
What Developers Ask to ChatGPT in GitHub Pull Requests?
an Exploratory Study

Julyanara R. Silva1, Carlos Eduardo C. Dantas1, Marcelo A. Maia2

1Instituto Federal de Ciência e Tecnologia do Triângulo Mineiro (IFTM)
Campus Uberlândia Centro – Uberlândia, MG – Brazil

2Universidade Federal de Uberlândia (UFU) – Uberlândia, MG – Brazil

{julyanara.silva@estudante.,carloseduardodantas@}iftm.edu.br, marcelo.maia@ufu.br

Abstract. The emergence of Large Language Models (LLMs), such as ChatGPT,
has introduced a new set of tools to support software developers in solving pro-
gramming tasks. However, our understanding of the interactions (i.e., prompts)
between developers and ChatGPT that result in contributions to the codebase
remains limited. To explore this limitation, we conducted a manual evaluation of
155 valid ChatGPT share links extracted from 139 merged Pull Requests (PRs),
revealing the interactions between developers and reviewers with ChatGPT that
led to merges into the main codebase. Our results produced a catalog of 14
types of ChatGPT requests categorized into four main groups. We found a sig-
nificant number of requests involving code review and the implementation of
code snippets based on specific tasks. Developers also sought to clarify doubts
by requesting technical explanations or by asking for text refinements for their
web pages. Furthermore, we verified that prompts involving code generation
generally required more interactions to produce the desired answer compared
to prompts requesting text review or technical information.

1. Introduction

In recent years, several large-scale language models (LLMs) based on the Trans-
former architecture have emerged [Vaswani et al. 2017]. A notably recent and prominent
model is ChatGPT 1, which is a state-of-the-art language model developed by OpenAI
[Radford et al. 2018]. Although ChatGPT was designed for natural language processing
tasks, it also offers potential in providing solutions in software development environment.
For example, developers can ask ChatGPT for code to solve a specific programming task
or provide a detailed explanation of some concept [Ernst and Bavota 2022].

Despite the relatively recent emergence of LLMs, their growing use in reposito-
ries such as GitHub have been documented. There are numerous mentions of ChatGPT
in commits, Pull Requests (PRs), and even source code comments where ChatGPT pro-
vided a solution that was employed by developers [Xiao et al. 2024]. Recent studies have
also demonstrated that ChatGPT has been particularly useful for performing program-
ming tasks such as refactoring operations into their source code, fix bugs, and others
[Tufano et al. 2024], presenting an alternative by generating possibly original answers,
including modified versions from developers source code [Ebert and Louridas 2023].

1https://openai.com/blog/chatgpt



However, some previous works evaluated the use of ChatGPT in a more general
manner, i.e., in commits, issues, (open, closed and merged) PRs, discussions, which re-
sults in a mixture of ChatGPT usage that do not specifically focus on contributions to the
codebase. For instance, by evaluating the use of ChatGPT specifically for merged PRs in
a peer code review process, we are focusing on scenarios where the proposed changes by
developers were generally accepted by the reviewers. This approach ensures that we are
capturing instances where ChatGPT assistance could led to tangible contributions in the
GitHub repository, thereby providing a more specific and refined sample.

Another limitation to address involves in effectively evaluating the interactions
(i.e., prompts) between developers and the ChatGPT to generate the desired solu-
tion, as single-query responses from LLMs might not fully address the developer’s
needs. LLMs mantains a context window, and these interactions involve refining and
expanding the dialogue until the model generates an accurate and helpful response
[Ebert and Louridas 2023, Mondal et al. 2024]. We envision that understanding what de-
velopers ask in these prompts and evaluate the number of prompts may help leveraging
the use of LLMs in programming tasks.

In this study, our objective is to evaluate the prompts performed by developers and
reviewers in 155 valid ChatGPT share links extracted from 139 merged PRs across 115
GitHub repositories, revealing the interactions between developers and reviewers with
ChatGPT. Our study provides the following contributions:

1. A catalog of 14 types of requests performed on ChatGPT, categorized into four
main groups. This catalog provides insights into the various types of interactions
between developers and ChatGPT, particularly focusing on their collaboration to
find solutions to programming tasks.

2. An analysis of how the number of prompts required to find the solution varies
across different categories of requests made by developers and reviewers to Chat-
GPT.

3. The replication package that includes the data and scripts, which can be used for
future research [Silva et al. 2024].

The paper is organized as follows. Section 2 presents the methodology to answer
the research questions. The results are reported and discussed in Section 3. Section 4
presents the threats that could affect the validity of this study. Section 5 presents the
related literature. Finally, Section 6 summarizes our observations and outlines directions
for future work.

2. Methodology

The study is driven by two main research questions:

• RQ #1) What do developers request on ChatGPT to solve Pull Requests?
This RQ aims to understand and categorize the prompts provided by developers
to ChatGPT, using the share links cited in the merged PRs. Therefore, instead
of searching for mentions of “ChatGPT” keyword in GitHub as done in previous
works [Tufano et al. 2024], we focused only on merged PRs where developers
shared links exposing their interactions with ChatGPT.



• RQ #2) What is the distribution of the size of the interaction (#prompts)
with ChatGPT to get the desired answer? This RQ aims to examine the
iterative process between the developer and ChatGPT, focusing on the dia-
logue until the model generates an accurate and helpful response. The quality
of the prompts influences developers’ performance during programming tasks
[Ebert and Louridas 2023, Mondal et al. 2024].

In the following subsections, we detail how we selected the samples (Section
2.1), performed the manual evaluation (Section 2.2), and obtained the distribution of the
prompts (Section 2.3).

2.1. Mining Candidate Merged Pull Requests (PRs)

The goal of this step is to identify potential merged PRs where ChatGPT was likely
used to assist developers. We began by writing a script that utilized the GitHub
GraphQL API2 to query for non-forked merged PRs, mentioning the ChatGPT share link:
“chat.openai.com/share”. We first executed this query in May 2024 to collect and work
with the initial samples and then executed it again in July 2024 to capture any additional
samples, completing the dataset. To avoid toy repositories, we filtered for non-forked
repositories with at least 10 stars, as defined in previous work [Dabic et al. 2021]. The
output of this step returned 302 candidate merged PRs.

Next, we performed manual filtering to discard as many false positives as possible:

1. 97 merged PRs where the ChatGPT share link was not found in the PR title, body,
comments, commit messages or code diffs.

2. 29 merged PRs with broken or invalid ChatGPT share links (e.g., error 404).
3. 25 merged PRs written in non-english languages.
4. 12 merged PRs without any reviewer (e.g., the developer themselves opened the

PR and merged it without receiving any feedback on their modification)

This process resulted in a final set of 155 valid ChatGPT share links (instances)
from 139 merged PRs across 115 distinct repositories. Figure 1 illustrates the distribu-
tion of stars, contributors and main programming languages among these repositories.
Although it might be expected to find more candidate PRs, our work required specific
filters, as mentioned. For comparison, the DevGPT dataset, in its latest snapshot (2023-
10-12), includes 265 PRs, which do not include the specific filters applied in our work
[Xiao et al. 2024].

2.2. Characterizing the Requests for ChatGPT Assistance

This step aims to address RQ #1 by characterizing what developers requests for ChatGPT
assistance in the 155 instances found in merged PRs. Two evaluators (authors of this
paper) conducted the manual inspection. Each instance was independently reviewed by
each evaluator, analysing the links: (i) a link to the GitHub merged PR (ii) a link to the
ChatGPT share link provided inside the PR.

The categorization involve separately assigning one or more labels to classify the
types of requests using the open coding process [Spencer and Garrett 2009]. These labels

2https://docs.github.com/en/graphql



Figure 1. Distribution of number of stars, contributors and programming lan-
guages among the selected repositories.

represent the main topics developers require in the ChatGPT prompts. Figure 2 illustrates
an example. In this case, the extracted labels were explain the source code and fix the
source code, as ChatGPT provided an explanation of what the code is doing and fixed
the error by setting the job to run once every six hours from Monday to Friday. These
labels result in two distinct candidate types of requests. To maintain consistency in label-
ing, evaluators shared and reviewed their labels in a common repository throughout the
analysis.

Figure 2. Example of ChatGPT prompt extracted from Merged PRs

After the first round, the evaluators met to revise the set of defined labels, merging
similar labels and renaming unclear ones. For example, one evaluator created two distinct
labels for fixing warnings and fixing errors, and shared these with another evaluator. The
other evaluator preferred to merge fixing warnings and errors into a single label. After the
meeting, both evaluators agreed that fixing warnings and errors were similar approaches



and could be merged into one label.

The evaluators also found conflicts in open coding category for 25 cases (approx-
imately 15% of instances). This percentage was expected because we evaluate a large
set of prompts across many different programming languages and technologies, lead-
ing to discrepancies in extract the labels. Some related works generally produces qual-
itative analyses in specific topics such as readability [Dantas et al. 2023a], refactoring
[Silva et al. 2016, Pantiuchina et al. 2020] and others. These cases were reclassified into
new topics during the revision process. For example, some instances previously labeled
as Technical Explanation were re-evaluated by both evaluators and agreed to be better
categorized as Technical Support, resulting in a new type of ChatGPT request.

The 14 labels defined through the above-described process were used to categorize
the types of ChatGPT requests made by developers. The evaluators then grouped similar
types of requests with analogous purposes to create the initial taxonomy. This first draft
described the various purposes of ChatGPT requests, such as code review, text review,
etc. The authors subsequently refined the taxonomy by renaming certain categories and
reorganizing sub-categories to enhance clarity. The final version consists in four main
categories.

2.3. Distribution of the prompts with ChatGPT

To address RQ #2, we extracted the number of prompts provided by developers in each
category (Code Review, Information Request, Code Generation, and Text Review) and
compared the distribution of the dependent variable (number of prompts) across the in-
dependent variable (ChatGPT request category). We applied the Kruskal-Wallis test with
a 5% confidence level (i.e., p-value < 0.05) to determine if there were any statistically
significant differences, as the Shapiro-Wilk test indicated non-normality in the distribu-
tions. To identify which specific categories were significantly different from each other,
we conducted a post-hoc analysis using the Dunn test.

3. Results
The results are driven to answer each research question previously mentioned.

3.1. RQ #1) What do developers request on ChatGPT to solve Pull Requests?

Table 1 presents 14 types of requests found in the analyzed ChatGPT responses extracted
from merged PRs, categorized into four distinct categories. It is important to note that the
total count of instances across all tasks (163) exceeds the total number of valid instances
inspected (155). This discrepancy arises because a single instance may have required
ChatGPT’s support for multiple tasks, as illustrated in Figure 2, such as both explaining
and fixing the source code.

3.1.1. Code Generation

This category involves asking ChatGPT to generate code based on the requirements pro-
vided in the prompt. The requirement can be a textual description of what needs to be
done (e.g., “how to do”) or a code snippet requesting ChatGPT to implement something
similar or create a new functionality based on that snippet.



Table 1. ChatGPT requests performed in Merged Pull Requests
Category ChatGPT Request Occurrences Total

Code Generation
How-To Code Snippets 30

61Task Automation Requests 20
Feature Addition to Existing Code 11

Code Review

Fix Bugs and Warnings 18

46
Optimization/Refactoring 13
Explain the Code 8
Test/Debug 5
Performance Analysis 2

Information Request

Technical Explanation 24

42Technical Support 10
Coding Conventions 5
Policy 3

Text Review Grammar and Refinement 10 14Formatting 4
Total 163

How-To Code Snippets (30 out of 61 samples) - In this type of request, developers
asks ChatGPT to produce a code snippet to accomplish a specific task, generally using
“how to do” questions. They may also provide JSON, XML, or database schemas, re-
questing code to manipulate this data. For example, PR #4337 from temporalio/temporal
repository, ChatGPT was asked to create a script that searches for camel case file names
and renames them to snake case. The changed files were then committed into the merged
PR.

Task Automation Requests (20 out of 61 samples) - Developers input source code
into ChatGPT to automate changes and avoid manual effort. For example, in PR #50
from pollen-robotics/rustypot, a link to a manual containing the control table RAM of a
device was provided to ChatGPT, along with a script template. ChatGPT replaced the
values with the correct RAM addresses. In other instances, developers input HTML text,
requesting it to be translated, or ask ChatGPT to create test cases based on their code.

Feature Addition to Existing Code (11 out of 61 samples) - Developers provide a
code snippet and ask ChatGPT to implement a new feature based on it. Typically, they
request ChatGPT to rewrite their code to incorporate the new feature. For example, PR
#5937 from detekt/detekt repository provided ChatGPT with a Kotlin class that checks
for complex conditional expressions.

3.1.2. Code Review

In this category, developers input source code into ChatGPT to act as a code reviewer, an-
alyzing and improving aspects of the code. Typically, the requests involve optimizing per-
formance, identifying bugs, enhancing readability, or validating specific functionalities.
Developers seek either to confirm the correctness of their code or to request modifications
to improve it.



Fix Bugs and Warnings (18 out of 46 samples) - Developers input source code into
ChatGPT to fix issues, warnings, syntax errors, or unexpected crashes. For example, in
PR #50 from poki/netlib, the developer provided a database script asking to fix an error.
ChatGPT identified the bug and rewrote the script to correct it. Another example is a cron
expression fixed, as illustrated in Figure 2.

Optimization/Refactoring (13 out of 46 samples) - Developers input source code
into ChatGPT to optimize performance and perform refactoring operations such as im-
prove clarity, naming and clean up. In PR #16244 from betagouv/beta.gouv.fr, the de-
veloper provided a nginx configuration asking to optimize the code. ChatGPT removed
unnecessary redirections, improve performance and clarity by rewriting directives with
return statements, and improve the client-side caching.

Explain the Code (8 out of 46 samples) - Developers ask ChatGPT to explain each
command in their source code. In PR #177 from roboflow/supervision repository, a re-
viewer used ChatGPT to compare the code implemented by the developer who opened the
PR with a previous version, to check for significant differences in the results. ChatGPT’s
response was used to suggest changes in the PR.

Test/Debug (5 out of 46 samples) - Developers ask ChatGPT to test or debug
their code by providing input values and generating output. For example, in PR #2 from
chitalian/gptask repository, the developer submitted a Python script but noted in the PR
description that it was not tested yet. The reviewer then asked ChatGPT to produce test
commands for the script and shared the response in the PR.

Performance Analysis (2 out of 46 samples) - Developers request ChatGPT to
evaluate the performance of their code, focusing on time or space complexity. For exam-
ple, in PR #5068 from darklang/dark, the developer provided the code snippet, and the
ChatGPT evaluate the performance in time and complexity.

3.1.3. Information Request

In this category, developers generally ask ChatGPT to explain content, much like a
teacher. This content can range from explanations of computing concepts, security poli-
cies, technical support, and code conventions for specific programming languages.

Technical Explanation (24 out of 42 samples) - Developers ask technical questions
related to the software development environment, seeking answers from ChatGPT. These
responses are typically used as arguments in PR discussions between developers and re-
viewers or to justify modifications within the PR. Instead of “how to” questions asking
for code examples, developers commonly ask “what is” questions to better understand
concepts. For example, in PR #30321 from mdn/content repository, the documentation of
a network explanation was changed based on ChatGPT’s response.

Technical Support (10 out of 42 samples) - Support queries generally involve seek-
ing assistance with specific technical issues, which may include command prompts gener-
ating error messages, application icons not appearing, locating files, performing commit
rebase, among others. These do not fall under code generation or review, as they do not in-
volve source code. For example, PR #123 from vrodriguezf/deepvats, the developer asked
ChatGPT how to configure nbdev and git to ignore the outputs of Jupyter Notebooks and



only display the code in the repository.

Coding Conventions (5 out of 42 samples) - Developers ask ChatGPT to provide
a better understanding of specific terms and patterns employed in a specific program-
ming language. For example, PR #22 from ldez/tagliatelle, the developer asked ChatGPT
about the correct format for field names in TOML files: “snake case”, “camelCase”, or
“kebab-case”. The developer used ChatGPT’s response to support their argument with the
reviewer, who had requested a modification of the field names to the ’snake case’ format.”

Policy (3 out of 43 samples) - Developers seek information or advice on manag-
ing and defining policies related to various aspects, such as data retention and backup
strategies. For example, PR #219 from pwncollege/dojo repository, the reviewer started
a discussion about retention policy for backups using ChatGPT’s help, as the developer
proposed daily backups to cloud storage.

3.1.4. Text Review

In this category, developers input a text to ChatGPT asking for review and modifications.
These texts are often documentation of some system functionality.

Grammar and Refinement (10 out of 14 samples) - Developers ask ChatGPT to
refine the text, improving grammar or making the text more concise. Generally, these
texts are from .md or HTML files within the software, explaining technical aspects or
software requirements. For example, PR #300 from daeuniverse/dae the developer asked
ChatGPT to review and refine the grammar of the text, and the output was used to improve
the .md file.

Formatting (4 out of 14 samples) - This subcategory focuses on reviewing and sug-
gesting improvements in text formatting, including the use of tables, lists, bold, italics,
etc., to enhance readability and visual presentation. For example, in PR #15455 from the
netdata/netdata repository, the developer submitted two markdown tables, asking Chat-
GPT which one presented the content better for a GitHub README. ChatGPT chose one
of them and provided justifications for the choice.

RQ #1 Answer: In many cases, developers ask ChatGPT to generate source
code, whether by implementing new features or reviewing the developers’ own
code to help fix bugs and improve overall code quality. However, we also ob-
served instances where developers seek to enhance the quality of text presented
to the end-user, solve technical questions, and obtain technical support, par-
ticularly concerning errors encountered in the prompt when attempting to ex-
ecute scripts from the PRs.

3.2. RQ #2) What is the distribution of the size of the interaction (#prompts) with
ChatGPT to get the desired answer?

Figure 3 illustrates the distribution of the number of prompts performed by developers in
each context window (i.e., share link) with ChatGPT. The “Code Generation” and “Code
Review” categories exhibit a wider range of values, suggesting that more prompts were
used for each ChatGPT link and with greater variability compared to “Information Re-
quest” and “Text Review”.



Figure 3. Distribution of Prompts per Category

Extracting the Kruskal-Wallis on the number of prompts per ChatGPT link
grouped by categories, we obtained p-value = 0.011. This result indicates that there
are significant differences between the distributions of prompts per category. The Dunn
Test found a statistically significant difference between the groups “Code Generation”
and “Information Request,” with a p-value = 0.05, and “Code Generation” and “Text Re-
view” p-value = 0.04, indicating that the number of prompts in these categories differs
significantly. This result suggests that implementing new features, automating tasks and
generate code snippets could result in more effort in prompt engineering for developers
to extract the desired answer.

RQ #2 Answer: We observed that, in general, developers execute more
prompts in the code generation category compared to others. This indicates
that generating source code to be merged into a PR may require more exten-
sive prompt engineering work.

4. Threats to Validity
In this section, we show some threats to the validity of this study.

Generalizability of the Findings: The findings from RQ #1 are specifically cen-
tered on merged PRs from GitHub, which leverage a relatively lower number of samples
due to the recent adoption of ChatGPT in the software development environment. In the
near future, with increased maturity in the use of the tool, new samples may indicate new
behaviors.

Prompt Engineering: The findings from RQ #2 could have occurred for reasons
beyond the type of request, as the quality of the prompts influences developers’ perfor-
mance during programming tasks.

5. Related Work
Three related works have already proposed taxonomies defining the interactions between
developers and ChatGPT on GitHub. Tufano et al. [Tufano et al. 2024] proposed a tax-
onomy describing the automated tasks requested by developers to ChatGPT, categorizing



467 instances (165 commits, 159 PRs, and 143 issues) that mention the ChatGPT key-
word. Our work differs because we restricted our analysis on merged PRs involving at
least two individuals (developer and reviewer), and we focuses on what the developer ask
in the prompt using the ChatGPT link, instead of classify the types of tasks that mention
ChatGPT assistance inside GitHub.

Couchen et al. [Chouchen et al. 2024] and Hao et al. [Hao et al. 2024] both pro-
posed a taxonomy based on shared ChatGPT conversations using the DevGPT dataset
[Xiao et al. 2024], with the former evaluating 243 ChatGPT prompts in PRs and the lat-
ter assessing 210 GitHub PRs and 370 issues. In our work, we chose to create our own
scripts to mine GitHub PRs instead of using the DevGPT dataset, as we filtered only for
merged PRs, repositories with at least 10 stars, involved at least two individuals in a peer
review process, and obtained more recent data (up to July 2024 instead of October 2023
as defined in the DevGPT dataset). This approach allowed us to obtain a more refined
dataset to achieve our results.

Although ChatGPT is a recent tool, the evaluation of code generation model qual-
ity has attracted attention from researchers. For instance, recent studies have shown that
ChatGPT can successfully generate test cases that induce failures when focused on nu-
anced aspects [Li Tsz On 2023], and it can outperform the state-of-the-art Code Reviewer
tool in code refinement tasks [Qi Guo 2024]. While these studies do not propose similar
outcomes, they underscore the importance of understanding developer interactions with
ChatGPT, as it has proven effective in various tasks. Additionally, Dantas et al. found
that ChatGPT can generate didactic and high-quality code snippets that are often easier to
read than those produced by humans on Stack Overflow [Dantas et al. 2023b].

6. Conclusion

In this study, we aim to qualitatively understand what developers request from ChatGPT
in the context of PRs that contain modifications accepted by reviewers. We observed that
more than half of the requests involve generating source code as output, whether it be
implementing a new feature requested by the developer, improving existing code, fixing
bugs, explaining what the code does, or even evaluating code´s performance. However,
there is also a considerable number of samples where developers ask ChatGPT to en-
hance the quality of the text presented in the front-end application, as well as provide
support for commands or explain complex software engineering concepts. In most cases,
we found that the solutions offered by ChatGPT contributed to the PR, either in the com-
mitted source code or as clarifications within the PR discussions between developers and
reviewers. We also noted that when developers request code generation, the number of
prompts increases significantly, indicating that producing useful code for the production
environment may require additional prompt engineering.

This work has several areas for future improvements. For example, instead of
solely examining what developers ask ChatGPT, one could also evaluate the reasons be-
hind the questions, i.e., the context in which they were requested within merged PRs. An-
other interesting aspect would be to analyze rejected PRs that included assistance from
ChatGPT, aiming to classify scenarios where ChatGPT’s help may have been insufficient.
Additionally, prompt outliers, such as instances where developers needed to ask multiple
questions to obtain their desired answers, should also be analyzed.



References
Chouchen, M., Bessghaier, N., Begoug, M., Ouni, A., AlOmar, E. A., and Mkaouer,

M. W. (2024). How do software developers use chatgpt? an exploratory study on
github pull requests.

Dabic, O., Aghajani, E., and Bavota, G. (2021). Sampling projects in github for msr stud-
ies. 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), pages 560–564.

Dantas, C. C., Rocha, A. M., and Maia, M. A. (2023a). How do developers improve
code readability? an empirical study of pull requests. In 2023 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 110–122, Los
Alamitos, CA, USA. IEEE Computer Society.

Dantas, C. E., Rocha, A. M., and Maia, M. A. (2023b). Assessing the readability of
chatgpt code snippet recommendations: A comparative study. In Proceedings of the
XXXVII Brazilian Symposium on Software Engineering, SBES ’23, page 283–292,
New York, NY, USA. Association for Computing Machinery.

Ebert, C. and Louridas, P. (2023). Generative AI for software practitioners. IEEE Soft-
ware, 40:30–38.

Ernst, N. A. and Bavota, G. (2022). AI-driven development is here: Should you worry?
IEEE Software, 39(2):106–110.

Hao, H., Hasan, K. A., Qin, H., Macedo, M., Tian, Y., Ding, S. H. H., and Hassan, A. E.
(2024). An empirical study on developers shared conversations with chatgpt in github
pull requests and issues.

Li Tsz On, Wenxi Zong, Y. W. H. T. Y. W. S.-C. C. J. K. (2023). Nuances are the key:
Unlocking chatgpt to find failure-inducing tests with differential prompting. In Inter-
national Conference on Automated Software Engineering.

Mondal, S., Bappon, S. D., and Roy, C. (2024). Enhancing user interaction in ChatGPT:
Characterizing and consolidating multiple prompts for issue resolution. In Proceedings
of the International Conference on Mining Software Repositories (MSR 2024).

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G., and
Penta, M. D. (2020). Why developers refactor source code: A mining-based study.
29(4).

Qi Guo, Junming Cao, X. X. S. L. X. L. B. C.-X. P. (2024). Exploring the potential of
chatgpt in automated code refinement: An empirical study. In International Conference
on Software Engineering.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2018). Language
models are unsupervised multitask learners.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we refactor? confessions of
github contributors. CoRR, abs/1607.02459.

Silva, J. R., Dantas, C. E. C., and Maia, M. A. (2024). What Developers Ask to ChatGPT
in GitHub Pull Requests? an Exploratory Study. https://doi.org/10.5281/
zenodo.13346101.



Spencer, D. and Garrett, J. (2009). Card Sorting: Designing Usable Categories. Rosen-
feld Media.

Tufano, R., Mastropaolo, A., Pepe, F., Dabić, O., Penta, M. D., and Bavota, G. (2024).
Unveiling ChatGPT’s usage in open source projects: A mining-based study.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need.

Xiao, T., Treude, C., Hata, H., and Matsumoto, K. (2024). Devgpt: Studying developer-
chatgpt conversations. In Proceedings of the International Conference on Mining Soft-
ware Repositories (MSR 2024).


