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Abstract. The CI/CD pipeline configuration is a challenging and error-prone
task. Its misconfiguration threatens the project’s security, maintenance, and
quality. Such configuration problems called “configuration smells” are pat-
terns in the configuration that, while not necessarily incorrect, indicate poten-
tial issues that could compromise the pipeline efficiency, reliability, or security.
Detecting these smells is key to managing and addressing them for maintain-
ing high-quality and secure CI/CD workflows. This paper introduces GASH
(GitHub Actions Smell Hunter), a Pythonic tool devoted to detecting config-
uration smells in GitHub Actions CI/CD pipelines. Our tool can detect nine
configuration smells categorized into three groups: security (5), maintenance
and reliability (3), and code quality (1). GASH provides features to support re-
searchers in performing large-scale studies regarding configuration smells and
practitioners in continuously analyzing their own pipelines. We evaluate GASH
against a manually labeled “gold standard” based on 15 open-source projects
comprising 66 CI/CD pipeline configurations. The results show that GASH per-
formed well, achieving F1-score greater than 0.8 for most configuration smells.
Keywords: CI/CD, GitHub Actions, Configuration Smells, Static Analysis

1. Introduction

Launched as a public product by GitHub in 2019 [Kinsman et al. 2021], GitHub Actions1

is a CI/CD platform that automates build, test, and deployment pipelines. It leverages
YAML2, a markup language, to allow users to create CI/CD pipelines as workflows within
.yml files. According to [Wessel et al. 2023], GitHub Actions experienced impressive
growth in adoption (almost 30% of popular repositories studied) when compared with the
beginning (only 0.7% of popular repositories as reported in [Kinsman et al. 2021]). Key
components include workflows, events, jobs, actions, and runners, detailed in Section 2.1.

Overall, the CI/CD pipeline configuration is a challenging and error-prone task
[Rahman et al. 2019]. As reported by [Zhang et al. 2024], developers have faced these
practical problems when deploying CI/CD workflows using GitHub Actions. Developers
responsible for this task must follow certain principles and good practices to avoid mis-
configuration that may threaten the project’s security (e.g., storing sensitive information
like tokens or passwords directly in the code) [Rahman et al. 2019], maintenance (e.g.,
code snippets replication in different parts of the pipeline) [Vassallo et al. 2020], and
quality (e.g., extensive and hard-to-manage code blocks) [Vasilescu et al. 2015]. These

1https://github.com/features/actions
2https://yaml.org/
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configuration problems are referred to as “configuration smells”, i.e., patterns in the con-
figuration that, while not necessarily incorrect, indicate a potential problem that could
compromise the pipeline efficiency, reliability, or security. Detecting and addressing these
smells is key for maintaining high-quality and secure CI/CD workflows.

In this paper, we present GASH (GitHub Actions Smell Hunter), a command line-
based Pythonic tool to automatically detect configuration smells in CI/CD pipelines de-
ployed on GitHub Actions. Our tool can detect nine configuration smells (e.g., Hard-
Coded Secret, Admin by Default, and Lack of Error Handling) categorized into three dif-
ferent groups: security (5), maintenance and reliability (3), and code quality (1). GASH
can analyze one or several YAML-based pipeline configurations from one or multiple
repositories. These features support researchers in performing large-scale studies regard-
ing configuration smells and practitioners in continuously analyzing their own pipelines.
We evaluate GASH against a manually labeled “gold standard” based on 15 open-source
projects, comprising 66 CI/CD pipeline configurations, and a total of 446 smells. Al-
though GASH didn’t get perfect scores for detecting every smell, our results show that
GASH performed well, achieving F1-score greater than 0.8 for most configuration smells.

The rest of the paper is organized as follows. Section 2 presents the background
and related work. GASH tool is described in detail in Section 3. In Section 4, we present
GASH’s evaluation methodology, results, discussion, limitations, and threats to validity.
Section 5 concludes the paper and points to future research directions.

2. Background and Related Work

2.1. GitHub Actions Workflows
In GitHub Actions, workflows are custom automated processes defined in YAML files
within the .github/workflows directory of a repository. They are triggered by
events in a repository (e.g., pull request, issue creation, commit push, or a scheduled
event) and can have multiple jobs. Jobs are units of work that execute in parallel or se-
quentially within a workflow. Each job runs on a runner and consists of several steps.
Each step is either a shell script that will be executed or an action that will be run. Steps
are executed sequentially and are interdependent. Since all steps in a job run on the same
runner, they can share data, allowing one step to use the output or results from another.
Actions are individual tasks that can be combined to create jobs. They can be custom
scripts or reusable actions from the GitHub Marketplace. Finally, runners are servers that
run the jobs in workflows. To ease the process, GitHub provides hosted runners such as
Linux, Windows, and macOS virtual machines, but users can self-host their own.

1 name: learn-github-actions
2 run-name: ${{github.actor}} is learning GitHub Actions
3 on: [push]
4 jobs:
5 check-bats-version:
6 runs-on: ubuntu-latest
7 steps:
8 - uses: actions/checkout@v4
9 - uses: actions/setup-node@v4

10 with:
11 node-version: ‘20’
12 - run: npm install -g bats



13 - run: bats -v

Listing 1. Example of GitHub Actions Workflow Description in YAML File.

Listing 1 shows a GitHub Actions workflow written in YAML. In line 1, the field
name of the workflow (i.e., how it will appear in the “Actions” tab of the repository) is
optional. If the name is omitted, the name of the .yml file will be used instead. Next, in
line 2, the field run-name is the name for workflow runs generated from the workflow,
which will appear in the list of workflow runs on your repository’s “Actions” tab. This
example uses a GitHub expression ${{github.actor}} to display the username of
the actor that triggered the workflow run. The field run-name is also optional. In line 3,
the field on specifies the trigger for this workflow. In this case, it is the push event, so a
workflow run is triggered every time someone pushes a change to the repository or merges
a pull request. The field jobs (line 4) groups all the jobs that run in the current workflow.
Right after, check-bats-version defines the name of the first (and only one) work-
flow’s job. The property runs-on configures the job to run on the latest version of an
Ubuntu Linux runner. The property steps groups all the steps that run in the job. Each
item nested under steps section is a separate action or shell script. The property uses
specifies that the step will run an action. First, the action actions/checkout (version
4) is executed. It checks out the repository onto the runner, allowing you to run scripts
or other actions against your code (e.g., perform static analysis or run automated tests).
Next, the action actions/setup-node (version 4) is executed to install version 20
of Node.js, a cross-platform JavaScript runtime environment. Finally, using the property
run two shell commands are executed: rpm install -g bats to install the bats
software testing package on the runner and bats -v to display the bats version.

2.2. Configuration Smells in CI/CD Pipelines

Table 1 summarizes the nine configuration smells our tool can automatically identify.
These smells were selected from [Rahman et al. 2019] and [Vassallo et al. 2020] list of
smells. We categorize the configuration smells into three groups – security smells (SEC),
maintenance and reliability smells (MRS), and code quality smells (CQS) – and assign
vulnerability levels (Critical, Medium, or Low) for each smell we consider. The final level
of vulnerability was reached based on three expert evaluations. First, each expert assigned
values for each configuration smell level of vulnerability. Finally, they discussed among
themselves and reached a consensual level of vulnerability for each smell.

Security in CI/CD pipelines is important to prevent unauthorized access, data
breaches, and other vulnerabilities that can compromise the integrity of the software de-
velopment lifecycle. In the context of GitHub Actions, security smells are patterns that
indicate potential security risks. If not addressed, these smells can lead to vulnerabilities
in the CI/CD process and software deployment and, consequently, risks to the end user.
The Hard-Coded Secret smell (see Table 1) is a major security risk once this practice can
lead to unauthorized access and data breaches if the secrets are exposed. The occurrence
of Unsecured Protocol smells in CI/CD pipelines, such as HTTP use instead of HTTPS,
can expose sensitive data to interception and man-in-the-middle attacks. The presence
Untrusted Dependencies smell in the pipeline configuration can introduce vulnerabilities
through third-party code, making the system susceptible to attacks. Admin by Default
smell can increase the risk of unauthorized access and data breaches due to the extensive



Table 1. Summary of Configuration Smells in CI/CD Pipelines.
Group Name Vulnerability Description

SES

Hard-Coded Secret Critical Storing sensitive information like tokens or passwords directly
in the code.

Unsecured Protocol Critical Lack of secure communication protocols.
Untrusted Dependencies Critical Including dependencies from unverified or untrusted sources.
Admin by Default Critical Assigning high privileges by default.
Remote Triggers Critical Allowing remote triggers without proper configuration.

MRS
Code Replica Medium Replicating code snippets in different parts of the pipeline.
Lack of Error Handling Critical Absence of robust error checks and handling mechanisms.
Misconfigurations Medium Incorrect configurations in the workflow that cause execution

failures or security vulnerabilities.

CQS Long Code Blocks Medium Extensive blocks of code at the workflow, job, or step levels.

control these privileges grant (permissions are used in actions to provide specific privi-
leges for the pipeline). Finally, allowing Remote Triggers without proper configuration
can be exploited to execute unauthorized actions, compromising the pipeline integrity.

Replicating code snippets across different parts of the pipeline configuration (see
Code Replica smell in Table 1) can lead to maintenance challenges and an increased risk
of inconsistencies and errors. Identifying and refactoring replicated code is important for
ensuring the maintainability and reliability of the CI/CD pipeline. Proper error handling
is key to ensure that CI/CD pipelines can manage failures gracefully and provide useful
feedback for troubleshooting. Inadequate error handling, such as those represented by the
Lack of Error Handling smell, can result in undetected failures, prolonged debugging
sessions, and unreliable pipeline performance. Finally, the presence of Misconfigura-
tions smell in GitHub Actions workflows can lead to several issues (e.g., failed execu-
tions, security vulnerabilities, and maintenance challenges). Identifying and fixing these
misconfigurations is mandatory to ensure the pipeline’s robustness and reliability.

In GitHub Actions workflows, long code blocks (see Long Code Blocks smell in
Table 1) can hinder maintenance and reduce code quality. Although they do not directly
compromise pipeline security, they impact the readability and manageability of the work-
flow. Thus, it is important to consider splitting large jobs into multiple workflows and
breaking down steps with excessive commands into smaller units. By doing so, not only
the readability is improved but also debugging and long-term maintenance.

2.3. Related Work

In this section, we describe the related work. We start with the [Vassallo et al. 2020]
work that inspired us to develop the GASH tool. [Vassallo et al. 2020] developed a linter
capable of automatically identifying four different smells in pipeline configuration files.
They evaluate their tool through a long-term (over 6 months) and large-scale (targeting
5,312 open-source projects hosted on GitLab platform) study. Their results show that
developers are aware of configuration smells and their tool achieves a precision of 87%
and a recall of 94%. They also conclude that smells are prevalent once 31% of projects
with long configurations are affected by at least one smell. However, the proposed linter
is limited to projects hosted on GitLab platform, considers only four smells, and does not
provide dedicated support to perform studies with historical analyses, unlike GASH.



[Rahman et al. 2019] performed a study in the context of infrastructure as code
(IaC) to address the problem of security smells in configuration scripts. They argue that
practitioners tend to introduce security smells when creating configuration scripts for IaC.
Thus, they performed a qualitative analysis on 1,726 IaC scripts to identify seven security
smells. Next, they built a tool to detect the occurrence of each smell in 15,232 IaC scripts
from 293 open-source repositories. They found that hard-coded passwords occur the most
and take more than 90 months to be fixed. However, the proposed tool does not provide
support to analyze CI/CD pipeline configuration, which is the primary goal of GASH.

3. The GASH Tool
3.1. Overview
GASH (GitHub Actions Smell Hunter) is a Python-based tool primarily devoted to identi-
fying configuration smells in CI/CD pipelines deployed on GitHub Actions. It can parser
YAML files describing CI/CD workflows looking at identifying the presence of configu-
ration smells. Overall, GASH outputs a report containing which smells were found and
their occurrences in the YAML file. Our tool detects all nine smells described in Table 1.

GASH can be used in two distinct ways. The first one considers the analysis
of YAML files stored in the machine’s local file system. Thus, the user can provide a
path for a single file or a directory containing several YAML files. After performing the
analysis, GASH outputs a report for each YAML containing the smells found and their
location in the file. This way is more useful for practitioners who intend to assess the
current pipeline configurations of a single project. The second way focuses on mining
software repositories hosted on GitHub. In this case, the user must provide a repository
URL or CSV file containing a list of URLs pointing to the repositories to be analyzed.
Next, GASH downloads each repository, selects and inspects all commits that touch a
YAML file, and analyzes each YAML file’s version linked with the selected commits.
Finally, GASH outputs a CSV file report containing a summary of information regarding
the commit (e.g., committer name, committer date, and whether the commit is linked
with an issue) and smells found (e.g., type and occurrences). This way is more useful to
support researchers in performing pipeline history analysis, including multiple projects.

Finally, GASH follows well-known software engineering principles such as Test-
Driven Development (TDD) and Domain-Driven Design (DDD). The Prisma3 project, an
ORM tool for Node.js and TypeScript with +31k stars, used by +462k projects, and that
encompasses 16 pipelines, was used as the gold standard for GASH’s unit and integration
tests creation. Our tool is freely available on the GitHub repository4.

3.2. Architecture
Figure 1 shows the overall GASH’s architecture. It is divided into two primary com-
ponents: Research Module and Analysis Module. Each component is responsible for
specific tasks, enabling the identification of configuration smells in CI/CD pipelines and
report generation. Both modules are detailed in the following paragraphs.

The Research Module is designed for research scenarios, leveraging data directly
from GitHub repositories. It can receive a single repository URL or a list of repository

3https://github.com/prisma/prisma/
4https://github.com/mthsfrts/GASH
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Figure 1. The GASH Tool Architecture.

URLs. This module leverages data mining techniques through the GitHub API and the
PyDriller [Spadini et al. 2018] library to extract information from repositories. It analyzes
the pipeline’s lifecycle and outputs a .csv file with the historical data analyzed.

The Analysis Module is designed for development scenarios, allowing developers
to verify single or multiple YAML files from one project. The analysis is divided into three
levels: workflow, job, and step, allowing for precise and contextualized smell detection.
It outputs one or more .log files containing the analysis of each YAML file.

3.3. Usage

GASH is configured as a command line tool with a simple, straightforward design. The
CLI offers five options (see Table 2), fitting the two use case scenarios described. Each
option requires an argument to run correctly. When the commits option is used, the user
must provide a repository’s URL as the next parameter. The option batch-commits
requires that a .csv path be provided containing the list of repositories URLs to be
analyzed. The option repo is used to select repositories on GitHub based on three criteria
provided as parameters: age in years, minimum, and maximum number of stars. GASH
searches GitHub to find repositories with a CI/CD pipeline configured using a YAML file
and then checks if these repositories match the three criteria. Next, it generates a .csv
file and behaves likewise the option batch-commits. The option analyze receives
a YAML file path as a parameter while the batch-analyze option receives a path
pointing to a directory containing all YAML files to be analyzed.

Table 2. Summary of GASH CLI Options
Group Option Description

Research
repo Mines repositories based on search criteria, used when a specific repository is not identi-

fied.
commits Analyzes a specific repository’s commits for configuration smells.
batch-commits Studies multiple repositories listed in a CSV file.

Analysis
analyze Performs single-mode analysis on a specific YAML file, providing the file path.
batch-analyze Analyzes multiple YAML files within a specified directory.



4. Evaluation

4.1. Selected Projects

To evaluate the effectiveness of GASH, a manual analysis was conducted on 15 reposito-
ries, yielding a total of 66 YAML files and 446 smells. The chosen repositories match the
following criteria: use GitHub Actions, are in activity (last modification in less than one
month), from 1 year old to 5 years old, and have the number of stars ranging from 150
to 800. This manual analysis served as a benchmark to compare against the results ob-
tained from GASH, allowing us to compute metrics to evaluate the performance. Table 3
summarizes the selected projects including the number of smells found in each.

Table 3. Summary of Projects used in GASH Evaluation.
Project #Smells #Starts #YAMLs #Years

Allenact 24 297 3 5
Altswiftui 22 297 3 5
Arena 36 304 5 4
Balerter 16 300 2 5
Bashhub-server 16 303 2 4
Feather 12 302 2 2
Feathub 8 303 5 2
Journalist 14 297 3 3
Neural-speed 22 315 8 1
Nubesgen 62 299 6 4
Prisma 132 38100 15 5
Trigger-workflow-and-wait 14 300 2 5
Typst-physics 18 297 2 2
Upgini 18 309 2 4
Valkyrie 32 303 6 4

Total 446 66

Although the selected projects have large communities, GitHub Actions is still a
relatively new tool. This suggests that older and larger projects are more reluctant to use
GitHub’s native service as the primary CI/CD tool.

4.2. Performance Metrics

In the evaluation, we employ a set of well-established metrics to assess the GASH per-
formance, which we explain in the following. First, we start with basic metrics: True
Positives (TP): correctly identified instances of smells; True Negatives (TN): correctly
identified instances where smells are not present; False Positives (FP): incorrectly iden-
tified instances of smells; and False Negatives (FN): missed instances of smells that are
present. The Precision metric is the proportion of TP identifications made by GASH to
the total number of positive identifications (i.e., TP + FP). The Recall metric computes
the proportion of TP identifications made by GASH to the total number of actual positive
cases in the manual analysis (TP + FN). Finally, the F1-score is the harmonic mean of Pre-
cision and Recall, providing a single metric that balances both concerns. The equations
(1), (2), and (3) above precisely describe the derived metrics.



Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 · Precision · Recall
Precision + Recall

(3)

4.3. Results and Discussion

Table 4 summarizes the performance metrics for each type of smell considered in the
evaluation. Overall, the results indicate that GASH is highly effective in detecting most
predefined smells, with F1-score values consistently above 0.80 for most smell types. The
high precision and recall values demonstrate GASH’s reliability in identifying true pos-
itives while minimizing false positives and false negatives. The Lack of Error Handling
and Unsecure Protocol smells reach the maximum F1-score (1.00) while the Hard-Coded
Secret smell has the lowest F1-score value (0.65).

Table 4. Performance Metrics of GASH for Detected Smells
Smells Type Precision Recall F1-score TP TN FP FN

Code Replica 0.81 1.00 0.89 17 35 4 0
Lack of Error Handling 1.00 1.00 1.00 56 0 0 0
Misconfiguration 0.73 1.00 0.85 41 0 15 0
Long Code Blocks 0.62 1.00 0.76 32 4 20 0
Admin By Default 1.00 0.71 0.83 5 49 0 2
Hard-Coded Secret 0.77 0.56 0.65 10 35 3 8
Remote Triggers 0.89 1.00 0.94 25 28 3 0
Unsecure Protocol 1.00 1.00 1.00 4 52 0 0
Untrusted Dependencies 1.00 0.82 0.90 23 28 0 5

Regarding high Recall but lower Precision, the Code Replica, Misconfiguration,
and Long Code Blocks detection showed high Recall (1.00) but lower Precision (varying
from 0.56 up to 0.82). Thus, the results suggest that GASH successfully identified all ac-
tual positives but also made some incorrect positive identifications. In contrast, Untrusted
Dependencies smell detection had perfect Precision but slightly lower Recall, indicating
no false positives but a few missed actual positives.

The performance metrics for some smells, such as Hard-Coded Secret and Admin
By Default, did not achieve perfect scores. This can be attributed to the diverse ways these
smells can manifest within CI/CD pipelines, necessitating deeper and more extensive
analyses to capture all variations accurately. In contrast, smells that scored 1.00, like
Unsecure Protocol, had better detection because their implementation is straightforward
— either the parameter is present or not. Although the values set can vary, their inclusion
in the code is consistent, facilitating more effective and accurate analysis.

Additionally, varying levels of developer experience and team seniority lead to
different implementation styles for pipeline configurations. Less experienced developers
may not follow best practices, increasing the incidence of certain smells. Furthermore,



GitHub’s account, free and enterprise, affect pipeline configuration. User accounts oper-
ate under free monthly minutes, while enterprise accounts are billed monetarily, encour-
aging organizations to optimize pipeline configurations to avoid high costs.

4.4. Limitations and Threats to Validity
In this section, we present limitations and threats to the study’s validity.

Limitations: The main limitation of this study is that GASH is designed specif-
ically for GitHub Actions and currently detects only nine types of smells. This focus
excludes other CI/CD platforms and potential smells. The tool’s effectiveness is also lim-
ited by the predefined smells and may not capture all nuances in evolving CI/CD practices.
Additionally, the manual analysis was conducted on a small subset of repositories, which
might not fully represent the diversity in broader software development environments.

Conclusion Validity: Threats to conclusion validity include the potential for in-
correct identification of smells by GASH. False positives could skew the analysis and lead
to incorrect conclusions about the prevalence and impact of specific smells. However, this
threat is mitigated since the tool is more prone to false positives than false negatives. False
positives inflate the number of detected smells but are less detrimental than false negative,
which could overlook critical issues.

Construct Validity: Threats to construct validity concerns problems with the
generalization of the study. There’s a possibility of human bias being present when the
projects are chosen. To alleviate this, the manual choice of projects was made randomly
after the filtering, invalidating only if the project did not fit our criteria. Other parts of our
analysis were automated to avoid mistakes and bias.

5. Conclusion and Future Work
In this study, we introduced GASH (GitHub Actions Smell Hunter), a tool designed to
identify nine specific types of configuration smells in GitHub Actions CI/CD pipelines,
focusing on security and maintenance concerns. Our analysis demonstrated GASH’s ef-
fectiveness in detecting these smells, thus helping enhance pipeline quality and security.

While GASH effectively identifies straightforward smells like Unsecure Protocol
and Lack of Error Handling, it faces challenges with complex smells such as Hard-Coded
Secret and Admin By Default. These results underscore the need for continuous refine-
ment and deeper analysis to capture all variations of these smells.

Future work will focus on refining GASH to enhance its detection capabilities fur-
ther and integrating additional smell categories to improve CI/CD pipeline quality and
security. Specific improvement areas that might be included: (i) incorporating additional
types of smells, particularly those related to performance and scalability; (ii) utilizing ma-
chine learning algorithms and combining static and dynamic analysis; and (iii) conducting
large-scale and longitudinal empirical studies.
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