
Studying the Impact of Continuous Delivery Adoption on Atoms
of Confusion Rate in Open-Source Projects

Diego N. Feijó
Federal University of Ceará
Fortaleza, Ceará, Brazil
diegofeijo@alu.ufc.br

Carlos D. A. de Almeida
Federal University of Ceará
Fortaleza, Ceará, Brazil
diego.andrade@ufc.br

Lincoln S. Rocha
Federal University of Ceará
Fortaleza, Ceará, Brazil

lincoln@dc.ufc.br

ABSTRACT
Atoms of Confusion (AoC) are indivisible code patterns that may
cause confusion for developers when trying to understand them,
and that have less confusing equivalent patterns. Previous works
suggest it is a good practice to avoid them. While there are studies
on AoC relating them to bugs, there is not much about their relation-
ship with the practices of Continuous Integration and Continuous
Delivery (CI/CD). Since CI/CD is generally praised as a group of
good practices, related to better code being released reliably and
faster to clients, there’s a possibility that the presence of CI/CD
would also impact the presence of AoC, possibly making them less
prevalent since they can be problematic to development processes.
To clarify this relationship, we analyzed 10 open-source long-lived
Java libraries and 10 open-source Java projects for Android, to see if
there was any difference in the AoC rate before and after the imple-
mentation of CI/CD. Our results show the AoC rate changed for all
projects, but we could not find a statistically relevant relationship
between these changes and CI/CD.

KEYWORDS
Software Engineering, Atoms of Confusion, Continuous Integration,
Continuous Delivery, Mining Repositories, Open-Source Software

1 INTRODUCTION
Software engineering is trying to find solutions to produce software
quickly and with more quality. This is also true for open-source
projects widely used by end users and companies [12, 21], and they
keep growing in scale. As such, developers should learn and adopt
practices and methods that would help them in this regard.

Continuous Integration [7] and Continuous Delivery [10] are a
set of practices in software engineering, which consists of pipelines
that automatize the building, testing, and delivery processes of
software, making it a faster and more reliable way to produce
valuable software artifacts in short cycles [4]. Since quickness is
relevant, it is undesirable to lose more time than necessary on
activities such as understanding source code, which is an essential
software developing task, but also very time-consuming, having
developers spend 50% of their time on it [15, 20].

To avoid consuming even more time on this kind of task, it’s
relevant for projects to minimize the rate of confusing code they
contain. Confusion is the lack of certainty a developer has about the
execution of a piece of code. With this in mind, Atoms of Confusion
are defined as indivisible code patterns that are easily identifiable,
likely to cause confusion, and can be replaced by another pattern
more unlikely to cause confusion [3].

Since AoC are known to confuse, there may be a relationship
between the implementation and practice of CI/CD and the atoms’
prevalence or lack thereof. As they can confound, this could also
cause problems related to slowness in the software performance,
maintenance, and even the introduction of bugs since the code
is harder to understand. Some works have already studied the
prevalence of AoC [9, 14], and even their impact during devel-
opment [2, 9]. Results vary, but if AoC is a problem, is it possible
that the practice of CI/CD could reduce its prevalence in the long
run?

In this paper, we conducted a study to verify if the practice
of CI/CD has any impact on the presence of AoC in open-source
projects. To measure this presence, we used static analysis, using
tools - BOHR and JMetriX - made with the Spoon [16] Java library,
to extract the AoC rate, which we define as the number of AoC
per line of code, from 20 different open-source Java projects, 10
being long-lived known Java libraries, and the other 10 being An-
droid projects. These projects and their versions were filtered and
selected by defined criteria to guarantee their relevance and fulfill
this paper’s goal. We used the Wilcoxon Signed-Rank Test to com-
pare the data, and the results we found imply a lack of statistically
relevant connection between the implementation of CI/CD and the
AoC rate.

2 BACKGROUND
2.1 Atoms of Confusion
As said before, Atoms of Confusion are easily identifiable and in-
divisible patterns of code capable of making the developer mis-
understand the code they’re in and how it executes. While the
original study and list of Atoms of Confusion was based on the
C programming language [8], different programming languages
have different Atoms of Confusion candidates, and there are al-
ready studies that proposed their own lists of AoC candidates for
specific programming languages [3, 5, 11, 18]. By definition, AoCe
can be transformed into other patterns of code that function in
the same way and which are less likely to be confusing, making
the use of AoC unnecessary. However, they are still prevalent in
software projects from various contexts [9, 14], even finding them-
selves overlapping with recommendations from popular code style
guides [8]. AoC have a tendency to grow in numbers when the
project grows in size, even disproportionally so when compared
to the increase in lines of code [14]. They were also shown to be
connected to the presence of bugs and frequently appeared in bug
fixes [9], pointing to the possibility of them being dangerous and
a problem that projects may want to get rid of. However, their
impact is lacking, or at least unclear, in the context of code reviews,

VEM ’23, September 25, 2023, Campo Grande, MS, Brazil Diego N. Feijó, Carlos D. A. de Almeida, and Lincoln S. Rocha

seemingly not causing confusion comments, nor being removed on
pull requests [2].

2.2 Continuous Practices in a Nutshell
In an effort to properly separate and define the continuous practices
and DevOps, Ståhl et al. [17] proposed a few ways to understand
the practices, as a set of separate definitions. This was done because
of the great ambiguity these terms have both in the industry and
in the literature. Continuous Integration is the frequent integration
of developers’ works, usually daily at least. This is a practice de-
pendent on the developers’ behavior since they are the ones who
actively integrate their work. Continuous Delivery is treating each
change made to the project as a potential release candidate, in other
words, it needs to be properly tested and verified by a continuous
delivery pipeline. This is a development process, not connected to
a developer’s actions since the pipeline is automatized. In fact, it
is possible for a Continuous Delivery pipeline to be present, while
some developers do not act with Continuous Integration in mind.
Continuous Deployment is constantly and rapidly placing release
candidates, previously evaluated during Continuous Delivery, in a
production environment, usually for customer use.

According to these definitions, our focus is on the Continuous
Delivery aspect of “CI/CD”, or just CD. Liu et al. [13] often uses
the complete acronym. Still since their study’s method of identify-
ing “CI/CD” was the presence of CI/CD services and pipelines, it’s
implied their focus is the same as ours in this aspect.

3 STUDY METHODOLOGY
3.1 Research Goal and Question
This paper’s main objective is to know the impacts that CI/CD
may have on the prevalence of AoC. Our research question will
summarize this goal.

RQ. Is there a statistically significant difference between the rate of
Atoms of Confusion before and after CI/CD adoption in open-source
Java projects?

The AoC rate is the metric we chose to check the prevalence
of AoC, and it was the chosen metric because of the tendency for
the number of AoC to grow as the projects grow in size [14]. This
means the number of AoC would probably not decrease with the
implementation of CI/CD, not while the project kept increasing in
size. As such, the AoC rate would instead represent the presence of
AoC independently from the project size.

With this goal in mind, we first selected our projects following a
set of criteria, for a total of 20 projects. We then extracted the data
from these projects with two tools of static analysis, BOHR [14] and
JMetrix1 to acquire the metrics to be used during the analysis to
get the results we are searching for. Finally, we discuss the different
results and their implications.

3.2 Selection of Projects
We select 20 open-source projects to serve as subjects of our empir-
ical investigation, divided into two groups: long-lived Java libraries
(in the first 10 lines of Table 1) and Java-based Android projects
(in the last 10 lines of Table 1). All of them are from open-source

1https://github.com/lincolnrocha/JMetriX

repositories from GitHub, and were chosen based on the following
criteria, based on the one used by Fairbanks et al. [6]: (i) the projects
must have adopted CI/CD at some point in their development; (ii)
the projects must have been active as recently as 2022; (iii) they
must have at least 25 stars and at least 2 contributors, to avoid
personal and school projects; and (iv) the projects must have at
least 8 version tags, otherwise the project’s history with CI/CD and
AoC would be too short, threatening the statistical analysis.

Table 1: GitHub’s Information of Studied Projects.

Project #Stars #Tags #Commits

commons-lang 2, 503 96 7.270
commons-dbcp 312 66 2, 827

struts 1, 216 143 6, 658
commons-codec 409 44 2, 423
commons-bcel 216 35 2, 508

commons-compress 282 76 4, 129
commons-configuration 179 77 3, 857

commons-net 211 75 2, 918
freemarker 874 44 2, 343

commons-vfs 197 55 3, 656

infinity-for-reddit 3, 461 118 2, 033
gestureviews 2, 325 16 432

discreet-launcher 167 61 639
xupdate 2, 134 32 246

colorpickerview 1, 417 19 278
opentracks 678 141 5, 311

presencepublisher 70 50 206
asteroidossync 91 28 1, 088

unexpected-keyboard 619 28 616
shitter 197 108 1, 678

For the Java libraries, we used the projects fromAlmeida et al. [1].
These repositories were curated from the SmartShark dataset2, and
filtered by checking the presence and proper use of CD. They are
all from Apache and also fit the criteria. Some projects that did not
pass all the filters in this work were manually checked and were
considered candidates if they passed the criteria we established.

For the Android projects, we needed to filter them ourselves
from the projects identified by Liu et al. [13] as having adopted a
CI/CD service. Their dataset contained a large number of Android
repositories from three different sites. We limited ourselves to those
from GitHub, around 4, 000, filtering only the repositories that
passed the criteria. After the filtering, we had 240 projects to choose
from.

3.3 Atoms of Confusion Rate Metric
To compare the AoC rate (ACR) between the periods with and with-
out CI/CD, we first determined how that would be measured. For
that, we extract two metrics from each considered release: the num-
ber of atoms of confusion (NAC) and the number of lines of code
(LOC). Next, we calculate the ratio between NAC and LOC to compute
the AoC rate (ACR = NAC ÷ LOC). We compute the ACR metric for all
2https://smartshark.github.io/

Studying the Impact of Continuous Delivery Adoption on Atoms of Confusion Rate in Open-Source Projects VEM ’23, September 25, 2023, Campo Grande, MS, Brazil

considered releases in each project and group it into two periods,
AoC rate before and after CI/CD adoption. Finally, we compute the
statistical mean and median of the ACR metric for each period and
project, and use them as proxies to statistically compare the rate of
AoC before and after CI/CD adoption across the studied projects.

3.4 Data Mining
As mentioned before, we already had a list of candidates to choose
the long-lived libraries from. Still, to get the Android projects, we
first needed to analyze the list of projects from GitHub and filter
only the ones that fit the criteria. For that, we used Python, and
the ghAPI3, a Python library to communicate with GitHub’s API,
and filtered the projects from Liu et al. [13] with our established
criteria. After the filtering, we randomly chose projects avoiding
ones that had implemented CI/CD since the first version, making it
impossible to compare the before and after of its implementation
or those that implemented it so recently and have no history with
CI/CD, until we get ten projects.

After choosing the projects, we downloaded several versions
from each, trying to balance the number before and after the imple-
mentation of CI/CD. These versions each had their code statically
analyzed with Java programs made with Spoon: BOHR and JMetriX.
Spoon is an open-source Java library that analyzes and transforms
Java source code. BOHR, created by Mendes et al. [14], is a tool
made to identify AoC and extract data related to them from the
source code of Java projects. The AoC it can identify are based
on the AoC list for the Java programming language suggested by
Langhout and Aniche [11], and are shown in Table 2, as well as the
equivalent less-confusing pattern for each. JMetriX is a tool made
to extract general metrics and information about Java source code.
It was used to extract the number of lines of code (LoC) metric from
the projects.

3.5 Data Analysis
From the mining, we got the number of LoC and the number of
AoC for each version of each project we selected. With this, we
calculated the ACR. Since the number of AoC is considerably lower
than the number of LoC, we use this metric on a 10−3 scale.

With this metric in hand for each project, we calculated means
and medians, for versions “Before CI/CD” and “After CI/CD” since
we wanted to compare the possible impact of CI/CD on the ACR
considering the version history. After we had the means and medi-
ans per project, we put them together, and compared them “Before
CI/CD” and “After CI/CD”. To make this comparison, we used the
Wilcoxon Signed-Rank Test to compare the data and to check if
there’s a relation between them. For this test, the result is a p-value
which must be 0.05 or lower for the null hypothesis, that there’s
no relation between data, to be rejected and statistically relevant.

4 STUDY RESULTS AND DISCUSSION
4.1 Research Question Answer
To answer our research question, we first computed the mean and
median of the ACR metric for each studied project and summarized
them in Table 3. Next, we employ the Wilcoxon Signed-Rank Test

3https://ghapi.fast.ai/

Figure 1: The boxplot of rates of AoC before and after CD
adoption.

to compare them before and after CI/CD adoption. Thus, one can
verify whether there are statistically significant differences between
them.

The Wilcoxon Signed-Rank Test is a nonparametric test to com-
pare paired data samples. First, for the ACR’s mean comparison,
we defined the null and alternative hypotheses as follow: 𝐻𝑥

0 :
𝑥 (ACRb) = 𝑥 (ACRa) (it means that there is no statistical difference
between ACR before and after CI/CD adoption), 𝐻𝑥

1 : 𝑥 (ACRb) >

𝑥 (ACRa) (it means that ACR before is significantly higher than ACR

after CD adoption), and𝐻𝑥
2 : 𝑥 (ACRb) < 𝑥 (ACRa) (it means that ACR

before is significantly lower than ACR after CD adoption). Next, for
the ACR’s median comparison, we defined the null and alternative
hypotheses as follows: 𝐻𝑥

0 : 𝑥 (ACRb) = 𝑥 (ACRa), 𝐻𝑥
1 : 𝑥 (ACRb) >

𝑥 (ACRa), and 𝐻𝑥
2 : 𝑥 (ACRb) < 𝑥 (ACRa). The hypotheses 𝐻𝑥

0 , 𝐻
𝑥
1 ,

and 𝐻𝑥
2 are equivalent to the 𝐻𝑥

0 , 𝐻
𝑥
1 , and 𝐻

𝑥
2 hypotheses.

Table 4 summarizes the statistical test results. After applying
the statistical test to all projects, we were able to identify that in
both cases the null hypotheses (𝐻𝑥

0 and 𝐻𝑥
0) could not be rejected

(i.e., any of the statistical test results have a significance level of
𝛼 < 0.05). Thus, the alternative hypotheses 𝐻𝑥

1 , 𝐻
𝑥
1 , 𝐻

𝑥
2 , and 𝐻𝑥

2
are all rejected. Therefore, the statistical results indicate that the
adoption of CI/CD has no significant impact on the AoC rate.

4.2 Discussion
Some projects, like commons-dbcp, actually had their ACR reduced
after the implementation of CI/CD, going against the tendency of
increase, but the behavior is not consistent throughout the projects,
with some even having their rates increased. The magnitude of the
changes is also inconsistent. Visualizing the data, we can actually
see that the impact, when considering all projects, was practically
none. The rate of AoC changed for all projects, as mentioned before
and shown in Table 3. However, when analyzing the boxplot in
Figure 1 of both before and after CI/CD, we see the difference in
distribution between them is hard to visualize, as they are both

VEM ’23, September 25, 2023, Campo Grande, MS, Brazil Diego N. Feijó, Carlos D. A. de Almeida, and Lincoln S. Rocha

Table 2: List of Atoms of Confusion identifiable by the BOHR tool. Adapted from Mendes et al. [14]

Atom of Confusion Name Acronym Snippet with AoC Snippet without AoC

Infix Operator Precedence IOP int a = 2 + 4 * 2; int a = 2 + (4 * 2);

Post-Increment/Decrement Post-Inc/Dec a = b ++; a = b ;

b += 1 ;

Pre-Increment/Decrement Pre-Inc/Dec a = ++b ; b += 1 ;

a = b ;

Conditional Operator CO b = a == 3 ? 2 : 1; if (a == 3){ b = 2;}

else {b = 1;}

Arithmetic as Logic AaL (a - 3) * (b - 4) != 0 a != 3 && b != 4

Logic as Control Flow LaCF a == ++a > 0 || ++b > 0 if (!(a + 1 > 0)) {b += 1;}

a += 1

Change of Literal Encoding CoLE a = 013; a = Integer.parseInt("13", 8);

Omitted Curly Braces OCB if (a) f1 (); f2 (); if (a){ f1(); } f2() ;

Type Conversion TC a = (int) 1.99f; if (a){ f1(); } f2() ;

Repurposed Variables RV int a [] = new int[5];

a[4] = 3;

while (a[4] > 0) {

a[3 - v1[4]] = a[4];

a[4] = v1[4] - 1;}

System.out.println(a[1]);

int a [] = new int[5];

int b = 5 ;

while (b > 0) {

a[3 - a[4]] = a[4];

b = b - 1;}

System.out.println(a[1]);

very similar. The boxplot shown considers the mean rates, but the
boxplot for the medians is virtually the same.

5 THREATS TO VALIDITY
We will use the threats to the validity of our study as presented
by Wohlin et al. [19]. Those are threats to conclusion, construct,
internal or external validity.
Conclusion Validity. To deal with threats to our study’s conclu-
sion, we chose the Wilcoxon Signed-Rank Test so that our conclu-
sion was statistically relevant.
Internal Validity. It is possible that some other variables could
interfere by increasing or decreasing the rate of AoC in ways we
do not understand. However, it is not the intention of this paper to
imply causal relationships.
Construct Validity. There’s a possibility of human bias being
present when the projects are chosen. To avoid this, the manual
choice of projects was made at random after the filtering, being
invalidated only if the project did not fit our criteria. Other parts of
our analysis were automated to avoid mistakes and bias.
External Validity. The sample size of this study is only 20 projects,
which can threaten its generalization. To mitigate it, we tried to
diversify our projects with not only long-lived Java libraries but also
projects from another context entirely, that is, Android projects. We
also filtered the projects, getting only relevant ones, while avoiding
personal projects.

6 RELATEDWORK
Gopstein et al. [8] introduced the concept of Atoms of Confusion as
the smallest piece of code that can cause confusion in developers,

making themmisunderstandwhat the code actually does, which can
lead to mistakes during development and when doing tasks. This
work also focused on AoC in the context of the C programming lan-
guage, while other works studied the AoC in different programming
language contexts, such as Castor [3], with Swift; Langhout and
Aniche [11], with Java; Torres et al. [18], with JavaScript; and [5],
with Python. Other works also study the relationship of AoC with
different metrics, such as Bogachenkova et al. [2] which analyzed
the possible relation between AoC, code review, and pull requests.

Gopstein et al. [9] also made a study to check the prevalence of
AoCs in the context of open-source C and C++ projects, while also
studying the possible impact on the number of bugs, and number
of bug fixes that contain atoms. Mendes et al. [14] similarly studied
AoC and their prevalence in a specific context, open-source long-
lived Java libraries, but also analyzed the co-occurrence of atoms,
and created the tool for AoC detection we used in our study.

On CI/CD, Almeida et al. [1] studied the relation of CI/CD with
Bug-fixing time, where it was found that therewas a decrease in bug-
fixing time after CI/CD implementation. Our work is a derivative
of this paper, as we consider a different variable, within a different
context but made our studying process in similar ways. Fairbanks
et al. [6] verified the impact of CI/CD on commit velocity and
number of reported issues, analyzing over 12, 000 repositories from
GitHub, and GitLab, with roughly 4, 500 of them having CI/CD. Liu
et al. [13] analysis was focused on the context of Android apps,
analyzing more than 80, 000 repositories from GitHub, GitLab, and
Bitbucket, and finding the presence on CI/CD in roughly 10% of
them. Their focus was to check the extent of CI/CD adoption, and
the use of different CI/CD services in the projects.

Studying the Impact of Continuous Delivery Adoption on Atoms of Confusion Rate in Open-Source Projects VEM ’23, September 25, 2023, Campo Grande, MS, Brazil

Table 3: Summary of projects and AoC rate statistics. ACRb
(ACR before CI/CD adoption), and ACRa (ACR after CI/CD adop-
tion). The 𝑥 and 𝑥 stand for statistical mean and median,
respectively.

Project 𝑥 (ACRb) 𝑥 (ACRa) 𝑥 (ACRb) 𝑥 (ACRa)

commons-lang 11.73 12.29 11.54 12.52
commons-dbcp 6.17 4.00 5.72 3.77

struts 7.15 8.13 6.69 8.44
commons-codec 22.12 18.07 22.12 18.07
commons-bcel 7.46 7.20 7.51 6.85

commons-compress 23.77 20.53 23.47 20.61
commons-configuration 5.14 3.76 4.79 3.47

commons-net 10.64 12.09 11.16 11.56
freemarker 20.79 19.96 20.36 20.15

commons-vfs 7.11 6.99 7.40 7.00

infinity-for-reddit 13.34 17.04 13.27 16.99
gestureviews 22.97 23.99 23.15 24.15

discreet-launcher 3.42 7.53 3.47 8.49
xupdate 14.96 15.26 15.06 15.20

colorpickerview 9.39 11.09 9.39 11.09
opentracks 16.44 17.48 16.25 17.53

presencepublisher 21.17 13.32 20.25 13.86
asteroidossync 12.47 13.17 12.96 13.17

unexpected-keyboard 12.82 15.04 12.64 15.01
shitter 9.88 9.46 9.23 9.32

Note: 𝑥 (ACRa) , 𝑥 (ACRb) , 𝑥 (ACRa) , and 𝑥 (ACRb) value are given in 10−3 scale.

Table 4: The Wilcoxon hypotheses statement and the test
results. The symbols ✓ and ✗ indicate the result of the null
hypothesis test (✓ fail to reject, and ✗ reject).

Wilcoxon Hypothesis Value of p-value

𝐻𝑥
0 : 𝑥 (ACRb) = 𝑥 (ACRa) (✓)

0.67𝐻𝑥
1 : 𝑥 (ACRb) > 𝑥 (ACRa) (✗)

𝐻𝑥
2 : 𝑥 (ACRb) < 𝑥 (ACRa) (✗)

𝐻𝑥
0 : 𝑥 (ACRb) = 𝑥 (ACRa) (✓)

0.62𝐻𝑥
1 : 𝑥 (ACRb) > 𝑥 (ACRa) (✗)

𝐻𝑥
2 : 𝑥 (ACRb) < 𝑥 (ACRa) (✗)

7 CONCLUSION AND FINAL REMARKS
We analyzed 20 open-source Java projects, 10 long-lived libraries,
and 10 Android projects, with the intention of checking if the im-
plementation of CI/CD had an impact on the ACR, which we use as
a proxy for the presence of AoC. We filtered and chose the repos-
itories following specific criteria to get relevant projects for the
analysis. Then, we made a static analysis on all project versions
to get the important data, such as LoC and Number of AoC, to
calculate the ACR. We then made a comparison using the means of
each project’s rate before and after the implementation of CI/CD.
Our results imply there’s no statistically significant relationship
between the implementation of CI/CD and the ACR.

REFERENCES
[1] Carlos D. A. de Almeida, Diego N. Feijó, and Lincoln S. Rocha. 2022. Studying

the Impact of Continuous Delivery Adoption on Bug-Fixing Time in Apache’s
Open-Source Projects. In 2022 IEEE/ACM 19th International Conference on Mining
Software Repositories (MSR). 132–136. https://doi.org/10.1145/3524842.3528049

[2] Victoria Bogachenkova, Linh Nguyen, Felipe Ebert, Alexander Serebrenik, and
Fernando Castor. 2022. Evaluating Atoms of Confusion in the Context of Code
Reviews. In 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 404–408. https://doi.org/10.1109/ICSME55016.2022.00048

[3] Fernando Castor. 2018. Identifying Confusing Code in Swift Programs. (2018).
[4] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too.

IEEE Software 32, 2 (2015), 50–54. https://doi.org/10.1109/MS.2015.27
[5] José Aldo Silva da Costa, Rohit Gheyi, Fernando Castor, Pablo Roberto Fer-

nandes de Oliveira, Márcio Ribeiro, and Baldoino Fonseca. 2023. Seeing con-
fusion through a new lens: on the impact of atoms of confusion on novices’
code comprehension. Empirical Software Engineering 28 (05 2023). https:
//doi.org/10.1007/s10664-023-10311-0

[6] Jeffrey Fairbanks, Akshharaa Tharigonda, and Nasir U. Eisty. 2023. Analyz-
ing the Effects of CI/CD on Open Source Repositories in GitHub and GitLab.
arXiv:2303.16393 [cs.SE]

[7] Martin Fowler and Matthew Foemmel. 2006. Continuous integration.
[8] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Martin K.-C.

Yeh, and Justin Cappos. 2017. Understanding Misunderstandings in Source Code.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 129–139. https://doi.org/10.1145/3106237.3106264

[9] Dan Gopstein, Henry Hongwei Zhou, Phyllis Frankl, and Justin Cappos. 2018.
Prevalence of Confusing Code in Software Projects: Atoms of Confusion in
the Wild. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). 281–291.

[10] Jez Humble and David Farley. 2010. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education.

[11] Chris Langhout and Maurício Aniche. 2021. Atoms of Confusion in Java.
arXiv:2103.05424 [cs.SE]

[12] Valentina Lenarduzzi, Davide Taibi, Davide Tosi, Luigi Lavazza, and Sandro
Morasca. 2020. Open Source Software Evaluation, Selection, and Adoption: a
Systematic Literature Review. In 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). 437–444. https://doi.org/10.1109/
SEAA51224.2020.00076

[13] Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li. 2023. A
First Look at CI/CD Adoptions in Open-Source Android Apps. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering
(Rochester, MI, USA) (ASE ’22). Association for Computing Machinery, New York,
NY, USA, Article 201, 6 pages. https://doi.org/10.1145/3551349.3561341

[14] Wendell Mendes, Oton Pinheiro, Emanuele Santos, Lincoln Rocha, and Wind-
son Viana. 2022. Dazed and Confused: Studying the Prevalence of Atoms of
Confusion in Long-Lived Java Libraries. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 106–116. https://doi.org/10.1109/
ICSME55016.2022.00018

[15] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You
Did Last Summer - An Investigation of How Developers Spend Their Time.
In 2015 IEEE 23rd International Conference on Program Comprehension. 25–35.
https://doi.org/10.1109/ICPC.2015.12

[16] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transfor-
mations of Java Source Code. Software: Practice and Experience 46 (08 2015).
https://doi.org/10.1002/spe.2346

[17] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. 2017. Continuous practices
and devops: beyond the buzz, what does it all mean? 440–448. https://doi.org/10.
1109/SEAA.2017.8114695

[18] Adriano Torres, Caio Oliveira, Márcio Okimoto, Diego Marcilio, Pedro Queiroga,
Fernando Castor, Rodrigo Bonifacio, E.D. Canedo, Márcio Ribeiro, and Eduardo
Monteiro. 2023. An Investigation of confusing code patterns in JavaScript. Journal
of Systems and Software 203 (05 2023), 111731. https://doi.org/10.1016/j.jss.2023.
111731

[19] ClaesWohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

[20] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (2018),
951–976. https://doi.org/10.1109/TSE.2017.2734091

[21] Øyvind Hauge, Claudia Ayala, and Reidar Conradi. 2010. Adoption of open
source software in software-intensive organizations – A systematic literature
review. Information and Software Technology 52, 11 (2010), 1133–1154. https:
//doi.org/10.1016/j.infsof.2010.05.008 Special Section on Best Papers PROMISE
2009.

https://doi.org/10.1145/3524842.3528049
https://doi.org/10.1109/ICSME55016.2022.00048
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1007/s10664-023-10311-0
https://doi.org/10.1007/s10664-023-10311-0
https://arxiv.org/abs/2303.16393
https://doi.org/10.1145/3106237.3106264
https://arxiv.org/abs/2103.05424
https://doi.org/10.1109/SEAA51224.2020.00076
https://doi.org/10.1109/SEAA51224.2020.00076
https://doi.org/10.1145/3551349.3561341
https://doi.org/10.1109/ICSME55016.2022.00018
https://doi.org/10.1109/ICSME55016.2022.00018
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1002/spe.2346
https://doi.org/10.1109/SEAA.2017.8114695
https://doi.org/10.1109/SEAA.2017.8114695
https://doi.org/10.1016/j.jss.2023.111731
https://doi.org/10.1016/j.jss.2023.111731
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1016/j.infsof.2010.05.008
https://doi.org/10.1016/j.infsof.2010.05.008

	Abstract
	1 Introduction
	2 Background
	2.1 Atoms of Confusion
	2.2 Continuous Practices in a Nutshell

	3 Study Methodology
	3.1 Research Goal and Question
	3.2 Selection of Projects
	3.3 Atoms of Confusion Rate Metric
	3.4 Data Mining
	3.5 Data Analysis

	4 Study Results and Discussion
	4.1 Research Question Answer
	4.2 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Final Remarks
	References

