
Understanding Group Maintainership Model
in the Linux Kernel Development

Eduardo Pinheiro1,Paulo Meirelles1

1FLOSS Software Competence Center
Institute of Mathematics and Statistics

University of São Paulo

{edupinheiro,paulormm}@ime.usp.br

Abstract. Software development has evolved over decades, transitioning from
traditional models such as the waterfall approach and the unified process to
more flexible methodologies like agile methods and collaborative development
strategies of Free/Libre/Open Source Software (FLOSS) projects. Alongside
this trend, the global distribution of software development work has increased.
This phenomenon is particularly evident in the development of FLOSS projects,
where contributors from various regions worldwide collaborate asynchronously
on projects. In this context, the organization of interactions among developers
can significantly influence a project success or failure. An example is the Linux
kernel community, which has been actively discussing the models and workload
of project maintainers – a topic that has received limited attention in scientific
literature. This study investigated the new maintenance methods used in the
Linux kernel project. With over 30 years of development, the Linux kernel has
become a benchmark for FLOSS development. We discuss how the maintainers’
workload is addressed in academic literature and by practitioners in the Linux
kernel community. To achieve this, we conducted a multivocal literature review
to examine the evolution of maintenance models over the years.

1. Introduction
The basic principle of the Free/Libre/Open Source Software (FLOSS) ecosystem is to
promote user freedom, enabling anyone to use the software without prejudice or limita-
tions through collaboration and an open development process. To be considered FLOSS,
software must offer users the freedom to use, study, modify, and redistribute it without
restrictions, ensuring that these liberties remain intact for future users. FLOSS develop-
ment projects rely on publicly available source code, typically hosted in online reposito-
ries where developers and users can interact [Kon et al. 2011]. A formal and legal license
for the source code, as defined by the Free Software Foundation (FSF) or the Open Source
Initiative (OSI), is required.

The FLOSS ecosystem applies software engineering principles to software con-
struction and also become a subject of study. However, there is a gap between academic
studies on FLOSS and community practices, particularly a superficial understanding of
the development model of the Linux kernel [Wen 2021] – the most famous and established
FLOSS project. The evolution of the Linux kernel development occurred alongside the
maturation of the FLOSS movement, significantly impacting its consolidation. The Linux
kernel is a project with over three decades of history that maintains a robust development



ecosystem. Its characteristics have inspired various software development models – the
most remembered was described by [Raymond 1999] in his essay “The Cathedral and
The Bazaar.” Raymond discussed his observations on the Linux kernel development and
the lessons from applying some “Bazaar” practices to the fetchmail, his project. In sum-
mary, the goal was to disseminate the “open-source” as an apolitical and unbiased term
to define the development model of “free software” projects. Thus, more companies be-
came interested in the benefits of these practices, leading to the growth of the FLOSS
ecosystem [Crowston et al. 2012] and influencing its development process [Wen 2021].

Since Raymond’s essay, the Linux kernel project has grown in source
code size, developer team size, and various markets [Wen 2021]. More-
over, there are different views [Fogel 2005, Rigby et al. 2014, Lindberg et al. 2014,
Shaikh and Henfridsson 2017, Tan and Zhou 2022] and an apparent shallow understand-
ing of the FLOSS development and the Linux kernel model. We should recognize that
the Linux kernel is an example of an efficient contribution model involving a high level
of collaboration among diverse contributors from around the world – for instance, nearly
2,000 developers contributed to version 6.31. The development cycle involves substantial
changes; based on email lists, the Linux kernel contribution model is theoretically accessi-
ble. However, the model is not well-documented, and many practices can only be learned
from more experienced contributors or maintainers. Additionally, the workflow includes
many procedures that could be automated or simplified to make the contribution process
more harmonious and agile. In short, the efficiency and simplicity of the collaboration
model are crucial for the project success. A complex or ineffective collaboration model
can hinder the project progress and scalability, making it difficult for new contributors to
join and effectively participate and reducing the rise of new maintainers.

Every FLOSS community has its communication and collaboration methods,
which can vary within a community based on subparts of the project. The Linux kernel
has multiple subsystems, each with its own dynamics. The interaction between members
can shape the project progression. The Linux kernel maintainership model dictates how
maintainers manage subsystem contributions. This model can vary between subsystems,
with some maintainers adopting different strategies to manage contributions. The commu-
nity observes recent strategies as potential ways to mitigate the maintainership challenges
many subsystems face, which we can encapsulate by the phrase: “Too many lords, not
enough stewards” [Edge 2018].

In this context, our research investigated how these challenges have affected the
Linux community. We identified two different ways maintainers can organize their sub-
systems. First, the classical model typically has one or two maintainers who handle all
the reviewing work. Second, the group maintainership model, categorized into three
approaches: hands-off, delegation, and multiple-committer [Corbet 2016]. These new
strategies are used in some Linux kernel subsystems and are observed as alternatives to
sustain the maintainership process.

In this work, we characterized the group maintainership model and discussed how
it is applied to Linux kernel subsystems. We analyzed the problems that lead project
members to seek new maintainership approaches. We investigated how these new models

1https://lwn.net/Articles/929582/



differ from the existing ones and if there is a need for specific conditions to make them
work. To conduct this study, we established the following questions to guide our research:

• RQ1: What are the characteristics of the subsystems communities implementing
the group maintainership model? What differentiates them from other subsys-
tems?

• RQ2: Which aspects of the group maintainership model differ from the traditional
process of reviewing and accepting patches in the Linux kernel?

Our methodology involves a Multivocal Literature Review (MLR) integrating per-
spectives from a Systematic Mapping Study (SMS) and a Grey Literature Review (GLR).
An MLR is a research method that incorporates a variety of sources beyond traditional
academic publications. This approach includes “grey literature” such as developer blogs,
forum discussions, and white papers. By integrating these diverse perspectives with aca-
demic research, an MLR provides a more comprehensive picture of the topic, reflecting
state-of-the-art and state-of-practice insights [Garousi et al. 2019]. Our approach seeks
an understanding of the Linux kernel contribution process, particularly emphasizing the
role of maintainers.

2. The Linux kernel Project
The Linux kernel project is an extensive initiative comprising nearly 25 million lines
of code and involving almost 2,000 developers from over 250 companies or indepen-
dently working. Its development process diverges significantly from traditional propri-
etary methods, embracing a community-driven framework, a patch-oriented development
process, and a time-based release model.

The kernel codebase is structured into subsystems such as the process sched-
uler, memory management, device driver infrastructure, networking, and filesys-
tems. “A subsystem is a representation for a high-level portion of the kernel as a
whole” [Corbet et al. 2005]. It can also be referenced as an abstraction, which refers
to a specific part of the kernel that deals with a particular kernel function.

Usually, each subsystem has designated maintainers. A maintainer manages and
accepts contributions into a specific subsystem code repository. Contributions are format-
ted and sent to the Linux kernel project as a patch. A patch is a text document describing
the differences between two versions of a source tree. These contributions (or patches) are
grouped according to a particular need or interest. This collection of patches is arranged
in a tree. Moreover, each tree generally references a subsystem, which works as a place
for a specific development.

Throughout its over three decades, Linux creator Linus Torvalds has reposi-
tioned the project. For instance, in 2007, Torvalds positioned itself against the adop-
tion of GPLv3 [Torvalds 2007], created by the Free Software Foundation. In 2016,
he stated that he was never concerned with following FLOSS methodology or poli-
cies [McManus 2016]. Linus just opened the code for feedback and created methods and
tools (such as Git) that made it possible to shape development in the most comfortable
possible way (for him). Finally, in a letter sent to the kernel project mailing list in 2018,
Torvalds licenses himself briefly from coordinating Linux due to strong disagreements
with the community regarding his way of conducting the project [Torvalds 2018]. Greg



Kroah-Hartman took over Torvalds’ coordination responsibilities, and after a month, Tor-
valds returned to Linux development [Statt 2018]. At that time, the controversial code of
conflicts was replaced by a new code of conduct, symbolizing a welcoming and inclusive
community that cares about its developers.

In the contribution process and coordination, maintainers became fundamental,
overseeing every development aspect, from code review and bug fixing to release man-
agement and community engagement. Maintainers often act as the gatekeepers of the
project, deciding which contributions to accept or reject and ensuring that the project
remains healthy and sustainable. They then became not only the most knowledgeable
members of the community in the codebase but also mediators, mentors, and commu-
nity leaders. They facilitated contributor collaboration, resolved conflicts, and upheld the
project standards and values.

However, maintainers face numerous challenges, including maintaining project
sustainability, managing community dynamics, and addressing security vulnerabilities.
The sheer volume of contributions and patches can overwhelm maintainers, leading to
burnout and fatigue. Additionally, maintainers must navigate legal and licensing issues,
enforce code quality standards, and balance priorities and interests within their commu-
nities as companies and individuals with different goals and motivations contribute to the
projects.

In this scenario, we studied the maintainership process in the Linux kernel com-
munity. We focused on the group maintainership model and investigated its application to
Linux kernel subsystems [Corbet 2016]. Specifically, we examined how these new mod-
els differ from the existing ones and whether specific conditions are required for effective
implementation.

3. Systematic Mapping Study
We conducted a Systematic Mapping Study (SMS) to understand better how much infor-
mation the academic community has about the maintainership models used in the Linux
kernel. We choose the major software engineering research publishers, searching their
digital collections: ACM, Scopus, IEEE, and Springer.

From a resultant string [Linux AND (kernel OR community OR subsystem)
AND (maintainers OR maintainership)], our search string returned 91 results, includ-
ing all databases, and through a selection based on whether the title and abstract contained
keywords such as maintainership, contribution process, maintainers, we ended up with 33
selected papers. After reading the abstract and verifying if the papers were related to
our research by looking for key phrases that indicated that they were related to the con-
tribution process or the maintainership model, we reduced our selection to 20 works2.
Lastly, speed-reading through the text led us to reach 16 relevant papers, as some of the
papers only marginally related to the topics researched and did not contribute relevant
information. Then, after reading these papers, we also found some related work through a
snowballing process; while these papers were not directly related to the topic, they helped
give a better context to our research, so we ended up with 33 comprehensively read papers.

In our findings in the literature, we identified two models coexisting in the Linux

2Our replication package is available at https://zenodo.org/records/13345129



kernel community: the traditional model (identified as the single maintainer model) and
the group maintainership model. The single maintainer model is the most common model
in the Linux kernel community. Its characteristics are the hierarchical structure, where the
maintainer is the single point of contact for the subsystem and is responsible for reviewing
and accepting the patches and managing upstream patches. On the other hand, the group
maintainership model is more decentralized, characterized by the maintainer having a
more administrative role, and the review and acceptance of patches are done by a group
of regular contributors with the right to commit to the subsystem. This model has been
shown to reduce the maintainers’ workload significantly.

From our mapping study, we understood how far academia has researched and
what conclusions it has reached concerning contribution management in the Linux ker-
nel. When going through the research related to the Linux kernel and FLOSS projects in
general, a trend can be identified, and the most common topics that researchers focus on
are the newcomers and the contributors. At the same time, maintainers are neglected by
the academic eyes [Bettenburg and Hassan 2012].

As [Capiluppi 2003] pointed out, many FLOSS projects struggle with contribu-
tion management. The burden on maintainers increases as the project grows. For instance,
the Linux kernel has grown from 10,239 lines of code in 1991 (version 0.01) to over 27.8
million lines of code in 2020 (version 5.5) [Tan and Zhou 2022], highlighting the impor-
tance and need to find solutions to successfully scale up the contribution process with the
growth of the project.

3.1. Multiple-Committer Model
There is a demand to adapt the original workflow to the growing workload and to sustain
the community. Exploring the repository of the Linux kernel, [Tan et al. 2020] has iden-
tified a new model for the contribution process, the multiple-committer model (MCM),
where a group of regular contributors for the subsystem is given commit rights. The
authors identified that the multiple committer model significantly reduced the maintain-
ers’ burden in the i915 (Intel DRM – Direct Rendering Manager subsystem – Drivers)
module, which was first implemented in 2015. They pointed out that the reviewing pro-
cess pressure, latency, and complexity are reduced when more committers are accepted.
With that, we have a lower risk of the maintainer being the single point of failure.

A subsystem that is contemplating the adoption of the MCM should, according to
[Tan et al. 2020], have the following prerequisites to apply the multiple committer model
successfully:

• Sufficient pre-commit testing and continuous integration (CI) tools can be quite
useful to achieve this;

• A strict review process that the committers can perform;
• The use of tools to simplify work and reduce errors, automated tests can benefit

the review process.

Implementing the Multiple-Committer Model requires certain safeguards to en-
sure that expanding the pool of people who can apply patches does not compromise the
quality of the project. Overloaded subsystems with trustworthy candidate committers are
particularly suited for adopting this model. To effectively apply the MCM, several best
practices have been identified in the academic literature [Tan et al. 2020].



First, it is crucial to train potential committers as early as possible and to encour-
age developers to make code review a routine part of their daily work. Setting strict but
flexible requirements for the qualification of committers is also important. Communities
can encourage developers to review code by having reviewers sign their names in commit
messages, which records their contribution and tracks responsibility. Code review should
be a key factor in evaluating individual contributions, and in projects with high technical
thresholds, maintainers should establish procedures to identify and train potential com-
mitters early to avoid a shortage of capable individuals.

Trust between maintainers and committers is essential for the MCM to function
effectively. Committers must earn the maintainers’ trust by consistently performing qual-
ity work. Additionally, sufficient pre-commit testing is fundamental to maintaining the
quality of accepted patches and minimizing the risk of introducing bugs or errors.

A clear and strict review process should be in place, ensuring that committers
adhere to it and do not show favoritism towards patches from friends or coworkers. Uti-
lizing tools that simplify the work and reduce errors is another best practice. For example,
the i915 module (DRM subsystem) uses “dim” 3 to provide functionalities that make the
workflow more straightforward for maintainers and committers. Finally, all discussions,
decisions, and rules should be open and transparent, ensuring the process remains fair and
accountable.

In short, this emerging model can potentially mitigate the previously mentioned
problems. As seen in its implementation on the i915, it can reduce the maintainers’ work-
load. At the same time, it reduces latency for patch response and increases the capacity
to incorporate code. Still, to work, it needs to fulfill a series of pre-requirements that
will provide some insurance so that the code quality will not drop due to less experienced
people being able to apply patches.

4. Grey Literature Review

The selection of grey literature proved to be more challenging, primarily because we could
not rely on robust search engines like those available in research publisher databases.
Unlike our SMS, this process resulted in more extensive search results. However, by
following the guidelines from [Wen et al. 2020], we established a robust method for iden-
tifying relevant material. We began by searching through the most pertinent repositories
related to Linux Kernel development, such as Linux Weekly News (lwn.net) and the
Linux Foundation (linuxfoundation.org). Additionally, we consulted blogs main-
tained by key persons like Simma Vetter (blog.ffwll.ch) and Greg Kroah-Hartman
(kroah.com/linux/).

Since some sources lacked direct search engines, we initially relied on custom
Google searches, focusing on results strictly from these sites. Subsequently, we broad-
ened our search to include results from other sites, but only those containing the exact
keywords we were targeting. This approach yielded a substantial number of findings.
However, because the grey literature texts were generally shorter than those in the system-
atic mapping study, we could quickly filter them. We skimmed titles and briefly reviewed
the context in the initial step, eliminating most irrelevant results. During the final step of

3https://drm.pages.freedesktop.org/maintainer-tools/dim.html



reading the full texts, we concluded our filtering process, identifying 19 relevant results4.

As with the SMS, both single maintainer and group maintainership models are
discussed in the grey literature, and the characteristics of these models are somewhat
equal to the ones we found in the SMS. However, here we were able to identify that
group maintainership models can have different approaches, such as the hands-off model,
the delegation model, and the multiple-committer model, thus providing a more detailed
view of how these models are implemented in the community, which was not available in
the academic literature.

Both maintainers and developers use informal ways to publish text related to prob-
lems they encounter in their day-to-day experience in the kernel community. Therefore,
the data in these media was crucial to highlight the state of the Kernel Linux commu-
nity in a way that was not available in the academic format. [Tan et al. 2020] captured
some of the discussions, but we could also extend our knowledge of the challenges that
maintainers are dealing with more directly.

4.1. Challenges within the Community

Many members of the Linux kernel community have reported various issues that nega-
tively impact project development and collaboration. A significant challenge is the pres-
ence of toxic individuals within the community. There is a widespread perception that
too many members exhibit toxic behavior toward others. For instance, one community
member observed that “pretty much every subsystem has its local toxic person.” These
individuals often possess specialized knowledge, making them irreplaceable and granting
them undue influence over the rest of the community [Edge 2018].

Another critical problem is the lack of documentation, which poses a significant
barrier for newcomers who struggle to contribute to the project due to the steep learn-
ing curve. This issue also threatens project continuity, as knowledge is not adequately
shared among community members [Edge 2018]. Closely related to this is the problem
of knowledge propagation. Tools, tests, and vital information are often kept by maintain-
ers rather than shared, making these maintainers unreplaceable and further concentrating
power within the project [Edge 2018].

The difficulty in enacting change is another issue, as even those who believe
changes are necessary are often afraid to take action for fear of public shaming if some-
thing goes wrong. This fear leads to maintainers’ more controlling approach to devel-
opment, making it harder to implement new maintainership models [Edge 2018]. Fur-
thermore, the succession process within the community lacks clarity. There is generally
no succession plan for relinquishing the maintainer role, making finding new maintainers
challenging. Some former maintainers suggest creating a vacuum might be an effective
exit strategy, as it could force experienced developers to take on the role. However, this
challenging process has resulted in maintainers struggling to keep up with the overall
growth of the kernel. If current trends continue, many Linux kernel maintainers may
become bottlenecks within their subsystems [Edge 2016, Vetter 2018].

The lack of proper review is another concern, with patches not being thoroughly
reviewed before acceptance [Corbet 2013]. Additionally, there is an abuse of power,

4Our replication package is available at https://zenodo.org/records/13345129



where those in positions of authority do not hold themselves to the same standards as
they do others. For example, self-commits by maintainers, where the patch author and
committer are the same person, often go unreviewed [Vetter 2018]. Another worrying
issue is the existence of maintainerless subsystems. There are 367 subsystems without a
maintainer or where the maintainer has never been active in the Git history. Many of these
subsystems may point to obsolete code that could be removed, such as drivers for devices
no longer in use [Corbet 2021].

The workload of current maintainers in the Linux kernel community is becoming
increasingly overwhelming, as they are responsible for reviewing and applying numerous
patches, leaving them with little time to contribute their own. Greg Kroah-Hartman high-
lighted recurring issues with submitted patches that unnecessarily increase maintainers’
workload, including incomplete patch series, patches arriving out of order, and those with
email signatures marked as confidential, which are not acceptable in the open nature of
kernel development. Other issues involve patches that do not adhere to the project code
style, are created in the wrong directory, do not compile, or are sent to the wrong main-
tainer despite the availability of tools to help avoid such errors – overly large patches also
present challenges, as incremental changes are more accessible to review.

Kroah-Hartman reported receiving 487 patches in just two weeks during what he
described as a “calm two weeks,” illustrating the intense workload maintainers face. This
repetitive and sometimes frustrating work can lead to what Tim Bird calls the “Main-
tainer’s Paradox,” where maintainers are excited about new contributions but feel over-
whelmed by the volume of patches requiring careful review and feedback. Trond Mykle-
bust, the NFS client subsystem maintainer, described the multifaceted role of a maintainer
as encompassing five key responsibilities: software architect, developer, patch reviewer,
patch committer, and software maintainer. Wolfram Sang, the I2C subsystem maintainer,
expressed concern that the number of maintainers is not keeping pace with the increas-
ing volume of patches. Although no immediate collapse has been predicted, Sang’s data
shows that the problem is already present, with increasing latency in subsystems and the
potential for accepting questionable patches. He forecasts that these issues will worsen
over time. During the 3.0 to 3.10 release period, the number of patch authors rose by about
200, while the number of reviewers remained largely static, highlighting the growing gap
between authors and reviewers, underscoring the scaling problem that maintainers face.

4.2. Group Maintainership Models
Some subsystems implement new models to handle the contribution process and mitigate
several problems related to the kernel maintainership process. These models are intended
to help maintainers not burn out, providing a better way to balance the workload. They
can prevent issues with personal availability and are also a great way to develop new
maintainers [Corbet 2016]. Table 1 shows the subsystems and the models they have ap-
plied.

However, introducing changes is quite challenging in the kernel community, pri-
marily because of its size. Changing the maintainer’s culture is proving to be a challenge
that will be around in the kernel for a long time and maybe define if the project will keep
growing or fail in the future [Corbet 2018]. We have identified a few approaches for these
group maintainership models deployed in some subsystems. For instance, X86 Platform
Drivers, ARM/ARM64 SoC, and the graphics subsystem (DRM) [Vetter 2017].



Subsystem Maintainership model Module
DRM multiple committer i915 graphics driver
ARM and ARM64 SoC hands-off SoC sub-architectures
Power Management delegation not specified
Media multiple committer not specified
X86 Platform Drivers multiple committer not specified

Table 1. Maintainership models by subsystem

Darren Hart, an X86 Platform Drivers subsystem maintainer, identified the
Hands-off model, where maintainers manage a single repository using an IRC channel
to “lock” the repository (to avoid concurrency problems). When changes are ready to be
applied, they also keep a log of the changes made so the other maintainers can always see
what was done. It is currently being used on the arm-soc tree [Corbet 2016].

Darren also explained the Delegation model, which is mainly deployed in subsys-
tems that use patchwork 5 (patch management subsystem). The patchwork can delegate
the handling of each patch to a specific maintainer, automatically working as the load
balance for these maintainers. Some subsystems that are using patchwork are the Media
and the Power-Management subsystems [Corbet 2016].

Vetter also explains that the Multiple-committer model differs from the models
above as it introduces the concept of the committer, a developer with writing rights to the
repository. They are not maintainers as they do not perform some of the “maintainers”
tasks, such as externally communicating with other subsystems and taking the blame for
mistakes. Still, they help review and accept the patch process. It is used in the i915
graphics driver (DRM subsystem) [Corbet 2016].

Vetter, through a series of scripts gathering data from the Linux kernel releases,
shows that the Graphics subsystem, which has been using group maintainership models
for some time now, does have a higher percentage of maintainers self-commits, 40%
against below 30% found in the overall kernel [Vetter 2018]. However, it has a much
higher rate of reviewed self-commits, getting to over 80% of patches being reviewed
against 40% on the rest of the Linux kernel, suggesting that the model could incorporate
more committers without increasing the number of unreviewed patches. This strategy
also directly helps the process of training new maintainers, as more people participate in
the process.

5. Concluding Remarks

Our multivocal literature review explored academic literature and materials published by
Linux kernel practitioners, focusing on the growing problem of overworked maintainers
and the inadequate scaling of the maintainership workforce to meet demand. We identified
new approaches to contribution management in the Linux kernel, particularly the group
maintainership model.

Our findings addressed RQ1 (What are the characteristics of the subsystems com-
munities implementing the group maintainership model? What differentiates them from

5http://jk.ozlabs.org/projects/patchwork/



other subsystems?) by identifying key characteristics of subsystems that have success-
fully implemented group maintainership models, such as having recurrent contributors,
sufficient pre-commit testing, and a well-defined contribution process. In response to
RQ2 (Which aspects of the group maintainership model differ from the traditional pro-
cess of reviewing and accepting patches in the Linux kernel?), we highlighted the new
contribution processes and their differences from the single maintainer model.

The systematic mapping study revealed that the literature recognizes the main-
tainership workload issue. We identified a new maintainership model – the multiple-
committer model – that aims to address this problem and support the project growth,
suggesting that further research is necessary to understand its potential fully. Our grey
literature review provided an understanding of the ongoing concern over the maintainers’
workload. We also identified new maintainership approaches and the subsystems adopting
these strategies.

Throughout our research, the DRM subsystem emerged as a prominent example of
successfully implementing the group maintainership model within the Linux kernel. Our
SMS and GLR provided evidence that the DRM subsystem had advanced in adopting
a multiple-committer model. This model allows maintainers to take breaks from their
duties without stalling development, reducing their workload and increasing the number
of contributions to the driver. The Media subsystem is also in the process of adopting
the multiple-committer model. Although this transition is ongoing, some of our findings
about the requirements for this model have proven accurate, as the Media subsystem
maintainers are waiting for a robust pre-commit testing infrastructure to be in place before
granting regular contributors commit access.

Regarding the potential limitations and threats to the validity of our work, we
may have missed relevant papers in our systematic mapping study, and searching for
information in grey literature, such as other blog posts, forums, and mailing lists, posed
challenges in identifying the most pertinent details. While we employed a methodical
approach, some relevant information might have been overlooked.

Finally, the Linux kernel community constantly evolves; since workload is a re-
current problem, we understand that the maintainership model will continue to mature.
Group maintainership seems to be a reasonable solution for the workload problem, but
it is not a “silver bullet”. In an extended version of this study, we can discuss how the
group maintainership model improves the maintainership process, helping to reduce the
maintainers’ workload. We already have evidence that adopting the multiple-committer
model reduces the workload of maintainers in subsystems, based on evidence from our
multivocal literature review; moreover, we have data from community members (that we
did explore in this paper because of the limit of pages). Also, more research is needed as
more subsystems adopt group maintainership models and new challenges arise. We also
recommend conducting more research to understand the challenges maintainers face and
how the group maintainership approach will evolve.

Acknowledgments
This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq
proc. 465446/2014-0, CAPES – Finance Code 001, and FAPESP procs. 14/50937-1 and
15/24485-9. We also thank the support of FAPESP proc. 2023/00811-0.



References

Bettenburg, N. and Hassan, A. E. (2012). Studying the impact of social interactions on
software quality. Empirical Software Engineering, 18(2):375–431.

Capiluppi, A. (2003). Models for the evolution of os projects. pages 65–74.

Corbet, J. (2013). On saying ”no”.

Corbet, J. (2016). Group maintainership models.

Corbet, J. (2018). The code of conduct at the maintainers summit.

Corbet, J. (2021). Maintainers truth and fiction.

Corbet, J., Kroah-Hartman, G., and Rubini, A. (2005). Linux device drivers. O’Reilly.

Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012). Free/libre open-source
software development. ACM Computing Surveys, 44(2):1–35.

Edge, J. (2016). On moving on from being a maintainer.

Edge, J. (2018). Too many lords, not enough stewards.

Fogel, K. (2005). Producing Open Source Software: How to Run a Successful Free
Software Project. O’Reilly Media, Inc.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2019). Guidelines for including grey litera-
ture and conducting multivocal literature reviews in software engineering. Information
and Software Technology, 106:101–121.

Kon, F., Meirelles, P., Lago, N., Terceiro, A., Chavez, C., and Mendonca, M. (2011).
Free and open source software development and research: Opportunities for software
engineering. In 2011 25th Brazilian Symposium on Software Engineering, pages 82–
91.

Lindberg, A., Xiao, X., and Lyytinen, K. (2014). Theorizing modes of open source soft-
ware development. In 2014 47th Hawaii International Conference on System Sciences,
pages 4568–4577.

McManus, E. (2016). The quotable Linus Torvalds, live onstage at TED.

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49.

Rigby, P. C., German, D. M., Cowen, L., and Storey, M.-A. (2014). Peer review on
open-source software projects: Parameters, statistical models, and theory. ACM Trans.
Softw. Eng. Methodol., 23(4).

Shaikh, M. and Henfridsson, O. (2017). Governing open source software through coordi-
nation processes. Inf. Organ., 27(2):116–135.

Statt, N. (2018). Linus torvalds returns to linux development with new code of conduct
in place.

Tan, X. and Zhou, M. (2022). Scaling open source software communities: Challenges
and practices of decentralization. IEEE Software, 39(1):70–75.



Tan, X., Zhou, M., and Fitzgerald, B. (2020). Scaling open source communities: An
empirical study of the linux kernel. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ICSE ’20, page 1222–1234, New York,
NY, USA. Association for Computing Machinery.

Torvalds, L. (2007). Re: Dual-licensing linux kernel with GPL v2 and GPL v3.

Torvalds, L. (2018). Linux 4.19-rc4 released, an apology, and a maintainership note.

Vetter, D. (2017). Maintainers don’t scale.

Vetter, D. (2018). Linux kernel maintainer statistics.

Wen, M., Leite, L., Kon, F., and Meirelles, P. (2020). Understanding floss through
community publications: strategies for grey literature review. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’20, page 89–92, New York, NY, USA. Association for
Computing Machinery.

Wen, M. S. R. (2021). What happens when the bazaar grows: a comprehensive study on
the contemporary Linux kernel development model. PhD thesis.


