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Figure 1: Identification of bad practices in the continuous integration process

ABSTRACT
Continuous Integration (CI) is a powerful tool to leverage software
development in a safe, reliable, and efficient way. However, in day-
to-day of software development, bad habits can arise in working
with CI, which can make CI not reach its full potential in projects.
These bad habits we call CI bad practices. This paper presented an
exploratory study on closed-source projects to investigate how CI
bad practices can affect software quality. We observe (1) the impact
on the quality internal attributes after the implantation of CI, (2) the
evolution of software quality indicators over time, and (3) the bad
practices considered most harmful to the software quality by the de-
velopment teams. Our results mean that projects affected by CI bad
practices will not necessarily have their quality impaired. However,
this does not mean that quality will be maintained or improved
over time. Our analysis of the quality indicators has allowed us to
observe that, generally, they have remained stable, and the number
of quality issues reported has not decreased considerably either.
Finally, the quality indicator most affected by the CI bad practices
was maintainability, followed by reliability and security. In addition,
the vast majority of the bad practices analyzed were classified as
having a medium level of effort for resolution. In this sense, we also
classify bad practices according to the level of effort/impact on the
quality that can help prioritize their resolution.
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1 INTRODUCTION
Continuous integration (CI) is a technique that originated from
Software Engineering, which emerged in the mid-’70s and has re-
cently been applied in several software companies [3, 4]. The use of
∗Both authors contributed equally to this research.

CI during the development of a system has the potential to provide
numerous benefits, such as increasing the frequency of delivery
of features [12, 22], improving the productivity of the team [16],
detection and resolution of early bugs [3] and improved commu-
nication [7]. As a result, CI has been widely used in commercial
and open-source projects through software tools that automate
such processes and, consequently, collaborate with the good results
related to CI [11].

However, applying CI in the scope of the software is not an
easy task, especially in medium and high complexity software [18].
Therefore, all members involved in the project must go through
a period of training and adaptation so that they can extract the
maximum benefits that the technique provides and, consequently,
escape the possible risks that CI can cause if implemented in an
inappropriate form [21, 23]. Some studies in the literature have
observed the effects of CI bad practices in software projects [8, 20].
Zampetti et al. [24] presents a catalog with 79 CI bad practices.
Elazhary et al. [10] found in its study that it is possible to have bad
practices in companies with a similar business model, demonstrat-
ing a significant variation in the way that CI is implemented.

Thus, this work conducts an study to investigate how CI bad
practices can affect software quality. We conducted our research
on 9 closed-source projects of our industry partners and analyzed
quantitative data obtained (1) from the systems chosen, (2) from
the API of the CI system used in the projects, and (3) from the
perceptions of the members of the systems’ development teams.

2 BACKGROUND
2.1 Continuous Integration Bad Practices
Duvall [9] alert to the fact that the CI needs to be well implemented
to obtain the benefits and structure a series of bad practices related
to the misuse of CI. Duvall [8] initially created a catalog with 50
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patterns (and their corresponding antipatterns) regarding several
phases or relevant topics of the CI process. Zampetti et al. [24]
derived a catalog of 79 CI bad smells organized into 7 categories
spanning across the different dimensions of a CI pipeline manage-
ment: Repository (REP), Build Process Organization (BPO), Quality
Assurance (QA), Delivery Process (DP), Infrastructure Choices (INF),
Build Maintainability (BM) and Culture (CUL). In this work, we use
Zampetti’s CI bad practices catalog [24] to investigate the use of
CI in a company’s closed-source projects. The Table 1 presents the
CI bad practices used in the work that we identified in the study
environment in a previous study [19].

Table 1: CI bad practices.

ID BAD PRACTICE CATEGORY
BP1 Some pipeline’s tasks are started manually BPO
BP2 Feature branches are used instead of feature toggles REP
BP3 Lack of testing in a production-like environment QA
BP4 Divergent Branches REP
BP5 External tools are used with their default configurations INF
BP6 Developers and operators are kept as separate roles CUL

BP7 Failures notifications are only sent to teams/developers
that explicitly subscribed BPO

BP8 A build fails because of some flakiness in the execution,
whereas it should not BPO

BP9 Quality gates are defined without developers considering
only what dictated by the customer QA

BP10 The CI server hardware is used for different purposes
other than running the CI framework INF

BP11 Developers do not have a complete control of the environment CUL
BP12 Lengthy build scripts BM
BP13 Test cases are not organized in folders based on their purposes REP
BP14 Missing tests on feature branches QA

2.2 Quality Measurement
2.2.1 Internal Quality Attributes. Internal quality attributes allow
measurement of software artifacts, such as system code. In this
work, we will use to measure the internal quality of the code metrics
that represent the attributes of cohesion, coupling, size, complexity
and inheritance. To assess the systems quality investigated in this
work, we used metrics well known from the literature presented in
Table 2 Chidamber and Kemerer [5], Destefanis et al. [6], Lorenz
and Kidd [13], McCabe [14]. These metrics are supported by the
Understand tool1.

Table 2: Metrics of the internal quality attributes [5, 6, 13, 14].

Attributes Metric
Cohesion Lack of Cohesion of Methods (LCOM2)[5]
Coupling Coupling Between Objects (CBO)[5]

Average Cyclomatic Complexity (ACC)[14]
Sum Cyclomatic Complexity (SCC)[14]
Nesting (MaxNest)[13]Complexity

Essential Complexity (EVG)[14]
Number Of Children (NOC)[5]
Depth of Inheritance Tree (DIT)[5]Inheritance
Bases Classes (IFANIN)[6]
Lines of Code (LOC)[13]
Lines with Comments (CLOC)[13]
Classes (CDL)[13]Size

Instance Methods (NIM)[13]

1https://scitools.com/

2.2.2 Quality Indicators. There are other ways to measure the qual-
ity level of software besides internal quality attributes. In this paper,
we address three quality indicators that are actively used in the
analyzed projects: (1) Software Reliability, (2) Software Security,
and (3) Software Maintainability. According to Pham [17], Software
Reliability can be defined as the probability that a software has of
not failing for a given period of time and under specific conditions.
In other words, it is the ability of software to operate properly
within the limits for which it was designed. Thus, this is an impor-
tant metric from both the developer’s and customer’s point of view.
Software Security, on the other hand, can be defined as the ability
of software to continue to function properly even under malicious
attack [15]. The concept of software security covers both situations
where the software may fail due to normal use and occasions when
there is an intelligent agent willing to break the system. Finally,
we can define Software Maintainability as the ease with which
software can be modified [1]. Software maintainability is actually a
grouping of several characteristics such as: readability of the source
code, quality of the documentation, and understandability of the
software [2].

2.3 Related Work
Some works in the literature have investigated the effects of CI bad
practices in software projects. Felidré et al. [11] studied the side
effects caused by bad CI practices in 1270 open source projects that
use the TravisCI tool. As a result, the authors pointed out that ±
60% of the evaluated projects suffer from the low rate of commits
performed, 85% of the analyzed systems have at least one damaged
build, and that the projects with a smaller scope (with up to 1000
lines of code), were the ones that required the most time to handle
inconsistent builds. In an initial study the authors Silva and Bezerra
[19], analyzed CI bad practices in two closed-source projects. The
study’s main conclusions were identified that the most frequent
CI bad practices are linked to repository management factors and
the culture of the environment. Furthermore, it was also identified
that the correction of build failures is delayed. The main negative
effects of bad practices are related to project management and CI
development and infrastructure. Zampetti et al. [24] investigated
the impact of CI bad practices through semi-structured interviews
with 13 experts and mining more than 2,300 Stack Overflow posts.
The authors formulated a catalog that contains 79 CI bad smells,
grouped into 7 categories inherent to the different dimensions of
the CI pipeline process and management. Unlike these works, our
work investigates the effects of CI bad practices on the internal
quality attributes. We used the catalog of CI bad practices defined
by Zampetti et al. [24] for our investigation.

3 STUDY SETTINGS
3.1 Goal and Research Questions
Our main objective in the present work is to analyze the effects of
CI bad practices regarding software quality, thus we have designed
the following research questions:

• RQ1: What is the impact on the internal quality attributes of
closed-source systems after the implantation of CI? Through
this research question, we performed an initial analysis of
the projects selected for the study to verify if there were any
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differences in the internal quality attributes that might indi-
cate the influence of bad practices in the analyzed software.

• RQ2: What can quality indicators over time reveal in projects
affected by CI bad practices? In our second research question,
we investigate the behavior of the quality indicators used in
the analyzed projects to see if the use of CI has succeeded in
improving software quality over time.

• RQ3: Which CI bad practices have the highest priority for
resolution for quality improvement? Our final research ques-
tion aims to obtain a prioritization of CI bad practices based
on the level of effort to resolve and the impact on software
quality so that quality improvement can be achieved more
quickly and effectively.

3.2 Study Steps
Step 1: Select systems for analysis.We selected a total of 9 closed-
source projects of our industry partners. Table 3 summarizes data
from target systems. In the first column, we assign an identifier
to each system, in the second column, we present a brief descrip-
tion regarding the purpose of the software, and in the remaining
column, the total number of CI pipelines executed in the systems
is evidenced target. We used the following acceptance criteria in
the choice of systems: (1) systems with at least one year since the
beginning of its development, and (2) systems that have CI configu-
ration for at least 6 months. In the work of Silva and Bezerra [19],
bad practices were identified in the study environment, so we did
not include this factor in the acceptance criteria.

Table 3: General data of the target software systems.

SYSTEM DOMAIN PIPELINES
S1 Skills-based Organizational Management 1,764
S2 Student Assistance 731
S3 Foreign Language Reading Proficiency 2,135

S4 Management of Complementary Activities
for Graduating Degrees 505

S5 Storeroom Management 106
S6 Organizational Risk Management 818
S7 Social Project Management 303
S8 Electronic Dental Records 1,218
S9 Academic Events Management 255

Step 2: Collect and analyze internal quality attributes. To an-
swer the RQ1, we conducted a preliminary analysis of the projects
and separated those that did not adopt the CI since its inception.
We collected the values of the internal quality attributes of the
selected systems at two points, one before and one after the in-
troduction of CI in the project. Metrics were collected through a
non-commercial license of the Understand2 tool. Our attributes
analysis took place by comparing the values of the metrics before
and after the introduction of CI in the projects.

Step 3: Collect and analyze history of quality indicators. To
complement the analysis of internal quality attributes and answer
our RQ2, we collected the history of quality indicators from all se-
lected systems. The quality indicators observed were: (1) Software
Reliability, (2) Software Security and (3) Software Maintainability.

2https://www.scitools.com/

The collection of indicators took place through a script we devel-
oped for this purpose3, so it was possible to obtain the values of
the quality indicators automatically from the CI system used in
the projects. Invited experts validated the collection script and the
data obtained. In addition to quality indicators, we also collect the
history of issues raised by static analysis in projects. Our analysis
of the quality indicators took place by comparing the values of the
indicators in each of the projects.

Step 4: Develop, apply and analyze questionnaire. To answer
the last RQ, we developed a questionnaire 4 aimed at themembers of
the development teams that worked on the analyzed projects. The
form was composed of two objective questions where we sought
to: (1) discover the relationships between CI bad practices and
quality indicators and (2) understand the level of effort required to
correct each bad practice in the projects. We carried out an initial
application of the questionnaire with a specialist for validation
purposes and, based on the feedback obtained, we refactored some
points and created an explanatory material (which we refer to in
the questionnaire) about poor CI practices and quality indicators
to help in the understanding of the participants. We also collected
characterization data from the participants: the study level, the role
played in the project, and knowledge of CI and software quality. In
total, we obtained 21 responses (out of 380 invitations sent) from
people who were part of the development team of the analyzed
systems.

We analyzed the responses as follows: first, we analyzed the
relationship between CI bad practices and quality indicators to
classify (1) bad practices according to their level of impact and (2)
quality indicators by the level of impact suffered. Finally, we also
rank CI bad practices according to the level of effort required to
resolve them. For this, we used a strategy of weights associated
with the available options for the level of resolution effort: weight
1 for the low level, weight 2 for the medium level and weight 3
for the high level. We calculated a score for each bad practice by
multiplying the number of occurrences of each impact level by their
respective weight. Finally, we also correlated the impact level on
quality and effort level to resolve each bad practice and generated
a prioritized list of bad practices that was translated into an effort
versus impact matrix that can be useful in selecting bad practices,
priority issues for resolution, aiming to improve software quality.

4 RESULTS
4.1 Impact on internal quality attributes after

CI introduction (RQ1)
To answer RQ1, we proceeded with the static analysis of the source
code of the five projects analyzed to obtain the values for the inter-
nal quality attributes. For this, we considered two versions of the
code of each system: the first was based on the point immediately
before the implementation of CI in the project. As a result, we could
see an increase in the raw values of all internal quality attributes
for each of the 5 systems. Table 4 shows the results of the data
collected for each system.

Our analysis considers the Cohesion attribute to be inversely
proportional to the other attributes (i.e., the higher the value, the
3Our artifacts are available at: https://github.com/ruben-silva-dev/VEM-2022
4https://forms.gle/KWg9P9CpGj8X7F668
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Table 4: Impact of CI implantation in internal quality at-
tributes of systems.

System Cohesion Complexity Inheritance Coupling Size

S1 2290⇒ 3788
(↑ 65.41%)

718 ⇒ 955
(↑ 33%)

178⇒ 230
(↑ 29.21%)

172 ⇒ 290
(↑ 68.6%)

4008⇒ 5621
(↑ 40.24%)

S2 1399⇒ 1557
(↑ 11.29%)

331 ⇒ 370
(↑ 11.78%)

85 ⇒ 143
(↑ 68.23%)

46⇒ 73
(↑ 58.69%)

1670⇒ 2101
(↑ 25.8%)

S4 1247⇒ 1717
(↑ 37.69%)

355 ⇒ 497
(↑ 40%)

111⇒ 129
(↑ 16.21%)

69⇒ 102
(↑ 47.82%)

1774⇒ 2576
(↑ 45.20%)

S6 2608⇒ 2668
(↑ 2.3%)

886 ⇒ 1044
(↑ 17.83%)

257⇒ 258
(↑ 0.38%)

180 ⇒ 191
(↑ 6.11%)

5068⇒ 5729
(↑ 13.04%)

S8 4478⇒ 4846
(↑ 8.21%)

1559⇒ 1859
(↑ 19.24%)

353⇒ 390
(↑ 10.48%)

553 ⇒ 611
(↑ 10.48%)

8863⇒ 11541
(↑ 30.21%)

better). Thus, we could see significant improvements in the cohesion
of all systems, especially in the S1 and S4 systems. As can be seen
in Table 4 the values of all internal quality attributes increased after
our partners adopted CI in the projects. It is important to note that
it is expected the increase in internal attributes, such as complexity,
during the development; however, another essential fact to be noted
is that the cohesion of the code also increased in all cases, so the
adoption of CI may have contributed to the maintenance of the
cohesion of the code. In this regard, it is essential to note that our
partners have implemented static analysis in all projects as part of
the CI process. Since static analysis is a vital process for improving
code quality, we can say that, indirectly, CI can improve software
quality, especially about cohesion.

Finding 1: CI-aided development can help to increase the
degree of cohesion of systems.

4.2 Analysis of the evolution of quality
indicators (RQ2)

We performed a historical analysis of the quality indicators for all
the selected systems. From the raw data collected in the CI system
of the projects, we generated graphs to represent the behavior
of (1) the values of the quality indicators and (2) the number of
issues reported by the static code analysis system used in the study
environment (in this case, SonarQube5). We compiled the resulting
graphics in Figure 2. The graphics represent the actual quantity of
issues reported by the static analysis system. As can be observed,
the quality indicators are associated with a scale ranging from 1 to
5, where a higher value implies a better quality for the system. In
this case, we have divided the values into five categories according
to the severity of each problem (blocker, critical, major, minor, info).

As can be seen, the graphs for each system have different be-
haviors, but in general, there is a relationship between issues and
the level of quality indicators. Another interesting phenomenon
to be observed is that, except for S8, all systems maintain some
unresolved issues, indicating that the CI process, specifically the
static analysis, is not adequately used throughout the organization.
The existence of bad CI practices in the organization corroborates
this observation, as it is possible to see, for example, (1) the deficient
strategy for defining quality levels for projects and (2) the use of
standard configuration tools that may not reflect the needs of the

5https://www.sonarqube.org/
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Figure 2: Quality indicators and issues history.

systems. Thus, we can say that bad CI practices can harm (even if
indirectly) the level of quality indicators of a software system.

Finding 2: CI bad practices can indirectly harm the quality
level of a software product.

4.3 Prioritizing the resolution of CI bad
practices (RQ3)

To finalize the study of the impact of CI bad practices on software
quality in our study environment, we performed a correlation anal-
ysis between the level of impact and the level of effort to resolve
the bad practices and assembled a prioritized view of the CI bad
practices that the Figure 3 presents. As can be seen, we have divided
the matrix into quadrants that represent the priority of resolution
of the bad practices based on the level of impact on quality and the
level of effort required to resolve them. Thus the bad practices in
the first quadrant are those with the highest priority for resolution
since they have a high impact on quality and do not require a high
level of effort to correct. Then comes the second quadrant with
the bad practices that also have a high impact but require much
effort to correct. Finally, come two last quadrants contain the CI
bad practices with low impact on quality but with a low and high
level of effort (3rd and 4th, respectively).

Through the analysis of the Figure 3, it is possible to verify
that the bad practices with the highest priority are related to the
categories of Culture (BP6), Quality Assurance (BP3, BP14), and

https://www.sonarqube.org/


Empirical investigation of the influence of continuous integration bad practices on software quality VEM 2022, October 3, 2022, Virtual Event, Brazil

BP6

BP14

BP3

BP13

BP9

BP5

BP8

BP10

BP7

BP4

BP1

BP2

BP12

BP11

I II

III IV

IM
PA

C
T 

LE
V
EL

EFFORT LEVEL +

+

-

-

Figure 3: Difficulty and Effort Level Matrix.

Repository (BP13). Furthermore, based on the description of the bad
practices, we can say that it is vital to implement a well-structured
testing process and adopt a DevOps-oriented culture to achieve
better results in improving software quality.

Finding 3: A good test architecture and the implementation
of DevOps are CI-related best practices that can improve
software quality.

5 THREATS TO VALIDITY
As for the threats to the validity of our study, we can highlight: (1)
the number of systems and team members considered in the study,
which the closed-source nature of the projects can explain; however,
we sought not to limit the data collected both from the API of the
CI system and from the questionnaire that was directed even to
ex-members of the organization; (2) a second threat is linked to the
reliability of the data collection tools that we addressed through
the use of a consolidated tool for the collection of the internal
quality attributes and the validation of both the script and the
questionnaire that we implemented by experts; (3) our last threat to
validity consists in the generalizability of the results since we deal
with a specific scenario; thus we consider that the results obtained
here are applicable only in the context of small organizations, with
little CI maturity and that are affected by CI bad practices.

6 FINAL REMARKS
In the present work, we conducted an empirical study to investi-
gate the effects of CI bad practices concerning software quality. Our
study was applied in a small industry organization characterized by
the presence of CI bad practices in its development process and by
the immaturity regarding CI practices. Our results indicate that: (1)
the inclusion of CI in the software development process can help
to maintain the cohesion of systems, (2) bad CI practices can, even
if indirectly, harm software quality and (3) ) a good test architec-
ture and the implementation of a DevOps culture can significantly
contribute to the improvement of software quality.

Our future works include: (1) the validation of the effort versus
impact matrix to verify the quality improvement after solving the

CI bad practices, (2) the analysis of the quality indicators in open-
source projects with amore expressive set of data to enable a greater
ability to generalize the results and (3) application of the study with
a larger set of CI bad practices to broaden the view on its effects on
software quality.
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