the controller should be also capable of works on
compensating these disturbances. Thirdly, the monitoring of the

consumer may be subject to some kind of noise, e.g., delay in col-
lecting the metric. Similarly to disturbances, the controller should
be also designed considering measuring noises. Finally, it should be
necessary to explore other kinds of controllers and formally check
their properties.

REFERENCES
[1] T. Abdelzaher, Ying Lu, Ronghua Zhang, and D. Henriksson. 2004. Practical

application of control theory to Web services. In Proceedings of the 2004 American
Control Conference, Vol. 3. 1992–1997 vol.3.

[2] T.F. Abdelzaher, K.G. Shin, and N. Bhatti. 2002. Performance guarantees for Web
server end-systems: a control-theoretical Approach. IEEE Transactions on Parallel
and Distributed Systems 13, 1 (2002), 80–96.

[3] N.L. Banerjee, K. Basu, and S.K. Das. 2005. Adaptive resource management
for multimedia applications in wireless networks. In Sixth IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks. 250–257.

[4] Gordon S. Blair, Geoff Coulson, Anders Andersen, Lynne Blair, Michael Clarke,
Fabio Costa, Hector Duran-Limon, Tom Fitzpatrick, Lee Johnston, Rui Moreira,
Nikos Parlavantzas, and Katia Saikoski. 2001. The Design and Implementation of
Open ORB 2. IEEE Distributed Systems Online 2 (June 2001), –.

[5] D. J. M. Cavalcanti and N. S. Rosa. 2021. Adaptive Middleware of Things. In
Proceedings of the 26th IEEE Symposium on Computers and Communications (ISCC
2021) (Rennes, France) (ISCC). IEEE Computer Society, New York, NY, USA,
Article 1, 6 pages.

[6] Syed Muhammad Danish, Kaiwen Zhang, and Hans-Arno Jacobsen. 2021. Block-
AIM: A Neural Network-Based Intelligent Middleware For Large-Scale IoT Data
Placement Decisions. IEEE Transactions on Mobile Computing (2021), 1–1.

[7] Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus RabbitMQ:
A Comparative Study of Two Industry Reference Publish/Subscribe Implementa-
tions: Industry Paper. In Proceedings of the 11th ACM International Conference on
Distributed and Event-Based Systems (Barcelona, Spain) (DEBS 17). Association
for Computing Machinery, New York, NY, USA, 227 – 238.

[8] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas DIppolito,
Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan
Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic,
Alessandro Vittorio Papadopoulos, Suprio Ray, Amir M. Sharifloo, Stepan
Shevtsov, Mateusz Ujma, and Thomas Vogel. 2015. Software Engineering Meets
Control Theory. In 2015 IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 71–82.

[9] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás Dippolito,
Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry Hoffmann, Pooyan
Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Misailovic,
Alessandro V. Papadopoulos, Suprio Ray, Amir M. Sharifloo, Stepan Shevtsov,
Mateusz Ujma, and Thomas Vogel. 2017. Control Strategies for Self-Adaptive
Software Systems. ACM Trans. Auton. Adapt. Syst. 11, 4, Article 24 (Feb. 2017),
31 pages.

[10] Guo Fu, Yanfeng Zhang, and Ge Yu. 2021. A Fair Comparison of Message Queuing
Systems. IEEE Access 9 (2021), 421–432.

[11] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. 2004.
Feedback Control of Computing Systems. John Wiley & Sons, Inc., Hoboken, NJ,
USA.

[12] IBM. 2005. An Architectural Blueprint for Autonomic Computing. Technical Report.
IBM.

[13] Baochun Li and K. Nahrstedt. 1999. A control-based middleware framework for
quality-of-service adaptations. IEEE Journal on Selected Areas in Communications
17, 9 (Sept. 1999), 1632–1650.

[14] Jesús M. T. Portocarrero, Flávia C. Delicato, Paulo F. Pires, Taniro C. Rodrigues,
and Thais V. Batista. 2016. SAMSON: Self-adaptive Middleware for Wireless
Sensor Networks. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing (Pisa, Italy) (SAC ’16). 1315–1322.

[15] Bran Selic. 2020. Controlling the Controllers: What Software People Can Learn
From Control Theory. IEEE Software 37, 6 (2020), 99–103.

[16] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio. 2018.
Control-Theoretical Software Adaptation: A Systematic Literature Review. IEEE
Transactions on Software Engineering 44, 8 (2018), 784–810.

[17] Xiao-An Shi, Xing-She Zhou, Xiao-Jun Wu, and Jian-Hua Gu. 2003. Adaptive
control based dynamic Real-time resource management. In Proceedings of the
2003 International Conference on Machine Learning and Cybernetics (IEEE Cat.
No.03EX693), Vol. 5. 3155–3159 Vol.5.

[18] Danny Weyns. 2017. Software Engineering of Self-Adaptive Systems: An Organ-
ised Tour and Future Challenges. In Handbook of Software Engineering. Springer.

[19] Ronghua Zhang, Chenyang Lu, T.F. Abdelzaher, and J.A. Stankovic. 2002. Control-
Ware: a middleware architecture for feedback control of software performance.
In Proceedings 22nd International Conference on Distributed Computing Systems.
301–310.


	Abstract
	1 Introduction
	2 RabbitMQ
	3 Adaptation Uisng Control Theory
	3.1 Identify goals and knobs
	3.2 Devise the model
	3.3 Implement and integrate the controller
	3.4 Test and validate the system

	4 Related Works
	5 Conclusion, Lessons Learned and Future Works
	References

