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ABSTRACT

In the evolving field of automatic program repair, bug localization
approaches play an important role, given their potential to signifi-
cantly narrow down the search range for potential solutions. Given
the diversity of bug locating approaches and their respective perfor-
mance variations, this study aims to evaluate the bug localization
accuracy, considering specific characteristics of the bugs, defined
by actions and repair patterns observed in patches. Repair actions
constitute changes made to the code to derive a suitable solution
to a given problem. These actions can range from additions, dele-
tions, and alterations in the source code lines. Repair patterns, on
the other hand, are generalized representations of recurrent action
structures in the fixed code.

We evaluate the accuracy of each bug locator with respect to
these actions and repair pattern to identify if there are any influence
of specific actions and/or patterns in each type of locator.
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1 INTRODUCTION

Bug localization approaches play a crucial role in automatic pro-
gram repair. They are responsible for identifying the locations in
the code where bugs exist, which is a critical initial step in the
automatic program repair process. Proper bug localization reduces
the search space of potential fixes, making the repair process more
efficient. Without effective bug localization, an automatic repair
tool might end up scanning the entire codebase, wasting resources
and time, and potentially proposing fixes in wrong locations.

Bug localization is a step in the code correction process that seeks
to identify the class, method, or even code elements causing system
failures. The whole process is time-consuming for locating and
fixing bugs, subsequently leading to a decrease in productivity and
efficiency for the team developing the project. With the increased
software demand over the years, identifying and fixing errors in the
codes has become costly and exhaustive for developers and compa-
nies. In response, many researchers have dedicated to studying and
proposing techniques to automate this bug localization phase [11].

Bug localization approaches, aside from potentially easing the
manual work of developers to repair bugs, are directly important
to automatic bug repair tools, such as GenProg[5], Nopol[12], and
NPEFix[1]. This importance arises from the fact that bug localiza-
tion is a step in automatic bug repair tools, which generally have a
stage for bug identification, bug localization, and finally, synthesis
and application of repair.
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However, recent literature on automatic software repair has
shown that there are bug characteristics that influence the perfor-
mance of software repair tools regarding their accuracy. Therefore,
several benchmarks for evaluating bug repair tools have been pro-
posed with the aim of checking how well a tool performs effectively
on bugs of different nature[3, 4, 7].

This study aims at indirectly contributing to the improvement of
automated bug localization systems by understanding if the actions
and patterns found in bug repairs can influence the performance
of different approaches. More specifically, this work aims to verify
if there is some relationship between the performance of different
bug localization approaches and the type of repair action/pattern
of bugs. To organize the study, we pose the following research
questions:

e RQ1: How do the locators perform on bugs with distinct
repair actions according removal/modification/addition?

e RQ2: How do the locators perform on bugs with distinct
repair actions according the affected syntactic structure?

e RQ3: How do the locators perform on bugs with distinct
repair patterns?

In the following, we present a review of bug localization ap-
proaches and the considered action and repair patterns. In Section
3, we present the study setting. In Section 4, we report the found
results. Then, we present a brief section on related work and finally
the conclusion.

2 BACKGROUND

2.1 Bug Localization Approaches

2.1.1  Ochiai and DStar. The Ochiai and Dstar are fault localization
approaches based on the failing and successful test cases. The more
a code element or command passes the failing test cases and the
less it passes the successful ones, the more suspect that element is
to contain the error. The difference between the Dstar approach
and Ochiai is the mathematical formula used to rank the suspicious
code elements.
Ochiai formula:

S(s) = failed(s) (1)
\/totalfailed - (failed(s) + passed(s))
DStar formula:
3 failed(s)*
S(s) = passed(s) + (totalfailed — failed(s)) @)
Where:

e sisa code instruction.
e S(s)is the Score.
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e failed(s) are the test cases in which the instruction s failed.

o passed(s) are the test cases in which the instruction s passed.

e totalfailed are all the test cases in which the program failed.

o In the DStar formula, the * is a variable exponent. The article
by [9] considers this value to be 2.

2.1.2  Metallaxis and Muse. The Metallaxis and Muse ap-
proaches use the concept of mutation to discover errors in
the code. Mutation means swapping one code element, which
can be an operator or a command, for another element [8].
After a mutation is performed, the code is submitted to the
test cases, following the same steps as the Ochiai and Dstar
techniques. The more the code passes the failing test cases
and the less it passes the successful ones, the more suspected
of containing the bug that code is considered.

Both Metallaxis and Muse use formulas to calculate the sus-
pects and generate a ranked list of suspects. The difference
between Metallaxis and Muse is also in the formula, as shown
below:

Metallaxis formula:

failed(m)

S(m) = ' . ®)
totalfailed - (failed(m) + passed(m)
Muse formula:
S(m) = failed(m) — % - passed(m) 4)

Where:

— mis the command that underwent the mutation.

— S(m) is the Score.

— failed(m) are the test cases where the command m failed.

— passed(m) are the cases where the command m passed.

— f2p (failed to passed) are the numbers of test cases where
the command m failed and after the mutation it passes.

— p2f (passed to failed) are the numbers of test cases where
the command m passed and after the mutation it fails.

2.1.3  Slicing with Union, Slicing with Frequency, and Slicing
with Intersection. Slicing-type approaches use the concept
of creating a set with the lines of the program (commands)
that can interfere with the value of a variable. This set is
considered the slicing of the program [13].
When a bug appears in the program, usually some variable
of this program presents an incorrect value and the program
is paused. It is from this incorrect variable that the algorithm
slices the program.
The slicing occurs with the identification of all the sentences
in the code, from the beginning of the program, that directly
or indirectly affects that variable with an undesirable value.
After this identification process, a set (the slice) is created
with all those sentences that indeed contribute to a variable’s
value coming out as expected or not.
This approach uses the failed test cases to identify the vari-
ables with wrong values and apply the slicing algorithm.
As there can be several failed tests, more than one slice is
created. Some strategies have emerged within this slicing
approach that uses the different slices generated, which are:
— Slicing: This approach uses the union of the slices gen-
erated by the algorithm to generate the list of suspect
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elements. The diagram below exemplifies the union of the
slices in slicing union.

— Slicing_count: This strategy checks how many times a
sentence, command or element is included in the code slice.
The more frequent the element is, the more suspicious.

— Slicing_intersection: It uses the intersection of several
code slices to calculate the elements suspected of errors.
The slicing intersection algorithm only considers the sen-
tences that are common in the slices created.

2.14  Stacktrace. As abug localization approach, Stacktrace
uses this stack to find bugs and thus suggest instructions
that contain defects. The algorithm starts with the execution
stack stacking each method call that is executed. Each of
these calls is allocated in a stack frame. When an exception
occurs, the program and stack are paused. With this, it is
observed in the stack the methods called and the last method
executed before the failure, which is in the first stack frame,
is considered the probable cause of the problem.

2.1.5 Predicate Switching. The Predicate Switching approach
is a bug localization technique focused on predicates and
program flow controls. A predicate is defined as a sentence
that assumes a logical value (true or false). Flow controls
are conditional structures that can make different decisions
depending on their input values. Thus, a predicate can con-
trol the execution of different branches in the system [13].
Tthe algorithm traverses the execution stack, from a failed
test, and identifies all branches. Then the test is run several
times, but the predicate that generated the branch undergoes
a mutation, so as to generate a different result each time.
Thus, the algorithm executes the failed test case multiple
times, applying mutations to the predicate until one of them
leads to a branch that passes the test case. If this modification
in the predicate produced the correct output, then this pred-
icate is called a critical predicate [13] Predicate Switching
differs from the approaches that use mutation in terms of
mutations in the control flow, not in the code.

2.2 Repair Actions and Patterns

After a bug is located in the code, it is repaired so that the
program in question operates correctly. The repair that oc-
curs in the bug can be done in several ways. New lines may
be added to the code, or some elements or even lines may be
removed. Alternatively, some elements may just be modified
without the need to add or remove lines.

It was from these events or actions that occur to fix the bug,
that Sobreira and colleagues [10] observed that they could
categorize these actions that take place for the repair to occur.
Thus, repair actions were defined as blocks of source code
modified/inserted/deleted to make repairs. Repair patterns
are higher-level abstractions made from actions.

2.2.1 Repair Actions. These are the simplest blocks to make
a repair. They encompass actions of additions of lines or
commands, removal of lines or commands, and modification
of commands. In the article by [10], 68 actions were identified
and categorized using Defects4j bugs.
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2.2.2  Repair Patterns. Patterns are high-level abstractions
observed from actions. While repair actions define simpler
actions made in the code, such as a line removal, repair
patterns are defined as those actions that occur with a certain
frequency in bug repairs, resembling patterns.

For example, the addition of an ’if” is a repair action of the
addition type, and a ’for’ that was removed would also fit
into the same action. When this action occurs in other bugs,
it can be determined that a repair pattern has been found,
defined as a ’Conditional Block’ type pattern. Nine repair
patterns were identified [10].

3 STUDY PROPOSAL

The proposal of this work is to present an empirical study
on the relationship between bug localization approaches
and the properties of bugs, more precisely the actions and
repair patterns in order to evaluate the effectiveness of LB’s
in terms of bugs fixed.

The accuracy data used to investigate the research hypoth-
esis include the results extracted from the studies' by [13]
and the used bug dataset is the Defects4j benchmark [3]. The
collected data contains information about how bug localizers
scores the locations of the target system and marking the
as faulty or not. Information about the bugs from Defects4]
was gathered from the work of Sobreira and colleagues?[10].
With this information, it was possible to cross-reference
which actions and repair patterns were contained in the bugs.
To answer the research questions the data was organized
into tables to visualize and process the data.

Table 1 represents which localizer approaches managed to
find the error in the respective bug, where number 1 indicates
that the locator in that column actually found the bug failure
and 0 when the locator did not find the bug error.

Table 2 shows which actions and repair patterns exist in the
bugs. The number 1 indicates that the bug has that action
or repair pattern. A bug can have more than one action and
pattern. The number 0 indicates that the bug does not have
that action/pattern.

The Table 3 indicates the sum of bugs that have a particular
action that the localizer managed to find within the 357
bugs. For example, out of the 357 bugs, the localizer *Ochiai’
was able to find the error in 30 bugs that require action
"assignAdd’ for repair, and so forth.

4 RESULTS

In this section, the results obtained to answer the research
questions are presented.

4.1 RQ1: How do the locators perform on
bugs with distinct repair actions according
removal/modification/addition?

The first analysis focused on separating the repair actions
only into 3 groups. The groups were as follows: the Removal

!https://damingz.github.io/combinefl/index.html
Zhttps://program-repair.org/defects4j-dissection
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Figure 1: Localizers’ success rate for actions divided into 3
groups

group, which includes the removal of commands or lines; the

Modification group, which includes actions that make some

modification to commands or a modification of an element

in a line of code; and the Addition group, which includes
actions that add lines to the code.

The graph below shows the 3 groups of actions and the

success rate of the localizers in finding the bug with those

actions.

Some observations can be made:

— The bug localizers had better performance in terms of the
number of bugs found with the bug group with Modifica-
tion type actions.

— The best performing locators in terms of the number of
bugs found were those with the Slicing approach, reaching
a success rate to locate errors of 60

— Only the Muse and PredicateSwitching locators managed
to find better performance in terms of bugs found for the
bug group with Remotion action, despite the rates being
lower.

4.2 RQ2: How do the locators perform on
bugs with distinct repair actions according
the affected syntactic structure?

The second analysis divided the actions into 10 groups, fol-
lowing the classification in [10]. In this grouping, there was
no distinction between actions that add, remove or modify
lines of code. The formed groups were as follows, accord-
ingly to the syntactic structures where the actions have taken
place: 1) Assignment; 2) Conditional blocks; 3) Loop blocks;
4) Method Call; 5) Method Definition: actions that define a
method; 6) Object Instantiation 7) Exception handling and
throwing; 8) Return command; 9) Variable declarations; 10)
Type, which are actions that involve data Types, such as int,
float, double, boolean, String.
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Project Bug Faulty Oichiai Dstar Metal. Muse Slicing Sl._count Sl._inters. St.trace Pred.Sw.
Chart 1 1 0 0 0 0 1 1 1 0 0
Chart 2 1 0 0 0 0 1 0 0 0 0
Time 25 1 0 0 0 0 0 0 0 0 0
Time 27 1 0 0 0 0 1 1 1 0 0
Table 1: Hits of Bugs vs Locators

Project Bugld assignAdd assignRem assignExpChange . codeMove

Chart 1 0 0 0o . . . 0

Chart 2 1 0 o . . . 0

Time 27 0 0 o . . . 0

Table 2: Bugs vs Actions and Repair Patterns

Localizers assignAdd assignRem assignExpChange condBranIfAdd notClassified
Oichiai 30 10 18 31 4
Dstar 31 11 20 30 4
Metallaxis 35 11 28 32 6
Muse 10 5 5 9 1
Slicing 67 16 34 63 5
Slicing_count 55 14 32 52 5
Slicing_intersection 52 12 29 46 5
Stacktrace 5 0 3 7 0
Predicateswitching 7 6 0 7 0

Table 3: Total of bugs with actions and repair patterns by locator

== Assigment
== Conditional
Loop
=— Method call
=#— Method Definition
Object Instantiation
== Exception
Retun
= Variable
Type

Figure 2: Localizers’ success rate for actions divided into 10
groups

The graph below shows the success rate of locators with

respect to the number of bugs found by the actions divided

into these 10 groups of actions needed to fix the bug.

From this graph, some observations can be made:

— The graph has a behavior quite similar to the graph of
actions divided into 3 groups, as the localizers of the Slicing
approaches also proved to be better in this experiment.

— The Exception action, which are actions that involve the
handling and throwing of exceptions, was the most accu-
rate on the all locators.

— The Method Definition and Type actions underperforms
on all locators.

4.3 RQ3: How do the locators perform on
bugs with distinct repair patterns?

The third analysis considered the performance of bug local-
izers, in terms of the number of bugs found, in relation to the
patterns defined in [10]. The repair patterns are as follows:
(1) WrongVarRef: variables were referenced incorrectly.
(2) WrongMethodRef: a method is referenced incorrectly.
(3) MissNullCheckP: The ’P’ indicates positive null check, an
example of this command is: ’x == null’.
(4) MissNullCheckN: The N’ indicates negative null check,
an example of this command is: x != null’.
(5) SingleLine: repairs with the addition of a line, or removal
or modification of a single line.
(6) CopyPaste: repeat the same modifications at different
points in the source code.
(7) ConstChange: make a constant change.
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(8) CodeMove: movement of lines of code, i.e., take a section
of code and place it elsewhere in the code.

(9) NotClassified: repairs whose actions do not fit into any
pattern.

=~ notClassified
== codeMove
constChange
—i— copyPaste
=—p=— singleLine
missNullCheckN
== missNullCheckP
wronghMethodRef
== wiongVarRef

Figure 3: Success rate of locators by repair patterns

Evaluating the result of the graph above, we have that:

— The Slicing approach localizers also proved more efficient
in this experiment, in terms of the number of bugs located.

— The Slicing approach achieves a success rate in locating
bugs above 80% with the WrongVarRef repair pattern.
Other locators also tend to have better performance when
this pattern appears.

- CodeMove and Negative Missing Null Check underper-
forms on all locators.

5 THREATS TO VALIDITY

There is an external threat to validity related to scope of
the study. Our study used the Defects4] benchmark, which
may not reflect the real distribution of the universe of bugs.
Moreover, our study is limited to Java bugs, and may not
apply to bugs in other languages.

Concerning, the internal validity, we relied on third-party
datasets, that may contain errors regarding the localization
of the bugs. Moreover, the actions and patterns of the third-
party dissection of the Defects4] would have different clas-
sifications if conducted with different types of actions and
patterns.

6 RELATED WORK

Other attempts have been made to understand the impact of
the bug features on the performance of automated program
repair and bug localization approaches. Zou and colleagues
observed that different bug localization approach perform
better on specific classes of bugs and that combining them
improve the overall performance of locators [13]. Our work
further explain why the combination of different types of
approaches may improve the overall accuracy.

Kui and colleagues already showed that "you cannot fix what
you cannot find" and that only a part of Defects4] bugs can
be properly located [6]. Our work have shed light on which
classes of bugs, regarding the repair actions/patterns, the
different locators perform better.
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Durieux and colleagues found that automated repair tools
tend to overfit specific benchmark as Defects4] [2], indicating
that approaches may target on the most prevalent type of
bugs in the respective datasets. Our work focus on evaluating
only the bug localization part.

7 CONCLUDING REMARKS

Our work has shown that locators work better on bugs that
require line modification. Bugs that either require removing
or adding lines tend to be more difficult to localize.
Regarding repair actions, we observed that bugs with ac-
tions that involve the handling and throwing of exceptions
was the most accurate on the all locators. Bugs with repair
actions involving types and method definition have poor
performance and should be better investigated.

We found that bugs fixed with the Wrong Var Ref pattern
were easier to locate. On the other hand, bugs that contain the
CodeMove and Negative Missing Null Check underperforms
on all locators, and should be better investigated.

As future work, we expect to use the found observations to
propose techniques that may improve the bug localization
approaches on bugs that have the properties shown above.
Acknowledgments: We acknowledge CAPES, FAPEMIG
and CNPq for partial support of this work.
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