
Análise e Caracterização de Ferramentas Automatizadas de
Refatoração

Matheus Machado de O. Andrade, Samara Martins Ferreira, Cleiton Silva Tavares,
Leonardo Cardoso, Laerte Xavier, Lucila Ishitani

Bacharelado em Engenharia de Software – PUC Minas
Belo Horizonte – MG – Brasil

{andradematheusse,mferreira.samara}@gmail.com,
{cleitontavares,leonardocardoso,laertexavier,lucila}@pucminas.br

Abstract. Automated refactoring is an increasingly common practice in the soft-
ware development process. However, the effectiveness of using artificial intelli-
gence for this purpose is still unclear. Therefore, this study evaluates the GPT-
4.5 and Claude 3.7 Sonnet for automated refactorings. The research focuses on
the application of these tools to the jparse system, aiming to measure their ef-
ficiency and applicability. The evaluation involved quantitative and qualitative
analyses of 816 refactorings, generating eight criteria for evaluating these tools
in real-world scenarios. The results showed that the tools perform better when
applied to smaller scopes and when the type of refactoring to be performed is
specifically guided.

Resumo. Refatoração automatizada é uma prática cada vez mais comum no
processo de desenvolvimento de software. Porém, ainda não está claro a eficácia
do uso de inteligência artificial para esse propósito. Sendo assim, este estudo
avalia o GPT-4.5 e o Claude 3.7 Sonnet para refatorações automatizadas. A
pesquisa concentra-se na aplicação dessas ferramentas ao sistema jparse, vi-
sando medir sua eficiência e aplicabilidades. A avaliação envolveu análises
quantitativas e qualitativas de 816 refatorações, gerando oito critérios para
avaliação dessas ferramentas em cenários reais. Os resultados mostraram que
as ferramentas possuem um melhor comportamento quando aplicadas a esco-
pos menores e direcionamento da refatoração a ser feita.

1. Introdução

Refatoração é o processo de modificar a estrutura interna de um software sem al-
terar seu comportamento externo, visando melhorar sua legibilidade, manutenibili-
dade e design interno [Fowler 2018]. Técnicas como extração de métodos e extração
de classes são amplamente utilizadas nesse contexto por facilitarem a modularização
e a redução da complexidade [Valente 2020]. Essas atividades ocorrem durante a
evolução do software e, quando feitas manualmente, são complexas, demoradas e sus-
cetı́veis a erros [Mealy and Strooper 2006]. O uso de ferramentas automatizadas de
refatoração auxilia os desenvolvedores, reduzindo esses problemas do processo manual
[Eilertsen and Murphy 2021b].

Com o avanço de modelos de linguagem, surgiram ferramentas que aplicam
refatorações com o suporte de inteligência artificial, como o GPT-4.5 e o Claude 3.7
Sonnet. Estudos como os de Almogahed et al. (2023) e Ivers et al. (2022) demonstram
o uso de Large Language Models (LLMs) em atividades de engenharia de software, in-
cluindo refatoração automatizada. Desse modo, a formulação adequada dos prompts tem
papel central nesse processo. Estratégias como Persona Pattern, Template Pattern e o uso
de embeddings são citadas na literatura como formas de estruturar comandos mais claros
e efetivos para os modelos [White et al. 2023]

Embora tragam benefı́cios, estudos anteriores apontam limitações
nas ferramentas de refatoração, como problemas de suporte e usabilidade
[Mealy and Strooper 2006], e a falta de previsibilidade que gera insegurança nos
desenvolvedores [Eilertsen and Murphy 2021b] e dificuldades com grandes bases de
código [Ivers et al. 2022]. Contudo, esses trabalhos não fizeram uma comparação sis-
temática das ferramentas de refatoração com IA, deixando um espaço para investigação.
Avaliar essas ferramentas é essencial para garantir suporte adequado ao ambiente de
desenvolvimento [Mealy and Strooper 2006]. Compará-las permite orientar seu uso, de-
monstrar eficiência e avaliar confiabilidade na refatoração [Eilertsen and Murphy 2021b].
Além disso, confrontar suas capacidades auxilia na definição de propósitos e na
identificação da necessidade de métodos complementares.

O objetivo geral deste estudo é analisar o comportamento de ferramentas de
refatoração automatizada baseadas em inteligência artificial, considerando seu impacto
nas métricas estruturais de código e em aspectos qualitativos das refatorações, e propor
um conjunto de critérios para avaliar essas refatorações a partir da comparação entre GPT-
4.5 e Claude 3.7 Sonnet. Para avaliar os impactos das refatorações, este estudo utiliza um
conjunto consolidado de métricas de projeto orientado a objetos amplamente discutidas
na literatura, como aquelas propostas por Chidamber e Kemerer (1994), que abrangem
aspectos de complexidade, coesão e acoplamento em nı́vel de classe. Tais métricas têm
sido empregadas extensivamente em pesquisas empı́ricas como indicadores quantitativos
da qualidade estrutural de sistemas orientados a objetos, contribuindo para a análise obje-
tiva dos efeitos de técnicas de refatoração estruturais, como Extração de Classe e Extração
de Método [Chidamber and Kemerer 1994].

Os experimentos envolveram 816 refatorações no sistema jparse, sendo 327 exe-
cutadas pelo GPT-4.5 e 489 pelo Claude 3.7 Sonnet. Como resultado foram propostos 8
critérios para a análise da eficácia das refatorações, 4 qualitativos e 4 quantitativos.

A Seção 2 discute trabalhos relacionados, destacando avaliações e limitações des-
sas ferramentas. A Seção 3 detalha a metodologia, incluindo seleção das ferramentas,
dataset e critérios de avaliação. As seções 4 e 5, respectivamente, apresentam e discutem
os resultados obtidos, comparando o desempenho conforme os critérios estabelecidos.
Por fim, a Seção 7 traz as conclusões, ressaltando os principais achados e sugestões para
trabalhos futuros.

2. Trabalhos Relacionados
Almogahed et al. (2023) investigaram os impactos de refatorações, como adição de
parâmetros e extração de classes, na qualidade do software, mostrando que o efeito va-
ria conforme o tamanho do sistema e as ferramentas usadas. O estudo destaca a in-

fluência de ferramentas automatizadas como JDeodorant e Eclipse Refactor na eficácia
da refatoração. Embora compare refatorações em diferentes ferramentas, esse estudo não
oferece recomendações para realizá-las.

Por sua vez, Ivers et al. (2022) entrevistaram 107 desenvolvedores da indústria
para investigar o uso de ferramentas de refatoração em larga escala. O estudo revelou
que, apesar do interesse em refatorar sistemas monolı́ticos para melhorar a manuteni-
bilidade e migrar para arquiteturas modernas, as ferramentas atuais não suportam essas
refatorações maiores. Diferentemente deste estudo, não exploraram comparações entre
soluções eficazes para esse contexto.

Além disso, na abordagem de Eilertsen e Murphy (2021) foi proposto um mo-
delo de refatoração em etapas, permitindo que desenvolvedores apliquem transformações
graduais e tenham maior controle, solucionando problemas de usabilidade das ferramen-
tas tradicionais, como alterações atômicas prematuras. Contudo, o estudo limita-se ao
paradigma tradicional, sem considerar ferramentas com inteligência artificial.

O estudo de Mealy e Strooper (2006) avaliaram seis ferramentas Java usando o
método DESMET para identificar limitações em critérios de refatoração e usabilidade. O
estudo mostrou deficiências significativas no suporte ao processo e na usabilidade, evi-
denciando que nenhuma ferramenta atendeu plenamente às necessidades dos desenvolve-
dores. Diferentemente deste estudo, Mealy e Strooper avaliaram ferramentas de forma
individual, sem o objetivo de compará-las quanto à eficácia

Em sı́ntese, os trabalhos revisados abordam diferentes aspectos das ferramentas
de refatoração, como usabilidade, limitações e critérios de avaliação. Este estudo busca
complementar essas contribuições ao analisar comparativamente ferramentas mais recen-
tes que incorporam inteligência artificial e técnicas de engenharia de prompt, com foco na
eficiência no processo de refatoração.

3. Materiais e Métodos
Este experimento investiga o uso das ferramentas de inteligência artificial GPT 4.5 e
Claude 3.7 Sonnet na refatoração de código, com foco na extração de métodos e clas-
ses, utilizando o dataset Qualitas Corpus como base empı́rica [Tempero et al. 2010]. A
Figura 1 apresenta as etapas do fluxo metodológico adotado.

Figura 1. Fluxograma metodológico

Inicialmente foi realizado a escolha do dataset. O Qualitas Corpus foi escolhido
por ser composto por 111 projetos Java com mais de 18 milhões de linhas de código
[Terra et al. 2013], e amplamente reconhecido em pesquisas de engenharia de software

pela presença de code smells, tornando-se adequado para análises de refatoração automa-
tizada. Logo em seguida foi realizado a escolha do sistema a ser avaliado. A escolha
do sistema jparse fundamenta-se em suas métricas elevadas de complexidade e acopla-
mento, como MLOC (Method Lines of Code) de 23.44, WMC (Weighted Methods per
Class) de 87.84 e VG (McCabe Cyclomatic Complexity) de 7.28, além de baixa coesão,
com LCOM (Lack of Cohesion in Methods) de 0.26, o que evidencia sua propensão a
melhorias estruturais por meio da extração de componentes.

A análise foi conduzida com o uso da IDE IntelliJ IDEA, que integra as ferramen-
tas de IA avaliadas. O Gemini foi descartado devido a restrições de uso, mantendo-se
o foco no GPT 4.5 e no Claude 3.7 Sonnet. Para aferir os impactos das refatorações,
adotaram-se as métricas CK, de Chidamber e Kemerer (1994), obtidas por meio de uma
aplicação de análise estática de código. Essas métricas forneceram subsı́dios objetivos
para comparar a eficácia das ferramentas, tanto em termos quantitativos quanto qualita-
tivos, oferecendo subsı́dios práticos para estudos futuros e para o avanço de técnicas de
refatoração assistidas por IA.

A engenharia de prompt deste trabalho foi projetada com base em princı́pios de
personalização e controle contextual descritos por White et al. (2023). O prompt segue o
padrão Persona Pattern, atribuindo à IA o papel de especialista em refatoração de código,
e incorpora elementos do Template Pattern para garantir consistência estrutural nas res-
postas. Essa abordagem padroniza e restringe as refatorações às técnicas de Extração de
Métodos e Extração de Classes, conforme Fowler (2018) e Valente (2023), assegurando
replicabilidade e foco ao limitar o escopo das transformações.

Além disso, o modelo de prompt explora o conceito de embeddings, conforme
destacado pela AWS (2024), ao fornecer ao modelo um contexto rico e semanticamente
denso por meio de instruções detalhadas. Também foi solicitado que cada resposta apre-
sentasse um resumo das alterações, especificando o total de refatorações realizadas e sua
divisão por tipo, visando futuras análises. A Figura 2 apresenta o prompt utilizado nesta
etapa.

Figura 2. Prompt Desenvolvido

As refatorações foram realizadas individualmente em cada classe do sistema
jparse (exceto testes), utilizando a integração nativa da IDE com os assistentes de IA
Claude 3.7 Sonnet e GPT 4.5. Em ambos os casos, um mesmo prompt foi aplicado com
consistência, anexando o arquivo da classe correspondente a cada requisição para ga-
rantir precisão e uniformidade no processo. As respostas retornadas incluı́ram o código
refatorado e dados sobre os tipos e quantidades de refatorações, que foram armazenados
como arquivos ‘.java‘ para posterior análise. Essa sistematização permitiu a construção
dos dados, que organiza e classifica as refatorações por tipo e ferramenta, facilitando
comparações entre os resultados obtidos. Estes dados estão disponı́veis no repositório do
trabalho1.

Para avaliar os impactos quantitativos das refatorações, utilizou-se a ferramenta
CK Metrics em três momentos: antes das alterações e após a refatoração por cada fer-
ramenta. As métricas selecionadas incluı́ram CBO, LCOM, TCC, LCC, RFC, NOM,
MLOC, VG, e WMC para análise de extração de classes e de métodos — métricas di-
retamente ligadas à coesão, complexidade e acoplamento. A partir dessas informações,
foram conduzidas análises comparativas detalhadas, com visualizações como boxplots
e violinplots, além de testes estatı́sticos que asseguraram a significância dos resultados,
oferecendo uma base robusta para interpretar a eficácia das refatorações geradas por cada
IA.

4. Resultados Quantitativos

Esta seção apresenta os resultados quantitativos das refatorações automatizadas realizadas
pelas ferramentas GPT 4.5 e Claude 3.7 Sonnet no sistema jparse, do Qualitas Corpus.
Ao todo, foram executadas 816 refatorações, das quais 327 pelo GPT 4.5 — sendo 277 de
extração de métodos (84, 71%) e 50 de extração de classes (15, 29%) — e 489 pelo Claude
3.7 Sonnet, com 408 extrações de métodos (83, 43%) e 81 de classes (16, 57%). Esses
dados evidenciam uma atuação mais intensa da ferramenta Claude, com predominância
de extrações de métodos em ambas as abordagens.

Com o objetivo de mensurar o impacto estrutural das refatorações realizadas pelas
ferramentas GPT 4.5 e Claude 3.7 Sonnet, foi conduzida uma análise quantitativa com
base nas métricas Chidamber & Kemerer (CK). Na versão original da métrica Coupling
Between Objects (CBO), observou-se mediana de 6, média de 7, 68 e valor máximo de
69. Após refatoração, o GPT 4.5 manteve mediana igual, reduzindo a média para 5, 61
e o valor máximo para 17; já o Claude 3.7 Sonnet baixou a mediana a 4, a média a
4, 85 e o valor máximo a 16 (Fig 3(a) e 3(b)). Os boxplots evidenciam a redução de
acoplamento, enquanto os violin plots ressaltam a densidade concentrada em faixas mais
baixas, destacando maior densidade de valores na base inferior para Claude 3.7 Sonnet e
concentração abaixo da média original no GPT 4.5.

A métrica Weighted Methods per Class (WMC) apresentou mediana de 15, média
de 49.38 e máximo de 1217, na versão original (Figs 3(c) e 3(d)). O GPT 4.5 reduziu a
mediana para 9, a média para 13, 73 e o máximo para 85; o Claude 3.7 Sonnet obteve
mediana de 8, média de 14, 03 e máximo de 123. Os gráficos mostram essas alterações
por meio de caixas mais compactas e concentrações visı́veis de valores em faixas

1https://github.com/CleitonSilvaT/refactoring-vem-2025

(a) Distribuição em
Boxplot - CBO

(b) Distribuição em
Violin Plot - CBO

(c) Distribuição em
Boxplot - WMC

(d) Distribuição em
Violin Plot - WMC

Figura 3. Distribuição das métricas CBO e WMC utilizando Boxplot e Violin Plot.

inferiores, representando maior uniformidade e redução de complexidade funcional.

Para Response For a Class (RFC), a versão original demonstra alta dispersão,
com média de 16, 52, mediana de 10 e valor máximo de 169 (Figs. 4(a) e 4(b)). Ambas
as ferramentas reduziram esses valores: GPT 4.5 atingiu média de 9, 61, mediana de 7 e
máximo de 54; Claude 3.7 Sonnet obteve média de 9, 48, mediana de 5, 5 e máximo de 90.
O gráfico boxplot mostra esses valores de forma mais agrupada. Através do violin plot,
é possı́vel visualizar a concentração de valores em faixas mais baixas, indicando menor
acoplamento nas classes refatoradas.

(a) Distribuição em
Boxplot - RFC

(b) Distribuição em
Violin Plot - RFC

(c) Distribuição em
Boxplot - LCOM

(d) Distribuição em
Violin Plot - LCOM

Figura 4. Distribuição das métricas RFC e LCOM utilizando Boxplot e Violin Plot.

Lack of Cohesion in Methods (LCOM) evidencia comportamento assimétrico na
versão original, com média de 193,53, mediana de 1 e valor máximo de 8.905, indicando a
existência de classes com baixa coesão (Fig. 4(c) e 4(d)). Após as refatorações, os valores
de LCOM apresentaram redução na versão GPT-4.5, a média foi de 20,21, a mediana 1 e
o máximo de 300; já na versão Claude 3.7 Sonnet, média de 30,29, mediana 1 e máximo
de 1.104. Embora as médias das versões refatoradas sejam menores que a original, os
gráficos mostram que a dispersão dos valores continua elevada. Tanto o boxplot quanto o
violin plot indicam que a coesão interna das classes permaneceu heterogênea.

(a) Distribuição em
Boxplot - TCC

(b) Distribuição em
Violin Plot - TCC

(c) Distribuição em
Boxplot - LCC

(d) Distribuição em
Violin Plot - LCC

Figura 5. Distribuição das métricas TCC e LCC utilizando Boxplot e Violin Plot.

Em Tight Class Cohesion (TCC), notou-se diminuição da mediana e concentração
de valores mais baixos nas versões refatoradas (Figs. 5(a) e 5(b)), evidenciando redução
da coesão. Analogamente, Loose Class Cohesion (LCC) exibiu diminuição da mediana
e distribuição deslocada para nı́veis inferiores (Figs. 5(d) e 5(e)), sinalizando menor con-
sistência na ligação entre métodos.

Na métrica Número de Métodos por Classe (NMC), foram constatadas média de
11, 30, mediana de 8,0 e valor máximo de 134 (Fig. 6(a) e 6(b)). As versões refatoradas
indicam maior controle no tamanho funcional das classes: GPT 4.5 apresentou média de
7, 93, mediana 7 e máximo de 26; Claude 3.7 Sonnet, média de 7, 43, mediana 6 e máximo
de 48. O boxplot e o violin plot mostram que as classes tiveram redução na dispersão dos
dados e se tornaram mais uniformes em termos de número de métodos.

(a) Distribuição em
Boxplot - NMC

(b) Distribuição em
Violin Plot - NMC

(c) Distribuição em
Boxplot - LOC

(d) Distribuição em
Violin Plot - LOC

Figura 6. Distribuição das métricas NMC e LOC utilizando Boxplot e Violin Plot.

A métrica Lines of Code (LOC) das classes apresentou mediana de 47, média de
174, 97 e máximo de 5297 na versão original; o GPT 4.5 reduziu esses números para me-
diana 36, média 45, 64 e máximo 257; o Claude, para mediana 32, média 56, 04 e máximo
458 (Figs. 6(c) e 6(d)). A menor dispersão observada no boxplot, aliada à concentração
dos valores centrais no violin plot, indica uma maior uniformidade no tamanho das classes
após a refatoração.

5. Discussão dos Resultados
Esta seção avalia a eficácia das ferramentas de refatoração com base em oito critérios, or-
ganizados em dois grupos: quatro quantitativos, que mensuram objetivamente alterações
estruturais no código (complexidade e acoplamento via CBO e RFC, coesão com LCOM,
TCC e LCC, tamanho e fragmentação com LOC e NMC, e distribuição entre tipos de
refatoração), e quatro qualitativos/metodológicos, voltados à padronização do experi-
mento, como o uso de prompts estruturados, aplicação de boas práticas de projeto orien-
tado a objetos, separação adequada de novas classes em arquivos próprios e preservação
das interfaces existentes. Esses critérios garantem a consistência, reprodutibilidade e ro-
bustez na comparação entre as ferramentas avaliadas.

5.1. Discussão dos Resultados Quantitativos

No que se refere à quantidade de refatorações, observou-se que ambas as ferramentas
apresentaram predomı́nio de operações de extração de métodos em relação à extração
de classes, indicando a tendência das ferramentas em atuar na simplificação interna das
classes. Além disso, constatou-se que Claude 3.7 Sonnet realizou um número maior
de refatorações em relação ao GPT 4.5. A avaliação das métricas CK revelou que as
refatorações por IA promoveram melhorias estruturais consistentes. De maneira geral,

as versões refatoradas apresentaram redução dos nı́veis de acoplamento e complexidade,
aumento da coesão interna e diminuição do tamanho médio das classes.

A comparação das ferramentas mostrou que o Claude 3.7 Sonnet se destacou nas
métricas de redução de acoplamento (CBO e RFC), sugerindo que priorizou a diminuição
de vı́nculos entre classes e dependências indiretas, promovendo um sistema mais modu-
lar e menos acoplado. Houve redução significativa do TCC e LCC indicando redução
da coesão interna nas classes após a refatoração. Isso ocorre porque, ao dividir classes
grandes em menores e mais especializadas, a coesão interna das classes permaneceu hete-
rogênea, sugerindo que as refatorações automáticas não garantiram melhoria substancial
na coesão entre métodos apesar de gerar redução no LCOM.

Quanto à simplificação estrutural, ambas as ferramentas reduziram o número total
de métodos por classe e as linhas de código, facilitando a manutenção e a compreensão do
sistema. No entanto, o GPT 4.5 apresentou valores médios e máximos mais baixos, suge-
rindo maior fragmentação e simplificação estrutural. A versão refatorada pelo Claude 3.7
Sonnet também reduziu significativamente o tamanho das classes, mas manteve algumas
estruturas maiores, indicando uma abordagem menos incisiva em modularização.

Apesar das diferenças pontuais, os resultados convergentes mostram que ambas as
ferramentas melhoraram aspectos essenciais da qualidade do código, alinhando-se às boas
práticas de modularização e coesão em sistemas orientados a objetos. Assim, a escolha
da ferramenta depende do objetivo: para reduzir dependências e aumentar modularidade
global, o Claude 3.7 Sonnet pode ser mais indicado; para fortalecer coesão interna e
simplificar métodos, o GPT 4.5 tende a ser mais eficaz.

5.2. Discussão dos Resultados Qualitativos

No contexto do experimento proposto, observou-se que, durante o processo de
refatoração, houve uma redução progressiva na qualidade e quantidade das refatorações
por linha de código à medida que o tamanho das classes aumentava. Verificou-se que
classes com grande número de linhas frequentemente receberam um tratamento incom-
pleto, sendo parcialmente ou totalmente ignoradas pelas ferramentas analisadas. Tanto a
versão original do sistema quanto as versões resultantes das refatorações estão disponı́veis
no repositório do trabalho. Na sequência, são apresentadas e discutidas algumas das
refatorações realizadas.

Como exemplo, a classe JavaLexer.java, com LOC original de 2.123, foi parci-
almente refatorada, resultando em versões finais com LOC 123 pelo Claude 3.7 Sonnet
e 195 pelo GPT-4.5. A classe JavaParser.java, com LOC 529, não foi refatorada pelo
GPT-4.5, enquanto o Claude 3.7 Sonnet fez duas extrações de métodos e uma de código,
reduzindo o LOC para 37. Isso levanta dúvidas sobre a qualidade dessas modificações,
especialmente em relação à coesão interna e clareza do código. Esse comportamento está
associado ao fato dessas classes superarem os limites de dados suportados por uma única
requisição às ferramentas.

Na análise qualitativa, ambas as ferramentas modificaram interfaces, apesar de
isso não ter sido solicitado no prompt. O Claude 3.7 Sonnet foi mais propenso a essas
alterações, como na classe Method.java, onde criou duas interfaces adicionais não so-
licitadas (Figura 7). O GPT-4.5 foi mais conservador, realizando essa operação apenas

em JavaTokenTypes.java e reconhecendo corretamente as interfaces como estruturas que
deveriam permanecer intactas nas demais situações.

Figura 7. Classe Method com refatoração aplicada por Claude 3.7 Sonnet

Adicionalmente, verificou-se que o Claude 3.7 Sonnet promoveu mudanças nos
nomes das classes durante o processo de extração, o que em contextos semelhantes pode
comprometer a rastreabilidade. Outro aspecto observado é que, ao contrário do que é con-
siderado boa prática na gestão de código, as novas classes extraı́das não foram separadas
em arquivos próprios, sendo mantidas dentro do arquivo original da classe refatorada, um
comportamento que, em determinadas situações, pode reduzir a clareza estrutural e difi-
cultar a manutenção futura. A classe ModifierAST.java foi selecionada para uma análise
detalhada devido à discrepância no número de refatorações realizadas pelas ferramentas
de inteligência artificial. Ao comparar o arquivo original com as versões produzidas pelas
ferramentas, observa-se que ambas buscam aumentar a legibilidade e reduzir duplicações,
porém adotam estratégias distintas. No código original, o construtor concentrava direta-
mente toda a lógica de inicialização e atribuição de modificadores em um único ponto,
sem delegação explı́cita de responsabilidades.

A refatoração proposta pelo Claude 3.7 Sonnet dividiu o construtor em métodos
auxiliares claramente definidos, buscando atribuir responsabilidades especı́ficas e aumen-
tar a clareza do código. Além disso, a criação da classe ModificadorHelper foi realizada
em conformidade com o princı́pio de responsabilidade única, encapsulando operações es-
pecı́ficas e reduzindo o acoplamento. Entretanto, essa dispersão em uma classe adicional
pode gerar sobrecarga conceitual para situações simples, já que as operações envolvidas
são trivialmente expressas em poucas linhas. Embora o método isModifier tenha sido
introduzido para centralizar verificações futuras, as checagens existentes continuam utili-
zando diretamente Modifier.isXxx, limitando parcialmente o potencial de reutilização.

Por outro lado, a versão do GPT-4.5 introduziu a classe GerenciadorModificado-
res para encapsular e gerenciar o estado dos modificadores, reforçando o encapsulamento
e eliminando redundâncias através do método verificaModificador. Essa abordagem está
alinhada ao princı́pio Don’t Repeat Yourself (DRY), eliminando duplicações de código.
Contudo, o uso de um gerenciador para manter o estado pode levar a inconsistências
futuras caso o campo mods seja modificado diretamente sem refletir no gerenciador, de-
mandando disciplina adicional ou mecanismos de sincronização.

Na análise qualitativa realizada neste estudo de caso, percebeu-se que as

refatorações propostas pelo Claude 3.7 Sonnet mantiveram em grande parte a estrutura
original das classes, resultando em alterações de escopo mais restrito. Em contraste,
as transformações sugeridas pelo GPT-4.5 envolveram a criação de novas entidades e a
redistribuição de responsabilidades entre elas, configurando um grau de reorganização
estrutural mais amplo. Essas diferenças de comportamento indicam perfis distintos de
atuação das ferramentas em relação ao tamanho e à complexidade do sistema analisado.

6. Ameaças à validade
Este estudo apresenta algumas ameaças à validade interna [Wohlin et al. 2012], princi-
palmente pelo fato dos experimentos terem sido realizados sequencialmente, o que pode
ter introduzido aprendizado indireto na análise das respostas. Além disso, a aborda-
gem utilizada foi exclusivamente estática, sem execução do sistema antes ou após as
refatorações, o que impede a verificação de possı́veis falhas funcionais introduzidas. Há
também limitações quanto à validade externa, uma vez que o projeto analisado foi apenas
o jparse, dificultando a generalização dos resultados para outros sistemas ou linguagens,
dada sua natureza e estrutura especı́ficas.

A validade de construção [Wohlin et al. 2012] também é impactada pela esco-
lha exclusiva das métricas CK, que, embora úteis para avaliar aspectos estruturais, não
capturam atributos como legibilidade ou manutenibilidade do código. Além disso, os
code smells não foram explicitamente informados nos prompts, o que fez com que
a identificação e execução das refatorações dependessem totalmente da capacidade
autônoma das ferramentas de IA. Isso pode ter enviesado os resultados, pois o desem-
penho das ferramentas também refletiu sua habilidade em detectar problemas estruturais.
Por fim, a ausência de execuções repetidas compromete a validade de conclusão, já que
variações naturais no comportamento das ferramentas podem ter passado despercebidas.
Reforça-se, portanto, a necessidade de estudos futuros com múltiplas execuções e testes
estatı́sticos para maior robustez.

7. Conclusão
Este trabalho apresentou uma avaliação da eficácia das ferramentas de IA GPT-4.5 e
Claude 3.7 Sonnet aplicadas à refatoração de software, com base em oito critérios quan-
titativos e qualitativos. A abordagem permitiu identificar diferenças estruturais relevantes
entre as ferramentas, destacando o potencial do conjunto de critérios como referência me-
todológica. A análise revelou que Claude 3.7 Sonnet realizou mais extrações de métodos
e classes, enquanto ambas as ferramentas promoveram reduções significativas em acopla-
mento, complexidade e tamanho do código, conforme evidenciado pelas métricas CK.

A análise qualitativa indicou que as ferramentas são mais eficazes quando apli-
cadas a escopos menores e com objetivos de refatoração claramente definidos. Claude
3.7 Sonnet mostrou-se mais adequado para modularização e redução de dependências,
ao passo que o GPT-4.5 se destacou na simplificação de métodos e menor incidência de
alterações indesejadas. Apesar das limitações impostas pelo uso de um único sistema e
execução única por ferramenta, os resultados oferecem uma base promissora para estudos
futuros. Como sugestões de trabalhos futuros, recomenda-se a replicação com múltiplas
execuções, maior diversidade de projetos e aprimoramentos nos prompts, de modo a apro-
fundar a compreensão sobre o comportamento e a efetividade das IAs em diferentes con-
textos de refatoração.

Referências
Almogahed, A., Mahdin, H., Zakaria, N. H., Omar, M., Barraood, S. O., and Alawadhi,

A. (2023). Empirical investigation of the diverse refactoring effects on software qua-
lity: The role of refactoring tools and software size. In International Conference on
Emerging Smart Technologies and Applications (eSmartA).

Amazon Web Services (2024). What are embeddings in machine learning? Accessed: 25
Mar. 2025.

Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493.

Eilertsen, A. M. and Murphy, G. C. (2021a). Stepwise refactoring tools. In IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pages 629–633.

Eilertsen, A. M. and Murphy, G. C. (2021b). The usability (or not) of refactoring tools.
In 2021 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 237–248. IEEE.

Fowler, M. (2018). Refactoring: Improving the Design of Existing Code. Addison Wesley.

Ivers, J., Nord, R. L., Ozkaya, I., Seifried, C., Timperley, C. S., and Kessentini, M. (2022).
Industry’s cry for tools that support large-scale refactoring. In International Confe-
rence on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages
163–164.

Mealy, E. and Strooper, P. (2006). Evaluating software refactoring tool support. In Aus-
tralian Software Engineering Conference (ASWEC’06). IEEE.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., and Noble,
J. (2010). Qualitas corpus: A curated collection of java code for empirical studies. In
2010 Asia Pacific Software Engineering Conference (APSEC2010), pages 336–345.

Terra, R., Miranda, L. F., Valente, M. T., and Bigonha, R. S. (2013). Qualitas.class corpus:
A compiled version of the qualitas corpus. Software Engineering Notes, pages 1–4.

Valente, M. T. (2020). Engenharia de Software Moderna: Princı́pios e Práticas para
Desenvolvimento de Software com Produtividade. Independente.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-
Smith, J., and Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Computer Science. Springer Berlin Heidel-
berg.

