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Abstract. The Android Open Source Project (AOSP) is the open-source project
responsible for the Android operating system. In the AOSP, developers collab-
orate to add features, fix bugs, and improve the performance of a code base of
more than 14 million lines written in different programming languages (e.g., C,
Java, and Kotlin). This code must have minimum quality requirements to facil-
itate its maintenance and evolution. However, latent software quality problems
can persist in such complex projects, leading to maintainability and evolution
issues. An example of a latent problem is Atoms of Confusion (AC), small indi-
visible code fragments that cause comprehension difficulties. To shed light on
this matter, we conducted an empirical study in the AOSP with twofold goals: (i)
perform a prevalence and frequency analysis of ACs in this project, and (ii) re-
late ACs presence with Chidamber & Kemerer (CK) metrics suite. We found that
331 of the 370 AOSP repositories analyzed have at least one atom, with Logic
as Control Flow being the most frequent and prevalent, with more than 110,000
occurrences found and present in 96% of the repositories with the presence of
atoms. We also observed that the presence of ACs has a positive correlation
with some CK metrics, such as WMC (Weighted Methods per Class) and RFC
(Response for a Class), as well as the number of LOC (Lines of Code).

1. Introduction

In open-source projects, writing software with a team of developers from many parts of
the world can be challenging. They must agree on code standards, language conventions,
and code styles while keeping it easier to read, understand, and maintain for future work.
Some studies investigate how to make the code more maintainable and understandable.
One of those studies is about Atoms of Confusion1 (AC), considered by researchers as the
smallest snippets of code that may introduce some misunderstanding for developers.

Gopstein et al. [5] started identifying those atoms of confusion by proposing a
collection of snippet candidates and validating them in a study to evaluate if a programmer
gets confused by looking at a code with ACs and without ACs. Prevalence studies are
common while researching Atoms of Confusion. Another study, conducted by Gopstein
et al. [6], investigated the prevalence of ACs in common C/C++ projects. Langhout and
Aniche [7] extended this study to investigate the Java programming language, porting the
original set of ACs into Java. Mendes et al. [8] used this ported set of ACs to investigate
the prevalence over time on long-lived Java projects. They found out that the presence

1https://telesto.poly.edu/



of ACs increases over time when the project also increases in size. Pinheiro et al. [10]
expanded Mendes et al. study to explore the addition and removal of ACs during software
evolution. Feijó et al. [4] studied the impact of the adoption of Continuous Integration and
Continuous Delivery (CI/CD) on the rate of ACs. They found that the CI/CD adoption
does change the rate of ACs. However, they have not found any statistically relevant
relationship before and after the adoption of CI/CD.

Beyond studying ACs as a source of code confusion, some studies have investi-
gated the relationship between ACs and bugs. Bogachenkova et al. [2] studied the rela-
tionship between pull request comments and the confusion that should have been raised
by ACs, yielding no statistical relationship between them. However, Gosptein et al. [6]
found a strong correlation between bug-fix commits and the removal of ACs. In turn, Pin-
heiro et al. [10] identified 9 removal cases where ACs were the direct cause of bug-fix and
improvement commits. Although there is no consensus in the literature, the relationship
with bugs leverages the study of ACs even more important.

Our research aims to study ACs in the Android ecosystem. Android is the most
used operating system for smart devices, used in over 3.5 billion smartphones alone. The
Android development is led by Google, which in collaboration with many independent de-
velopers around the globe, contributes to the open-source version of the operating system,
called Android Open Source Project (AOSP). The project is organized in many layers with
different repositories for each layer, such as the Android Core APIs, vendor drivers, hard-
ware abstraction layer, kernel services, core applications, and other third-party libraries.
Inside those repositories are source code files responsible for the operating system behav-
ior, documentation, and build files. Thus, developing and maintaining a big project like
this, spanning many parts of the Android ecosystem, is a great challenge.

The goal of this paper is two-fold. First, to investigate the prevalence and fre-
quency of atoms of confusion in AOSP, comparing the results found across its different
layers. We expect that the distribution of ACs across layers may vary enough to be easily
distinguishable in comparison with each other. Second, correlate the presence of ACs
with the Chidamber & Kemerer (CK) metrics suite as a proxy for maintainability.

This paper is organized as follows: Section 2 presents the background and related
work. The study design and methodology are detailed in Section 3. The results are
presented in Section 4. Section 5 discusses our findings and introduces the threats to
study validity. Finally, Section 6 concludes the paper.

2. Background and Related Work

2.1. Atoms of Confusion in Java

As previously discussed, Atoms of Confusion are small, indivisible snippets of code
that may cause misunderstandings while working on a source code. In the original
work by Gopstein et al. [5], they proposed 19 types of ACs for C/C++. For exam-
ple, the Conditional Operator is an atom that is comprised of an expression that usually
contains a question mark and colon symbols (expression ? value-if-true :
value-if-false) to write a shorter version of an if-then-else statement. Ac-
cording to Gopstein et al. [5], the presence of a Conditional Operator may raise code
reading misunderstanding. When translating the study to Java, Langhout and Aniche [7]



managed to port 14 out of 19 types of ACs due to being related to features that are not
present in Java, like preprocessor macros and other language syntax choices.

Extending the work by Langhout and Aniche, Mendes et al. [8] created an auto-
mated tool based on Spoon [9] for finding ACs in Java files. Table 1 shows the list of ACs
that are detectable using the tool, that can also identify the snippet of code that contains
the atom. This tool was used in 27 Java libraries to analyze the prevalence and occur-
rence of ACs over time. This study claims that the most prevalent atom types are Logic
as Control Flow and Conditional Operator, found in all libraries under analysis. Logic
as Control Flow is also the most common AC found throughout the libraries with 3,800
occurrences, followed by Infix Operator Precedence with 3,148 instances.

Pinheiro et al. [10] used the previously mentioned tool to find ACs in 21 Java
projects in the Apache Commons ecosystem. The focus of this study was to analyze
how Atoms of Confusion are introduced and removed in the lifecycle of those projects,
linking the presence of ACs to issue tracker and bug tracker information. This study found
instances of fixed bugs in which the root cause was an introduction of an AC.

Table 1. Atoms of Confusion in Java adapted from [8]
Atom of Confusion Name Acronym Snippet with Atom of Confusion Snippet without Atom of Confusion

Infix Operator Precedence IOP i n t a = 2 + 4 * 2 ; i n t a = 2 + (4 * 2 ) ;

Post-Increment/Decrement Post-Inc/Dec a = b ++; a = b ;
b += 1 ;

Pre-Increment/Decrement Pre-Inc/Dec a = ++b ; b += 1 ;
a = b ;

Conditional Operator CO b = a == 3 ? 2 : 1 ; i f ( a == 3){ b = 2 ;}
e l s e {b = 1 ;}

Arithmetic as Logic AaL ( a − 3) * ( b − 4) != 0 a != 3 && b != 4

Logic as Control Flow LaCF a == ++a > 0 | | ++b > 0 i f ( ! ( a + 1 > 0 ) ) {b += 1 ;}
a += 1

Change of Literal Encoding CoLE a = 0 13 ; a = I n t e g e r . p a r s e I n t ( ” 13 ” , 8 ) ;
Omitted Curly Braces OCB i f ( a ) f1 ( ) ; f2 ( ) ; i f ( a ){ f1 ( ) ; } f2 ( ) ;
Type Conversion TC a = ( i n t ) 1 . 9 9 f ; a = ( i n t ) Math . f l o o r ( 1 . 9 9 f ) ;

Repurposed Variables RV

i n t a [ ] = new i n t [ 5 ] ;
a [ 4 ] = 3 ;
w h i l e ( a [ 4 ] > 0) {

a [3 − v1 [ 4 ] ] = a [ 4 ] ;
a [ 4 ] = v1 [ 4 ] − 1 ;}

System . o u t . p r i n t l n ( a [ 1 ] ) ;

i n t a [ ] = new i n t [ 5 ] ;
i n t b = 5 ;
w h i l e ( b > 0) {

a [3 − a [ 4 ] ] = a [ 4 ] ;
b = b − 1 ;}

System . o u t . p r i n t l n ( a [ 1 ] ) ;

2.2. Android Ecosystem Architecture

The Android Open Source Project is divided into 6 layers2:

1. Application layer: The layer closest to the end user. In this layer, code is written
primarily in Kotlin or Java, using the Android API to interact with the operating
system.

2. System services layer: Layer that accommodates components that expose func-
tionality from the hardware or the Hardware Abstraction Layer to the Android
API.

3. Android Runtime: It is the runtime that converts Java bytecode instructions to
hardware-dependent machine code.

2https://source.android.com/docs/core/architecture



4. Hardware Abstraction Layer: It is the hardware abstraction layer that hardware
manufacturers that use Android must implement to make the operating system
interact with the hardware.

5. Native Daemons and Libraries contains daemons and other libraries that interact
directly with the kernel. The logging system and the init system are examples of
solutions in this layer.

6. Linux Kernel Android uses the Linux kernel to communicate with the hardware
in use. In the codebase, AOSP is divided into hardware-independent and vendor-
specific code.

2.3. AOSP Atoms of Confusion Dataset

We created a dataset3 of Atoms of Confusion in Java files in the AOSP [11]. The dataset
includes the instances of each AC found for each Java file across all projects and some
usual metrics used in object-oriented development, like the ones proposed by Chidamber
& Kemerer [3]. We used a Spoon-based tool to detect the presence of ACs and the metrics
were extracted using the CK tool [1]. Each AC and metric found in the dataset are related
to a single source code file, which is linked to a repository or “project” and this repository
belongs to one of the layers in the AOSP. Using the relations in the database, it is easy
to obtain metrics for a single project or aggregate those results across the layers in the
AOSP.

The snapshot obtained from the AOSP at the time it was analyzed has over 29
million lines of code written in Java, across over 125 thousand files spanning from 370
repositories with at least one Java source code file present, as shown in Table 2.

Table 2. Overall AOSP information adapted from [11].
Data Value

Size on disk without binaries 250 GB
No. repositories 1,293
No. repositories with Java files 370
No. Java files 125,687
Java Files without ACs 86,704
Java Files with ACs 38,983
Lines of Java code 29,855,095

3. Methodology

3.1. Research Objectives

The primary goal of this research is to investigate the prevalence of ACs in the AOSP,
comparing the results found with other similar studies regarding the prevalence of ACs in
Java projects. The secondary goal is to compare the results of prevalence for a particular
layer with another, e.g. comparing the prevalence of ACs in the frameworks layer with
the system applications layer. We expect to reproduce the results found by Gopstein et
al. [5] that claim that projects in the same domain have similar prevalence behavior.

3https://doi.org/10.5281/zenodo.10576122



3.2. Research Questions

RQ1. How are ACs distributed in the Android ecosystem?

The purpose of this question is to know more about the presence of ACs in the
AOSP, since this is a common data provided by many studies researching ACs in open-
source projects. This research question also aims to obtain general statistics regarding AC
behavior, like how many atoms were detected, and which layer has the most atoms.

RQ2. How does the frequency and prevalence of ACs differ in AOSP compared to other
Java systems?

The goal of this research question is to compare our findings with other frequency
and prevalence studies in Java projects, highlighting similarities and differences between
them, the prevalence being if a particular AC is present in a project at least once and
frequency is how many instances of this AC is present in a project.

RQ3. How does the frequency and prevalence of ACs differ across AOSP layers?

The purpose of this question is to replicate the findings of Gopstein et al. [5] It
is crucial to learn how different are the code bases from the different layers of the AOSP.
We expect that projects inside the same layer are more like each other in comparison with
other projects from other layers.

RQ4. What is the correlation between software quality metrics and the atoms of confusion
in the ecosystem?

We also aim to find the impact that atoms of confusion have in Java projects, ob-
serving commonly used metrics for object-oriented software that Chidamber & Kemerer
compiled. Claiming that some AC raises or lowers some specific CK metric is out of the
scope of this paper.

3.3. Study Design

We started our study by looking into the Android Atoms of Confusion Dataset and looking
into the data present in each table. Inside the ac reports table, we have found out that
each row represents one AC for a specific file in a specific repository. In the projects table,
we have noticed that the repositories were listed alongside their “layer”. Knowing this, we
have decided to study each project separately, calculating the prevalence and frequency
of ACs. To obtain these values, we have performed an aggregation depending on its
meaning. For example, the number of ACs across different projects would be aggregated
by sum. Since most of the values present are simple counts, we decided to aggregate these
by summing them together. To do these operations, we used Python scripts with the help
of the pandas library.

After performing the aggregations, we started looking at the values of each layer
and compared them against each other.



4. Results

4.1. RQ1 How are ACs distributed in the Android ecosystem?

Summary of RQ1: Almost every project has at least one atom of confusion. The most
prevalent is Logic as Control Flow, present in 96% of the projects analyzed with atoms
present.

Of the 370 projects analyzed, 331 had at least one AC present in the source code, totaling
89% of projects. Figure 1 shows the prevalence of atoms of confusion in the Android
Open Source Project. One can see that the most prevalent atom type is Logic as Control
Flow, which appears in 96% of the projects. Second is Conditional Operator, present in
91% of the projects, and third is Type Conversion, present in 71% of projects.

Observing the number of atoms found, we have discovered 327,226 instances of
ACs. Logic as Control Flow is the most frequent atom occurring 110,593 times. We can
assume that 1 in every 3 atoms found is Logic as Control Flow. The second most frequent
is Type Conversion with 87,580 occurrences. The third most frequent type is Conditional
Operator with 72,552 occurrences.

Figure 1. Prevalence of ACs across AOSP modules

4.2. RQ2 How does the frequency and prevalence of ACs differ in AOSP compared
to other Java systems?

Summary of RQ2: Logic as Control Flow and Conditional Operator have equivalent
results comparing AOSP and other projects. In the AOSP, however, the frequency of Type
Conversion is like the frequency of Infix Operator Precedence in other projects.

To properly compare two big Java-based projects, we decided to investigate Mendes et
al. study [8] as a comparison benchmark. In this study, the authors used the same AC
detection tool as ours to investigate 27 long-lived Java projects, 21 of them belonging to
the Apache Foundation.

Table 3 compares our findings with the results by Mendes et al. Logic as Control
Flow was the most frequent AC in both the AOSP and in [8]. Conditional Operator
and Post Inc/Dec atoms have also similar frequency values. However, Infix Operator



Figure 2. Frequency of ACs in the AOSP

Precedence appeared less than the other selection of Java projects and Type Conversion
was more frequent. Table 4 compares the prevalence between the two studies and although
they have different values, LaCF, IOP, CO, and TC managed to be the most prevalent
atoms.

Study LaCF IOP CO TC Post-Inc/Dec
AOSP 33.08% 10.2% 22.2% 26.8% 4.4%
Mendes et al. 34.05% 27.08% 25,32% 5.64% 5.43%

Table 3. Comparison of frequencies between AOSP and Mendes et al. list of
projects

Study LaCF IOP CO TC Post-Inc/Dec
AOSP 85.95% 62.97% 81.62% 64.32% 52.43%
Mendes et al. 100% 70.37% 100% 66.67% 59.26%

Table 4. Comparison of prevalence between AOSP and Mendes et al. list of
projects

4.3. RQ3 How does the frequency and prevalence of ACs differ across AOSP
layers?

Summary of RQ3: ACs were concentrated in the packages, external, and frameworks
repositories, however, the distribution seems mostly similar overall.

Looking into Figure 3, it is noticeable that there is a concentration of ACs in packages,
external, and frameworks. We can also observe that there are few differences in how they
are distributed if we adjust the atom count by their lines of code.

4.4. RQ4 What is the correlation between software quality metrics and the atoms
of confusion in the ecosystem?

We computed the Pearson correlation between the quantity of ACs and CK metrics (see
Table 5). We noticed a slight positive correlation between Weighted Method Call, Number
of Static Invocations, and Response for a Class. We also noticed a strong correlation
between lines of code and number of ACs.



Figure 3. AC count for every root repository

Metric Correlation
Lines of Code 0.94
Weighted Method Call 0.53
Number of Static Invocations 0.54
Response for a Class 0.50

Table 5. Correlation between AC count and Object-Oriented metrics

5. Discussion
5.1. Comparison to other AC studies
The results we found regarding prevalence and frequency were too close from the results
found by [8], the difference being a higher presence of the Type Conversion atom. There
are some files in AOSP that makes heavy use of the Type Conversion atom. For example,
in the external/conscrypt project, casting to byte is highly frequent in some test files, as
we can see on Figure 4. One can observe the outstanding strong relationship between the
number of ACs and the number of lines of code, result that is also present in Gopstein
et al. and Pinheiro et al. works [6, 10]. AOSP also has a lower frequency of the Infix
Operator Precedence atom. Being a Google project, AOSP must follow the Google Java
Style Guide that recommends, but not requires, putting optional parenthesis when using
operators 4. We can also observe in Figure 3 the lack of the Infix Operator Precedence in
both device and prebuilts repositories.

5.2. Limitations and Threats to validity
5.2.1. Limitations

Our study uses a unique data source for analysis. Also, it contains a single version of the
Android Open Source Project. So, it is not possible to draw conclusions regarding the
evolution of the source code that may have taken place in the meantime.

4https://google.github.io/styleguide/javaguide.html#s4.7-grouping-parentheses



Figure 4. One of the test cases for Conscrypt

5.2.2. Threats to validity

Conclusion validity: A threat to Conclusion Validity is one that impacts the process of
drawing sound conclusions. Our findings for RQ4 were based on performing a correlation
test between the number of atoms found in a particular file against the measurements of the
CK metrics. The values obtained are below the accepted threshold for a strong correlation
(>0.6) for this paper. An argument can be made for considering the correlation to be
strong, however after peer debriefing, we decided to take a more conservative approach.

Internal validity: A threat to Internal Validity is one that impacts the relationship
between cause and effect in a study. Since the goal of this study is purely exploratory and
does not aim to establish any relationship between ACs and object-oriented metrics, we
believe that this threat is not applicable.

External validity: A threat to External Validity is one that impacts the general-
ization of the results obtained to future works in the field. Since the scope of this paper is
focused on analyzing the AOSP exclusively, we believe that this threat is not applicable
for this study.

6. Final Considerations

In this paper, we presented a comprehensive study of Atoms of Confusion in the Android
Open Source Project. We have analyzed the prevalence and frequency of ACs, following
tried and proven methodologies present in the state of art of AC studies, comparing our
results with other studies and finding comparable results. We also made a correlation
between the quantity of atoms and object-oriented software metrics, finding a moderate
correlation between them and a strong correlation between number of atoms and number
of lines of code.
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