
Exploring the Impact of DevOps and Agile Practices from the
Perspective of Source Code Analysis

Jalles Daniel Barros1, Luiz Carlos Jesus1 Johnatan Oliveira2 , Juliana Padilha1

1University Única
Ipatinga – MG – Brazil

2Federal University of Lavras (UFLA/ICTIN)
São Sebastião do Paraı́so – MG – Brazil

jallesdaniel@gmail.com, luiz04nl@gmail.com

johnatan.oliveira@ufla.br, analise.sistemas@unicaead.com.br

Abstract. Implementing agile practices in software development processes
promises improvements in product quality and process productivity. However,
there are few reports of failures from which to learn, and it is not always clear
which practices are effective in specific contexts. This paper investigates how
the use of DevOps and agile methodologies affects code quality in open-source
projects hosted on GitHub. A total of 57 Java repositories, obtained through
queries to the GitHub GraphQL API, were analyzed and categorized into four
groups: i) projects that do not use agile nor DevOps, ii) projects that use agile
but not DevOps, iii) projects that use both agile and DevOps, and (iv) projects
that use DevOps but not agile. The results indicate that the majority of analyzed
projects belong to group iii. Furthermore, the absolute number of code smells
and their proportion relative to the number of lines of code are highest in group
iii, suggesting a positive correlation between the use of both agile and DevOps
practices and an increase in code smells.

Keywords: DevOps, Agile, GitHub, Quality

1. Introduction
In recent years, the field of software development has benefited from a significant
paradigm shift with the large-scale adoption of Agile and DevOps methodologies [3].
These practices are highly regarded for their potential to maximize product quality and
productivity, thereby addressing the increasing demand for efficient and robust software
delivery processes [4]. Agile methodologies, characterized by iterative development, con-
tinuous feedback, and adaptive planning, aim to deliver functional software incremen-
tally [10]. DevOps, meanwhile, emphasizes the collaboration between development and
operations teams, seeking to automate and streamline the software delivery pipeline from
code development to production deployment [6].

The motivation for this study is derived from the mixed results reported in the
literature regarding the impact of Agile and DevOps practices on code quality. While
some studies [1, 14] suggest that these methodologies can lead to improved code quality
and security, others indicate an increase in technical debt [16, 2] and code smells [12].
For instance, Almeida et al. found that combining DevOps and Agile practices can en-
hance software delivery speed and product quality, but also noted potential increases in



code smells and technical debt due to the pressures of rapid iterations and continuous
deployment [1]. Similarly, Ruk et al. highlighted that while Agile practices improve re-
sponsiveness and customer satisfaction, they often require extensive training and cultural
adjustments to mitigate potential quality issues [14].

Given these conflicting findings, this study aims to provide a deeper understanding
of how Agile and DevOps practices impact code quality in open-source projects hosted
on GitHub. By analyzing 57 Java repositories, we categorize them into four distinct
groups: projects that do not use Agile nor DevOps, projects that use Agile but not De-
vOps, projects that use both Agile and DevOps, and projects that use DevOps but not
Agile. This categorization enables us to draw comparisons and identify trends in code
quality metrics across different development practices.

Our analysis reveals that projects employing both Agile and DevOps practices
tend to exhibit higher numbers of code smells and bugs compared to those using either
methodology alone or neither. Specifically, the mean number of bugs for projects using
both methodologies is approximately 650, compared to 300 for Agile only, 100 for De-
vOps only, and 20 for projects using neither. Similarly, the number of code smells is
highest in the DevOps only group, followed by the Agile and DevOps group, the Ag-
ile only group, and the neither group. These findings suggest that while the integration
of Agile and DevOps can introduce certain quality issues, it may also enhance security
ratings and overall responsiveness to change.

Additionally, our findings indicate that the integration of Agile and DevOps prac-
tices contributes to a collaborative environment that improves team efficiency and adapt-
ability. The results suggest a strong association between the adoption of DevOps practices
and the implementation of Agile methodologies, highlighting the synergistic relationship
between these two approaches. Furthermore, larger teams, despite introducing more total
code smells, appear to maintain a lower density of code smells relative to the size of the
project, suggesting that effective collaboration and task distribution can mitigate some
quality issues.

The paper is organized as follows: Section 2 covers the study design, including
the goal, evaluation steps, and dataset. Section 3 discusses the applicability evaluation.
Section 4 presents the analysis results, focusing on the impact of Agile and DevOps on
code quality, Agile’s integration in DevOps projects, and the influence of contributors on
code quality. Section 5 reviews related work. Section 6 addresses threats to validity, and
Section 7 concludes with a summary of findings and implications for future research.

2. Study Design
This section describes the study design to address RQ1, RQ2, and RQ3. Section 2.1
shows the central goal of this study. Section 2.2 presents the Evaluation Steps. Finally,
Section 2.3 presents the dataset.

2.1. Goal and Research Question
The central goal of this study is to investigate the impact of Agile and DevOps prac-
tices on code quality in open-source software projects. We aim to understand how these
methodologies, both individually and in combination, influence various code quality met-
rics, including code smells, bugs, vulnerabilities, and security ratings. By conducting this



analysis, we seek to provide empirical evidence that can guide practitioners in optimizing
their software development processes. To achieve this goal, we formulated the following
research questions (RQs):

RQ1: –How do Agile methodologies and DevOps influence code quality in software
projects?

RQ2:– How do projects that utilize DevOps integrate Agile methodologies?

RQ3:–How does the number of contributors affect code quality in software projects?

2.2. Evaluation Steps
The evaluation process was structured into five steps. In the following, we describe the
steps. The initial step in was the selection of the programming language. We opted for
Java 1, given its widespread use and ranking among the top ten most popular programming
languages on GitHub [5]. This choice was strategic, aimed at maximizing the relevance
and applicability of our study within the vast landscape of software development. Sub-
sequently, the second step involved the cloning of the top one thousand projects from
GitHub, prioritized by their popularity, which was quantified through the number of stars
each project received. This approach was necessitated by the inherent limitations asso-
ciated with the direct cloning capabilities of GitHub repositories. In this step, we delete
projects non source code (see Section 2.3).

The third phase of our evaluation focused on the identification of DevOps prac-
tices within these projects. This was achieved by examining the presence of specific
configuration files indicative of DevOps integration. We searched for a set of key files,
including .github/workflows/*, .cicleci/config.yaml, Jenkinsfile, .gitlab-ci.yml, azure-
pipelines.yml, .travis.yml, .harness/ya, and bitbucket-pipelines.yml. The presence of
these files served as a primary indicator of a project’s alignment with contemporary soft-
ware development methodologies.

In the fourth step, we analyzed the frequency of commits integrated into the de-
fault branch of each project using the PyDriller tool. This analysis was pivotal in deter-
mining the agility of the projects. We defined the criteria for agility based on the average
interval between commits. Specifically, repositories that demonstrated an average inte-
gration interval exceeding fifteen days were classified as non-agile. This threshold was
chosen because agile methodologies typically emphasize rapid iteration and frequent in-
tegration of changes, which are fundamental for accelerating development cycles and
enhancing responsiveness to changing requirements. Consequently, a longer interval sug-
gests a deviation from these agile principles. Thus, repositories with more frequent com-
mits were classified as agile, reflecting their alignment with the agile methodology’s core
practices of continuous integration and regular updates.

The final step involved the construction and data extraction from the projects using
SonarQube and Docker. Each repository marked as cloned underwent a building process
wherein SonarQube was deployed to extract and analyze project metrics. This phase
proved to be the most challenging due to its technical complexity and the time investment
required. Out of the initial sample, 57 repositories were successfully built using Maven,
Gradle, or Ant and were analyzed with SonarQube.

1https://www.tiobe.com/tiobe-index/



2.3. Data Set

To conduct this study, we selected Java as the programming language for analyzing
projects on GitHub. Java is a popular language with a favorable range of tools for de-
tecting code smells and other code vulnerabilities. This choice was made to ensure the
reliability and relevance of our findings. We start by searching for the top 1,000 most
popular Java projects on GitHub, ranked by the number of stars. This popularity met-
ric was chosen to ensure that the selected projects had a significant level of community
engagement and usage.

At this point, we filtered out projects that were not software-related, such as doc-
umentation repositories or educational examples. Projects with only one developer or
only one active developer were excluded, as such projects may not provide a compre-
hensive view of collaborative development practices. We also removed projects that had
not been updated in the last 12 months to ensure that the analyzed projects were actively
maintained. Finally, we excluded projects where Java was not the predominant program-
ming language to maintain consistency in our analysis. After applying these filters, we
identified 57 projects that were suitable for analysis.

3. Results
This section aims to answer RQ1, RQ2 and RQ3. Section 3.1 presents results about
Impact of Agile and DevOps on Code Quality to answer RQ1. Section 3.2 presents the
results about Agile Integration in DevOps Projects to answer RQ2. Finally, Section 3.3
discusses Contributors’ Influence on Code Quality to answer RQ3.

3.1. Impact of Agile and DevOps on Code Quality

This section presents the results of our first research question (RQ1), defined as follows.

RQ1: –How do Agile methodologies and DevOps influence code quality in software
projects?

To address RQ1, we categorized the data into four groups: i) Neither Agile nor De-
vOps, ii) Agile Only, iii) DevOps Only, and iv) Both Agile and DevOps. The first group,
Neither Agile nor DevOps, consists of projects that do not employ Agile methodologies
or DevOps practices. The second group, Agile Only, includes projects that utilize Agile
methodologies but do not incorporate DevOps practices. The third group, DevOps Only,
comprises projects that implement DevOps practices without employing Agile method-
ologies. The final group, Both Agile and DevOps, represents projects that integrate both
Agile methodologies and DevOps practices. Descriptive statistics for code quality met-
rics were calculated for each group using SonarQube. SonarQube checks for code com-
pliance against a set of coding rules and considers violations as Technical Debt (TD)
items [2][16]. Metrics analyzed include code smells, bugs, vulnerabilities, and security
ratings [2]. Code smells indicate potential maintainability issues, bugs are defects causing
failures, and vulnerabilities are weaknesses that compromise security [2].

Figure 1 presents the average number of bugs for each group. The Both Agile and
DevOps group has the highest mean number of bugs (≈ 650), followed by the Agile Only
group (≈ 300), the DevOps Only group (≈ 100), and the Neither Agile nor DevOps group
(≈ 20). These differences highlight the varying impact of Agile and DevOps practices on



bugs. Figure 2 shows the average number of vulnerabilities for each group. The Both
Agile and DevOps group has the highest mean number of vulnerabilities (≈ 55), followed
by the Neither Agile nor DevOps group (≈ 25), the DevOps Only group (≈ 5), and the
Agile Only group (≈ 2). These differences highlight the varying impact of Agile and
DevOps practices on vulnerabilities.

Figure 3 presents the mean security rating for each group. The Both Agile and
DevOps group has the highest mean security rating (≈ 1250), indicating better security
practices. The DevOps Only group follows (≈ 400), then the Agile Only group (≈ 250),
and the Neither Agile nor DevOps group has the lowest mean security rating (≈ 150).
These differences highlight the impact of Agile and DevOps practices on security ratings.
Figure 4 presents the average number of code smells for each group. The DevOps Only
group has the highest mean number of code smells (≈ 275), followed by the Both Agile
and DevOps group (≈ 225), the Agile Only group (≈ 125), and the Neither Agile nor De-
vOps group (≈ 50). These differences highlight the varying impact of Agile and DevOps
practices on the presence of code smells.

Figure 1. Mean of Bugs by Group
Figure 2. Mean of Vulnerabilities by
Group

To identify statistical differences in the data, we applied an ANOVA test to eval-
uate the impact of Agile methodologies, DevOps practices, and their interaction on met-
rics such as code smells, bugs, vulnerabilities, and security ratings, all obtained from
SonarQube. The ANOVA results for code smells indicated that neither the use of Agile
methodologies (F=1.46, p=0.232) nor DevOps practices (F=0.82, p=0.370) had a statisti-
cally significant impact on the number of code smells. Similarly, the interaction between
Agile and DevOps practices did not show a significant effect (F=0.03, p=0.867).

For the bugs metric, ANOVA results showed that neither Agile methodologies
(F=1.34, p=0.252) nor DevOps practices (F=0.79, p=0.379) significantly impacted the
number of bugs. The interaction between Agile and DevOps also did not present a sig-
nificant effect (F=0.32, p=0.571). In the case of vulnerabilities, ANOVA results indi-
cated that neither Agile methodologies (F=0.13, p=0.722) nor DevOps practices (F=1.28,
p=0.262) had a statistically significant impact. The interaction between Agile and DevOps



Figure 3. Mean of Security Rating
by Group

Figure 4. Mean of Code Smells by
Group

showed no significant effect (F=0.52, p=0.475). Regression analysis further investigated
the relationships between the use of Agile methodologies and DevOps practices on code
quality metrics. For code smells, the model R-squared value was 0.071, indicating that
only 7.1% of the variability could be explained by the independent variables. The coeffi-
cients for Agile (t=1.220, p=0.228) and DevOps (t=0.912, p=0.366) were not statistically
significant.

For bugs, the R-squared value was 0.066, with coefficients for Agile (t=1.166,
p=0.249) and DevOps (t=0.892, p=0.376) also not significant. Regarding vulnerabilities,
the model had an R-squared value of 0.039, with non-significant coefficients for Agile (t=-
0.359, p=0.721) and DevOps (t=-1.139, p=0.260). For the security rating, the R-squared
value was 0.107. The coefficient for Agile (t=1.795, p=0.078) showed a marginally sig-
nificant effect, while the coefficient for DevOps (t=0.826, p=0.413) was not significant.
Overall, the results suggest that neither Agile methodologies nor DevOps practices sig-
nificantly impact code smells, bugs, and vulnerabilities. However, Agile methodologies
may have a marginal effect on improving security ratings. Further investigation with more
data is necessary to confirm these findings.

3.2. Agile Integration in DevOps Projects

This section presents the results of our first research question (RQ2), defined as follows.

RQ2:– How do projects that utilize DevOps integrate Agile methodologies?

To address the second research question, which investigates whether projects us-
ing DevOps also include Agile methodologies, we conducted an analysis using contin-
gency tables and the chi-square test for independence. The chi-square test evaluates
whether there is a significant association between the use of DevOps and Agile method-
ologies. Based on the p-value, we determined the statistical significance of this associa-
tion. Out of the projects analyzed, 15 projects did not use either DevOps or Agile method-
ologies, 3 projects used Agile methodologies but not DevOps, 14 projects used DevOps
but not Agile methodologies, and 25 projects used both DevOps and Agile methodolo-
gies. The chi-square test results showed a value of 9.2716 and a p-value of 0.0023 with



1 degree of freedom, indicating a statistically significant association between the use of
DevOps and Agile methodologies, as the p-value is less than 0.05.

The expected frequencies under the null hypothesis of independence were as fol-
lows: 9.16 projects using neither DevOps nor Agile, 8.84 projects using Agile but not
DevOps, 19.84 projects using DevOps but not Agile, and 19.16 projects using both De-
vOps and Agile. Given the significant p-value, we reject the null hypothesis and conclude
that there is a significant association between the use of DevOps and Agile methodolo-
gies in the analyzed projects. The results from the contingency analysis and chi-square
test suggest that the implementation of DevOps is often accompanied by the use of Agile
methodologies. This outcome indicates that teams adopting DevOps practices are likely
to also implement Agile methodologies, highlighting a pattern of combined adoption in
software projects.

3.3. The Influence of Contributors on Code Quality
This section presents the results of our first research question (RQ3), defined as follows.

RQ3:–How does the number of contributors affect code quality in software projects?

To address the third research question, we conducted a series of statistical analy-
ses. Specifically, we examined the relationship between the number of contributors and
code quality metrics, including the absolute number of code smells and the number of
code smells per line of code (LOC). We performed linear regression to evaluate the re-
lationship between the number of contributors and the absolute number of code smells,
as well as the number of code smells per LOC. This helped us understand the trend and
quantify the effect of the number of contributors on code quality metrics. We calculated
the Pearson correlation coefficients to assess the strength and direction of the linear rela-
tionship between the number of contributors and the code quality metrics.

Figure 5 presents the relationship between the number of contributors and the
absolute number of code smells in the analyzed software projects. The scatter plot shows
individual data points, while the regression line provides an overall trend. The shaded
area around the regression line represents the confidence interval. We observe a positive
trend, indicating that as the number of contributors increases, the absolute number of code
smells also tends to increase. This suggests that larger teams may introduce more code
smells into the project, possibly due to the complexity and challenges of coordinating
work among many contributors. However, it is important to consider other factors that
might contribute to this trend, such as the size of the project and the processes in place for
code review and quality assurance.

Figure 6 presents the relationship between the number of contributors and the
number of code smells per line of code (LOC) in the analyzed software projects. Sim-
ilar to Figure 1, the scatter plot shows individual data points, while the regression line
provides an overall trend with a shaded confidence interval. We observe a slight negative
trend, indicating that as the number of contributors increases, the number of code smells
per LOC tends to decrease. This suggests that larger teams might be more effective in
maintaining code quality relative to the size of the project, potentially due to better distri-
bution of tasks, more thorough code reviews, or other quality control measures. However,
this trend is less pronounced, and further investigation would be needed to draw definitive
conclusions.



Figure 5. Number of Contributors vs Absolute Number of Code Smells

Figure 6. Number of Contributors vs Number of Code Smells per LOC

Note that Figures 5 and 6 provide insights into how the number of contributors
impacts code quality in software projects. While the absolute number of code smells tends
to increase with more contributors, the code smells per LOC shows a slight decreasing
trend. This could imply that while larger teams introduce more total code smells, they
may also be more efficient in maintaining a lower density of code smells relative to the
size of the project.

4. Related Work

Understanding how the combination of agile methodologies and DevOps impacts code
quality has become a recurring theme in software engineering studies [1, 14]. The premise
is that agile development tends to sacrifice software quality due to its focus on function-
ality and rapid product delivery, as stated by the authors [9].

Almeida et al. (2022) conducted an in-depth analysis of the synergy between De-
vOps and Agile practices, revealing significant improvements in software delivery speed



and product quality when these methodologies are combined. Their study highlights the
potential for reduced development cycles and enhanced customer satisfaction [1]. Ruk
et al. (2019) surveyed the adoption of Agile methodologies and their impact on soft-
ware quality. They identified key issues related to Agile adoption, including resistance
to change and the need for extensive training to fully leverage Agile benefits [? ]. Their
findings underscore the importance of addressing cultural and organizational challenges
to optimize Agile implementation.

Karhapää et al. (2024) explored the evidence-based quality-aware Agile soft-
ware development process, emphasizing the need for a balanced approach that integrates
quality considerations into Agile workflows. Their research suggests that while Agile
methodologies can accelerate delivery, they must be coupled with rigorous quality assur-
ance practices to prevent technical debt and maintain high software standards [9]. Several
studies aim to understand the challenges faced in adopting the DevOps approach in soft-
ware projects. Jayakody and Wijayanayake (2021) and Hemon et al. (2020) highlight
the difficulties in integrating development and operations teams. The collaboration be-
tween historically separate teams is essential for the success of DevOps, yet it presents
significant challenges [8, 7].

Perera et al. (2017) conducted a comprehensive study on how DevOps practices
impact software quality, utilizing the CAMS (Culture, Automation, Measurement, Shar-
ing) framework. Their findings indicate that automation is a critical factor in improv-
ing software quality, and that a strong DevOps culture can significantly enhance team
collaboration and efficiency. The study also emphasizes the importance of continuous
measurement and knowledge sharing for sustaining high-quality outcomes in DevOps en-
vironments [13]. Mishra and Otaiwi (2020) performed a systematic mapping study to
investigate the relationship between DevOps practices and software quality. Their re-
search demonstrated a positive correlation between the implementation of DevOps and
improvements in various quality metrics, including reliability, maintainability, and per-
formance. The study suggests that DevOps practices contribute to a more stable and
resilient software development process [11].

Our research approach explicitly addresses the limitations expressed in previous
studies, related to the lack of research on how the use of DevOps and agile methodologies
affects the quality of open-source code in projects hosted on GitHub. By analyzing a di-
verse set of repositories, we aim to provide a comprehensive understanding of the impact
of these methodologies on code quality metrics such as code smells, bugs, vulnerabilities,
and security ratings.

5. Threats to Validity
In this section, we discuss the potential threats to the validity of our study, following the
guidelines proposed by Wohlin et al.. We address threats to internal, external, conclusion,
and construct validity [15].

Internal Validity – A key threat to internal validity is the potential for confounding
variables, such as the varying experience levels of contributors or differences in project
management practices. Additionally, the use of SonarQube for code quality measurement,
while robust, may have inherent biases or limitations in detecting certain types of code
smells or vulnerabilities. We mitigated these threats by using a diverse sample of projects



and ensuring consistent application of SonarQube metrics. External Validity – We focus
on Java projects hosted on GitHub may limit the generalizability of our results to projects
using different programming languages or hosted on other platforms. The popularity-
based selection criteria may bias our sample towards well-maintained projects, potentially
overlooking less popular but equally relevant projects.

Conclusion Validity – Potential threats to conclusion validity include the accuracy
and precision of the statistical methods employed. While we used ANOVA and regression
analysis, there is a risk of Type I or Type II errors due to inherent variability in software
project data. To mitigate this, we ensured comprehensive data preprocessing and applied
statistical techniques. Construct Validity – The primary constructs are Agile practices,
DevOps practices, and code quality. A threat to construct validity is the operationalization
of these constructs, particularly the identification and categorization of Agile and DevOps
practices. The reliance on project documentation and commit messages to infer the use
of these practices may not fully capture their depth and consistency. We addressed this
by using multiple sources of evidence and cross-referencing project documentation with
actual practices observed in the codebase.

6. Conclusion

This study aimed to investigate the impact of Agile and DevOps practices on code qual-
ity in open-source software projects. By analyzing 57 Java repositories on GitHub, we
categorized the projects into four groups based on their use of Agile and DevOps prac-
tices and examined code quality metrics using SonarQube. Our findings indicate that
projects utilizing both Agile and DevOps practices tend to have a higher incidence of
code smells, bugs, and vulnerabilities compared to those employing only one or neither
of these methodologies. This suggests a positive correlation between the use of both
Agile and DevOps practices and an increase in these code quality issues. However, it is
important to note that these methodologies also contribute to higher security ratings, high-
lighting their potential in enhancing security aspects of software projects. The study also
revealed a significant association between the use of DevOps and Agile methodologies,
suggesting that teams adopting DevOps practices are likely to integrate Agile method-
ologies as well. This combined adoption pattern underscores the synergy between these
two approaches in modern software development practices. Furthermore, our analysis of
the number of contributors showed that larger teams tend to introduce more code smells.
However, the density of code smells relative to the size of the project decreases with
more contributors, indicating that larger teams may be more effective in maintaining code
quality proportional to project size.

Future research should expand the dataset to include projects from various pro-
gramming languages and ecosystems, explore the specific Agile and DevOps practices
that influence code quality, and investigate the long-term effects of these practices through
longitudinal studies.

Replication Package

We provide spreadsheets with GitHub projects, processed data (code smells, source code
metrics), and analysis scripts to facilitate replication and validation. The replication pack-
age for this study is available at: GitHub.

https://github.com/luiz04nl/devops-ic-collector


References
[1] F. Almeida, J. Simões, and S. Lopes. Exploring the benefits of combining devops

and agile. Future Internet, 14(2):63, 2022.
[2] Maria Teresa Baldassarre, Valentina Lenarduzzi, Simone Romano, and Nyyti

Saarimäki. On the diffuseness of technical debt items and accuracy of remediation
time when using sonarqube. Information and Software Technology, 128:106377,
2020. ISSN 0950-5849.

[3] Marı́a Cecilia Bastarrica, Germán Espinoza, and Jacqueline Marı́n. Implementing
agile practices: the experience of tsol. In Proceedings of the 12th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[4] Woubshet Behutiye, Pilar Rodrı́guez, and Markku Oivo. Quality requirement docu-
mentation guidelines for agile software development. IEEE, 10, 2022.

[5] Hudson Silva Borges, André C. Hora, and Marco Túlio Valente. Understanding
the factors that impact the popularity of github repositories. 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pages 334–
344, 2016.

[6] Samuel Ferino, Marcelo Fernandes, Anny Fernandes, Uirá Kulesza, Eduardo
Aranha, and Christoph Treude. Analyzing devops teaching strategies: An initial
study. In Proceedings of the XXXV Brazilian Symposium on Software Engineering,
SBES ’21, page 180–185, New York, NY, USA, 2021. Association for Computing
Machinery.

[7] A. Hemon, B. Lyonnet, F. Rowe, et al. From agile to devops: Smart skills and
collaborations. Information Systems Frontiers, 22(4):927–945, 2020.

[8] J. A. V. M. K. Jayakody and W.M.J.I. Wijayanayake. Challenges for adopting de-
vops in information technology projects. In 2021 International Research Conference
on Smart Computing and Systems Engineering (SCSE), volume 4, pages 203–210,
2021.

[9] Pertti Karhapää, Woubshet Behutiye, Pertti Seppänen, Pilar Rodrı́guez, Markku
Oivo, Xavier Franch, Silverio Martı́nez-Fernández, Lidia López, Michał Choraś,
Alessandra Bagnato, Sanja Aaramaa, and Jari Partanen. Evidence-based quality-
aware agile software development process: Design and evaluation. IEEE Access,
12:86487–86512, 2024.

[10] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Relationship of devops to
agile, lean and continuous deployment - a multivocal literature review study. In
International Conference on Product Focused Software Process Improvement, 2016.

[11] Alok Mishra and Ziadoon Otaiwi. Devops and software quality: A systematic map-
ping. Computer Science Review, 38:100308, 2020.

[12] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. On the diffuseness and the impact on maintainability
of code smells: a large scale empirical investigation. Empirical Software Engineer-
ing, 23:1188 – 1221, 2017.

[13] Pulasthi Perera, Roshali Silva, and Indika Perera. Improve software quality through
practicing devops. In 2017 Seventeenth International Conference on Advances in
ICT for Emerging Regions (ICTer), pages 1–6, 2017.

[14] Sadaquat Ali Ruk, Muhammad Faizan Khan, Sehar Gul Khan, and Syed Maqsood
Zia. A survey on adopting agile software development: Issues its impact on software



quality. In 2019 IEEE 6th International Conference on Engineering Technologies
and Applied Sciences (ICETAS), pages 1–5, 2019.

[15] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in Software Engineering. Computer Science. Springer Berlin Heidelberg,
2012.

[16] Nico Zazworka, Antonio Vetrò, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Car-
olyn Budinger Seaman, and Forrest Shull. Comparing four approaches for technical
debt identification. Software Quality Journal, 22:403–426, 2014.


	Introduction
	Study Design
	Goal and Research Question
	Evaluation Steps
	Data Set

	Results
	Impact of Agile and DevOps on Code Quality
	Agile Integration in DevOps Projects
	The Influence of Contributors on Code Quality

	Related Work
	Threats to Validity
	Conclusion

