Anadlise e Caracterizacao de Ferramentas Automatizadas de
Refatoracao

Matheus Machado de O. Andrade, Samara Martins Ferreira, Cleiton Silva Tavares,
Leonardo Cardoso, Laerte Xavier, Lucila Ishitani

Bacharelado em Engenharia de Software — PUC Minas
Belo Horizonte — MG — Brasil

{andradematheusse,mferreira.samara}@gmail.com,

{cleitontavares,leonardocardoso,laertexavier,lucila}@pucminas.br

Abstract. Automated refactoring is an increasingly common practice in the soft-
ware development process. However, the effectiveness of using artificial intelli-
gence for this purpose is still unclear. Therefore, this study evaluates the GPT-
4.5 and Claude 3.7 Sonnet for automated refactorings. The research focuses on
the application of these tools to the jparse system, aiming to measure their ef-
ficiency and applicability. The evaluation involved quantitative and qualitative
analyses of 816 refactorings, generating eight criteria for evaluating these tools
in real-world scenarios. The results showed that the tools perform better when
applied to smaller scopes and when the type of refactoring to be performed is
specifically guided.

Resumo. Refatoracdo automatizada é uma prdtica cada vez mais comum no
processo de desenvolvimento de software. Porém, ainda ndo estd claro a eficdcia
do uso de inteligéncia artificial para esse propdsito. Sendo assim, este estudo
avalia 0 GPT-4.5 e o Claude 3.7 Sonnet para refatoracoes automatizadas. A
pesquisa concentra-se na aplicagdo dessas ferramentas ao sistema jparse, vi-
sando medir sua eficiéncia e aplicabilidades. A avaliacdo envolveu andlises
quantitativas e qualitativas de 816 refatoragcdes, gerando oito critérios para
avaliacdo dessas ferramentas em cendrios reais. Os resultados mostraram que
as ferramentas possuem um melhor comportamento quando aplicadas a esco-
pos menores e direcionamento da refatoracdo a ser feita.

1. Introducao
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Refatoracdo € o processo de modificar a estrutura interna de um software sem al-
terar seu comportamento externo, visando melhorar sua legibilidade, manutenibili-
dade e design interno [Fowler 2018]. Técnicas como extragdo de métodos e extragdao
de classes sao amplamente utilizadas nesse contexto por facilitarem a modularizagdo
e a reducdo da complexidade [Valente 2020]. Essas atividades ocorrem durante a
evolucdo do software e, quando feitas manualmente, sdo complexas, demoradas e sus-
cetiveis a erros [Mealy and Strooper 2006]. O uso de ferramentas automatizadas de
refatoracdo auxilia os desenvolvedores, reduzindo esses problemas do processo manual
[Eilertsen and Murphy 2021b].



Com o avanco de modelos de linguagem, surgiram ferramentas que aplicam
refatoragdes com o suporte de inteligéncia artificial, como o GPT-4.5 e o Claude 3.7
Sonnet. Estudos como os de Almogahed et al. (2023) e Ivers et al. (2022) demonstram
o uso de Large Language Models (LLMs) em atividades de engenharia de software, in-
cluindo refatoracido automatizada. Desse modo, a formulacdo adequada dos prompts tem
papel central nesse processo. Estratégias como Persona Pattern, Template Pattern e o uso
de embeddings sao citadas na literatura como formas de estruturar comandos mais claros
e efetivos para os modelos [White et al. 2023]

Embora tragam beneficios, estudos anteriores apontam limitagdes
nas ferramentas de refatoracdo, como problemas de suporte e usabilidade
[Mealy and Strooper 2006], e a falta de previsibilidade que gera inseguranca nos
desenvolvedores [Eilertsen and Murphy 2021b] e dificuldades com grandes bases de
codigo [Ivers et al. 2022]. Contudo, esses trabalhos nao fizeram uma comparagdo sis-
temadtica das ferramentas de refatoracdo com IA, deixando um espago para investigacao.
Avaliar essas ferramentas € essencial para garantir suporte adequado ao ambiente de
desenvolvimento [Mealy and Strooper 2006]. Compara-las permite orientar seu uso, de-
monstrar eficiéncia e avaliar confiabilidade na refatoracao [Eilertsen and Murphy 2021b].
Além disso, confrontar suas capacidades auxilia na definicdo de propdsitos e na
identificacdo da necessidade de métodos complementares.

O objetivo geral deste estudo € analisar o comportamento de ferramentas de
refatoracdo automatizada baseadas em inteligéncia artificial, considerando seu impacto
nas métricas estruturais de codigo e em aspectos qualitativos das refatoracdes, e propor
um conjunto de critérios para avaliar essas refatoracdes a partir da comparagdo entre GPT-
4.5 e Claude 3.7 Sonnet. Para avaliar os impactos das refatoracdes, este estudo utiliza um
conjunto consolidado de métricas de projeto orientado a objetos amplamente discutidas
na literatura, como aquelas propostas por Chidamber e Kemerer (1994), que abrangem
aspectos de complexidade, coesdo e acoplamento em nivel de classe. Tais métricas tém
sido empregadas extensivamente em pesquisas empiricas como indicadores quantitativos
da qualidade estrutural de sistemas orientados a objetos, contribuindo para a andlise obje-
tiva dos efeitos de técnicas de refatoracdo estruturais, como Extrac@o de Classe e Extracao
de Método [Chidamber and Kemerer 1994].

Os experimentos envolveram 816 refatoracdes no sistema jparse, sendo 327 exe-
cutadas pelo GPT-4.5 e 489 pelo Claude 3.7 Sonnet. Como resultado foram propostos 8
critérios para a andlise da eficcia das refatoragcdes, 4 qualitativos e 4 quantitativos.

A Secao 2 discute trabalhos relacionados, destacando avaliagcdes e limitacdes des-
sas ferramentas. A Secdo 3 detalha a metodologia, incluindo sele¢do das ferramentas,
dataset e critérios de avaliagdo. As secoes 4 e 5, respectivamente, apresentam e discutem
os resultados obtidos, comparando o desempenho conforme os critérios estabelecidos.
Por fim, a Secdo 7 traz as conclusdes, ressaltando os principais achados e sugestdes para
trabalhos futuros.

2. Trabalhos Relacionados

Almogahed et al. (2023) investigaram os impactos de refatoracdes, como adi¢do de
parametros e extragdo de classes, na qualidade do software, mostrando que o efeito va-
ria conforme o tamanho do sistema e as ferramentas usadas. O estudo destaca a in-



fluéncia de ferramentas automatizadas como JDeodorant e Eclipse Refactor na eficicia
da refatoragdo. Embora compare refatoracdes em diferentes ferramentas, esse estudo nao
oferece recomendagdes para realizi-las.

Por sua vez, Ivers et al. (2022) entrevistaram 107 desenvolvedores da industria
para investigar o uso de ferramentas de refatoracdo em larga escala. O estudo revelou
que, apesar do interesse em refatorar sistemas monoliticos para melhorar a manuteni-
bilidade e migrar para arquiteturas modernas, as ferramentas atuais ndo suportam essas
refatoracoes maiores. Diferentemente deste estudo, ndo exploraram comparacdes entre
solucdes eficazes para esse contexto.

Além disso, na abordagem de Eilertsen e Murphy (2021) foi proposto um mo-
delo de refatoracdo em etapas, permitindo que desenvolvedores apliquem transformacoes
graduais e tenham maior controle, solucionando problemas de usabilidade das ferramen-
tas tradicionais, como altera¢des atdmicas prematuras. Contudo, o estudo limita-se ao
paradigma tradicional, sem considerar ferramentas com inteligéncia artificial.

O estudo de Mealy e Strooper (2006) avaliaram seis ferramentas Java usando o
método DESMET para identificar limitagdes em critérios de refatoragdo e usabilidade. O
estudo mostrou deficiéncias significativas no suporte ao processo e na usabilidade, evi-
denciando que nenhuma ferramenta atendeu plenamente as necessidades dos desenvolve-
dores. Diferentemente deste estudo, Mealy e Strooper avaliaram ferramentas de forma
individual, sem o objetivo de comparé-las quanto a eficicia

Em sintese, os trabalhos revisados abordam diferentes aspectos das ferramentas
de refatoracdo, como usabilidade, limitac¢des e critérios de avaliagdo. Este estudo busca
complementar essas contribui¢des ao analisar comparativamente ferramentas mais recen-
tes que incorporam inteligéncia artificial e técnicas de engenharia de prompt, com foco na
eficiéncia no processo de refatoracao.

3. Materiais e Métodos

Este experimento investiga o uso das ferramentas de inteligéncia artificial GPT 4.5 e
Claude 3.7 Sonnet na refatoracdo de cddigo, com foco na extragdo de métodos e clas-
ses, utilizando o dataset Qualitas Corpus como base empirica [Tempero et al. 2010]. A
Figura 1 apresenta as etapas do fluxo metodolégico adotado.
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Figura 1. Fluxograma metodologico

Inicialmente foi realizado a escolha do dataset. O Qualitas Corpus foi escolhido
por ser composto por 111 projetos Java com mais de 18 milhdes de linhas de cédigo
[Terra et al. 2013], e amplamente reconhecido em pesquisas de engenharia de software



pela presenca de code smells, tornando-se adequado para andlises de refatoracdo automa-
tizada. Logo em seguida foi realizado a escolha do sistema a ser avaliado. A escolha
do sistema jparse fundamenta-se em suas métricas elevadas de complexidade e acopla-
mento, como MLOC (Method Lines of Code) de 23.44, WMC (Weighted Methods per
Class) de 87.84 € VG ( McCabe Cyclomatic Complexity) de 7.28, além de baixa coesao,
com LCOM (Lack of Cohesion in Methods) de 0.26, o que evidencia sua propensao a
melhorias estruturais por meio da extragdo de componentes.

A andlise foi conduzida com o uso da IDE IntelliJ IDEA, que integra as ferramen-
tas de IA avaliadas. O Gemini foi descartado devido a restricdes de uso, mantendo-se
o foco no GPT 4.5 e no Claude 3.7 Sonnet. Para aferir os impactos das refatoragdes,
adotaram-se as métricas CK, de Chidamber e Kemerer (1994), obtidas por meio de uma
aplicacao de andlise estdtica de codigo. Essas métricas forneceram subsidios objetivos
para comparar a eficdcia das ferramentas, tanto em termos quantitativos quanto qualita-
tivos, oferecendo subsidios préticos para estudos futuros e para o avanco de técnicas de
refatoracdo assistidas por IA.

A engenharia de prompt deste trabalho foi projetada com base em principios de
personalizacdo e controle contextual descritos por White et al. (2023). O prompt segue o
padrao Persona Pattern, atribuindo a 1A o papel de especialista em refatoracdo de cédigo,
e incorpora elementos do Template Pattern para garantir consisténcia estrutural nas res-
postas. Essa abordagem padroniza e restringe as refatoracdes as técnicas de Extracdo de
Métodos e Extracao de Classes, conforme Fowler (2018) e Valente (2023), assegurando
replicabilidade e foco ao limitar o escopo das transformacdes.

Além disso, o modelo de prompt explora o conceito de embeddings, conforme
destacado pela AWS (2024), ao fornecer ao modelo um contexto rico e semanticamente
denso por meio de instru¢des detalhadas. Também foi solicitado que cada resposta apre-
sentasse um resumo das alteragdes, especificando o total de refatoracdes realizadas e sua
divisdo por tipo, visando futuras andlises. A Figura 2 apresenta o prompt utilizado nesta
etapa.

Vocé é uma IA especialista em refatoracdo de cédigo, com foco exclusivo em Extracdo de Classe e Extracdo de Métodos.
Seu objetivo &€ aprimorar a legibilidade, organizacdio e manutenibilidade do cddigo sem alterar seu comportamento.

Baseie-se nos seguintes principios e referéncias:

- Martin Fowler (2018) - Refactoring: Improving the Design of Existing Code

- Marco Tulio - Engenharia de Software Moderna: Principios e Priticas para Desenvolvimento de Software com Produtividade
(https: //engsoftmoderna. info/capd.html)

Diretrizes:

- Remova todos os comentarios da classe a ser refatorada antes de comecar a refatoracdo.

- Analise a classe fornecida e identifique oportunidades para refatoracdes de Extracdo de Classes e Extracdo de Métodos.
Buscando remover as duplicacdes de cédigo durante a refatoracdo.

- N3o execute nenhuma refatoracdo fora desse escopo.

- Explique suas decisdes com base nos conceitos dos livros mencionados.

- Mo cédigo refatorado, adicione um comentdrio iniciando com "TRECHO REFATORADO" em cada local medificado, para facilitar
a identificacdo.

- 0s comentdrios no cédigo devem estar em portuguds.

Modo de Operacdo:

- Utilize esse mesmo padrdo para TODAS as classes que forem refatoradas.
- Ndo faca nada ainda. Aguarde meu comando para iniciar.

Estrutura da resposta ao refatorar uma classe (passos de 1 a 4):

1) Oportunidades de refatoracdo encontradas — Liste os trechos problemdticos que justificam as refatoracdes.

2) Classe refatorada com os devidos comentdrios - Apresente o cédigo atuzlizado com comentdrios em portugués, incluindo
// TRECHO REFATORADO nos locais alterados.

3) Justificativa das refatoracdes - Explique por que cada refatoracio foi feita e como ela melhora o design do cédigo.
4) Resumo das alteracdes, incluindo:

- Quantidade total de refatoracdes realizadas.
- Divisdo por tipo (quantas foram Extracio de Método e quantas foram Extracdo de Classe).

Figura 2. Prompt Desenvolvido



As refatoracdes foram realizadas individualmente em cada classe do sistema
Jparse (exceto testes), utilizando a integracdo nativa da IDE com os assistentes de A
Claude 3.7 Sonnet e GPT 4.5. Em ambos os casos, um mesmo prompt foi aplicado com
consisténcia, anexando o arquivo da classe correspondente a cada requisi¢do para ga-
rantir precisdo e uniformidade no processo. As respostas retornadas incluiram o cédigo
refatorado e dados sobre os tipos e quantidades de refatoracdes, que foram armazenados
como arquivos ‘.java‘ para posterior andlise. Essa sistematizacdo permitiu a constru¢ao
dos dados, que organiza e classifica as refatoragdes por tipo e ferramenta, facilitando
comparacdes entre os resultados obtidos. Estes dados estao disponiveis no repositério do
trabalho!.

Para avaliar os impactos quantitativos das refatoragdes, utilizou-se a ferramenta
CK Metrics em trés momentos: antes das alteracOes e apos a refatoragdo por cada fer-
ramenta. As métricas selecionadas incluiram CBO, LCOM, TCC, LCC, RFC, NOM,
MLOC, VG, e WMC para andlise de extracao de classes e de métodos — métricas di-
retamente ligadas a coesdo, complexidade e acoplamento. A partir dessas informagdes,
foram conduzidas anélises comparativas detalhadas, com visualizagdes como boxplots
e violinplots, além de testes estatisticos que asseguraram a significancia dos resultados,
oferecendo uma base robusta para interpretar a eficicia das refatoracdes geradas por cada
IA.

4. Resultados Quantitativos

Esta secdo apresenta os resultados quantitativos das refatoracoes automatizadas realizadas
pelas ferramentas GPT 4.5 e Claude 3.7 Sonnet no sistema jparse, do Qualitas Corpus.
Ao todo, foram executadas 816 refatoracdes, das quais 327 pelo GPT 4.5 — sendo 277 de
extracdo de métodos (84, 71%) e 50 de extracdo de classes (15, 29%) — e 489 pelo Claude
3.7 Sonnet, com 408 extragdes de métodos (83,43%) e 81 de classes (16,57%). Esses
dados evidenciam uma atuag@o mais intensa da ferramenta Claude, com predominancia
de extracdes de métodos em ambas as abordagens.

Com o objetivo de mensurar o impacto estrutural das refatoracdes realizadas pelas
ferramentas GPT 4.5 e Claude 3.7 Sonnet, foi conduzida uma andlise quantitativa com
base nas métricas Chidamber & Kemerer (CK). Na versao original da métrica Coupling
Between Objects (CBO), observou-se mediana de 6, média de 7,68 e valor maximo de
69. Ap6s refatoragdo, o GPT 4.5 manteve mediana igual, reduzindo a média para 5, 61
e o valor maximo para 17; ja o Claude 3.7 Sonnet baixou a mediana a 4, a média a
4,85 e o valor maximo a 16 (Fig 3(a) e 3(b)). Os boxplots evidenciam a reducdo de
acoplamento, enquanto os violin plots ressaltam a densidade concentrada em faixas mais
baixas, destacando maior densidade de valores na base inferior para Claude 3.7 Sonnet e
concentracao abaixo da média original no GPT 4.5.

A métrica Weighted Methods per Class (WMC) apresentou mediana de 15, média
de 49.38 e maximo de 1217, na versdo original (Figs 3(c) e 3(d)). O GPT 4.5 reduziu a
mediana para 9, a média para 13,73 e o maximo para 85; o Claude 3.7 Sonnet obteve
mediana de 8, média de 14,03 e maximo de 123. Os graficos mostram essas alteracdes
por meio de caixas mais compactas e concentracdes visiveis de valores em faixas

"https://github.com/CleitonSilvaT/refactoring-vem-2025
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Figura 3. Distribuicdo das métricas CBO e WMC utilizando Boxplot e Violin Plot.

inferiores, representando maior uniformidade e reducio de complexidade funcional.

Para Response For a Class (RFC), a versdao original demonstra alta dispersao,
com média de 16, 52, mediana de 10 e valor maximo de 169 (Figs. 4(a) e 4(b)). Ambas
as ferramentas reduziram esses valores: GPT 4.5 atingiu média de 9,61, mediana de 7 e
méaximo de 54; Claude 3.7 Sonnet obteve média de 9, 48, mediana de 5, 5 e maximo de 90.
O grafico boxplot mostra esses valores de forma mais agrupada. Através do violin plot,
€ possivel visualizar a concentragcdo de valores em faixas mais baixas, indicando menor
acoplamento nas classes refatoradas.
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Figura 4. Distribuicao das métricas RFC e LCOM utilizando Boxplot e Violin Plot.

Lack of Cohesion in Methods (LCOM) evidencia comportamento assimétrico na
versdo original, com média de 193,53, mediana de 1 e valor mdximo de 8.905, indicando a
existéncia de classes com baixa coesdo (Fig. 4(c) e 4(d)). Ap0s as refatoracdes, os valores
de LCOM apresentaram reducdo na versao GPT-4.5, a média foi de 20,21, a mediana 1 e
o méaximo de 300; j4 na versao Claude 3.7 Sonnet, média de 30,29, mediana 1 e maximo
de 1.104. Embora as médias das versdes refatoradas sejam menores que a original, os
grificos mostram que a dispersao dos valores continua elevada. Tanto o boxplot quanto o
violin plot indicam que a coesdo interna das classes permaneceu heterogénea.

Distribuigao da métrica TCC (Boxplot) Distribuigao da métrica TCC (Violin Plot) Distribuigao da métrica LCC (Boxplot) Distribuigao da métrica LCC (Violin Plot)
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Figura 5. Distribuicao das métricas TCC e LCC utilizando Boxplot e Violin Plot.



Em Tight Class Cohesion (TCC), notou-se diminui¢ao da mediana e concentracao
de valores mais baixos nas versoes refatoradas (Figs. 5(a) e 5(b)), evidenciando redugdo
da coesdo. Analogamente, Loose Class Cohesion (LCC) exibiu diminui¢do da mediana
e distribui¢cdo deslocada para niveis inferiores (Figs. 5(d) e 5(e)), sinalizando menor con-
sisténcia na ligacao entre métodos.

Na métrica Numero de Métodos por Classe (NMC), foram constatadas média de
11, 30, mediana de 8,0 e valor maximo de 134 (Fig. 6(a) e 6(b)). As versoes refatoradas
indicam maior controle no tamanho funcional das classes: GPT 4.5 apresentou média de
7,93, mediana 7 e maximo de 26; Claude 3.7 Sonnet, média de 7, 43, mediana 6 e maximo
de 48. O boxplot e o violin plot mostram que as classes tiveram reduc@o na dispersao dos
dados e se tornaram mais uniformes em termos de nimero de métodos.

Distribuicao da métrica LCC (Boxplot) Distribuicao da métrica NMC (Violin Plot, escala log) Distribuigdo da métrica LOC (Boxplot) Distribuigdo da métrica LOC (Violin Plot)
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Figura 6. Distribuicao das métricas NMC e LOC utilizando Boxplot e Violin Plot.

A métrica Lines of Code (LOC) das classes apresentou mediana de 47, média de
174,97 e maximo de 5297 na versao original; o GPT 4.5 reduziu esses nimeros para me-
diana 36, média 45, 64 e méximo 257; o Claude, para mediana 32, média 56, 04 e maximo
458 (Figs. 6(c) e 6(d)). A menor dispersdao observada no boxplot, aliada a concentragao
dos valores centrais no violin plot, indica uma maior uniformidade no tamanho das classes
apos a refatoragdo.

5. Discussao dos Resultados

Esta secdo avalia a eficicia das ferramentas de refatoracdo com base em oito critérios, or-
ganizados em dois grupos: quatro quantitativos, que mensuram objetivamente alteracoes
estruturais no codigo (complexidade e acoplamento via CBO e RFC, coesao com LCOM,
TCC e LCC, tamanho e fragmentacdo com LOC e NMC, e distribui¢do entre tipos de
refatoracdo), e quatro qualitativos/metodolégicos, voltados a padronizacdo do experi-
mento, como o uso de prompts estruturados, aplicagdo de boas praticas de projeto orien-
tado a objetos, separac¢do adequada de novas classes em arquivos proprios e preservacao
das interfaces existentes. Esses critérios garantem a consisténcia, reprodutibilidade e ro-

bustez na comparacao entre as ferramentas avaliadas.

5.1. Discussao dos Resultados Quantitativos

No que se refere a quantidade de refatoragdes, observou-se que ambas as ferramentas
apresentaram predominio de operagdes de extracdo de métodos em relacdo a extragao
de classes, indicando a tendéncia das ferramentas em atuar na simplificacdo interna das
classes. Além disso, constatou-se que Claude 3.7 Sonnet realizou um ndmero maior
de refatoracoes em relacdo ao GPT 4.5. A avaliacdo das métricas CK revelou que as
refatoracoes por IA promoveram melhorias estruturais consistentes. De maneira geral,



as versoes refatoradas apresentaram redu¢ao dos niveis de acoplamento e complexidade,
aumento da coesao interna e diminui¢do do tamanho médio das classes.

A comparagdo das ferramentas mostrou que o Claude 3.7 Sonnet se destacou nas
métricas de reducao de acoplamento (CBO e RFC), sugerindo que priorizou a diminui¢ao
de vinculos entre classes e dependéncias indiretas, promovendo um sistema mais modu-
lar e menos acoplado. Houve reducio significativa do TCC e LCC indicando redugdo
da coesdo interna nas classes apos a refatoracdo. Isso ocorre porque, ao dividir classes
grandes em menores e mais especializadas, a coesao interna das classes permaneceu hete-
rogénea, sugerindo que as refatoragdes automaticas ndo garantiram melhoria substancial
na coesao entre métodos apesar de gerar reducao no LCOM.

Quanto a simplificacao estrutural, ambas as ferramentas reduziram o ndmero total
de métodos por classe e as linhas de c6digo, facilitando a manutencao e a compreensao do
sistema. No entanto, o GPT 4.5 apresentou valores médios e médximos mais baixos, suge-
rindo maior fragmentagdo e simplificacdo estrutural. A versao refatorada pelo Claude 3.7
Sonnet também reduziu significativamente o tamanho das classes, mas manteve algumas
estruturas maiores, indicando uma abordagem menos incisiva em modularizagdo.

Apesar das diferencas pontuais, os resultados convergentes mostram que ambas as
ferramentas melhoraram aspectos essenciais da qualidade do c6digo, alinhando-se as boas
praticas de modularizacdo e coesdo em sistemas orientados a objetos. Assim, a escolha
da ferramenta depende do objetivo: para reduzir dependéncias e aumentar modularidade
global, o Claude 3.7 Sonnet pode ser mais indicado; para fortalecer coesao interna e
simplificar métodos, o GPT 4.5 tende a ser mais eficaz.

5.2. Discussao dos Resultados Qualitativos

No contexto do experimento proposto, observou-se que, durante o processo de
refatorac@o, houve uma reducdo progressiva na qualidade e quantidade das refatoragdes
por linha de c6digo a medida que o tamanho das classes aumentava. Verificou-se que
classes com grande nimero de linhas frequentemente receberam um tratamento incom-
pleto, sendo parcialmente ou totalmente ignoradas pelas ferramentas analisadas. Tanto a
versao original do sistema quanto as versoes resultantes das refatoracoes estao disponiveis
no repositorio do trabalho. Na sequéncia, sdo apresentadas e discutidas algumas das
refatoracdes realizadas.

Como exemplo, a classe Javal.exer.java, com LOC original de 2.123, foi parci-
almente refatorada, resultando em versdes finais com LOC 123 pelo Claude 3.7 Sonnet
e 195 pelo GPT-4.5. A classe JavaParser.java, com LOC 529, ndo foi refatorada pelo
GPT-4.5, enquanto o Claude 3.7 Sonnet fez duas extracdes de métodos e uma de cédigo,
reduzindo o LOC para 37. Isso levanta dividas sobre a qualidade dessas modificagdes,
especialmente em relacdo a coesdo interna e clareza do codigo. Esse comportamento esté
associado ao fato dessas classes superarem os limites de dados suportados por uma tnica
requisi¢ao as ferramentas.

Na andlise qualitativa, ambas as ferramentas modificaram interfaces, apesar de
isso ndo ter sido solicitado no prompt. O Claude 3.7 Sonnet foi mais propenso a essas
alteracdes, como na classe Method.java, onde criou duas interfaces adicionais ndo so-
licitadas (Figura 7). O GPT-4.5 foi mais conservador, realizando essa operacdo apenas



em JavaTokenTypes.java e reconhecendo corretamente as interfaces como estruturas que
deveriam permanecer intactas nas demais situagoes.

J Methodjava 1 X B« (1) e J Method java

Je-samara_ferreira-tce > Instrumentos > Codigos > jparse-0.96 > jparse > J Method java > *© MethodN-matheus_andrade-samara_ferreira-tcc » Instrumentos > Codigos > jparse-refactored-class-cloug
1 package jparse; 1 1 package jparse;
2 2
3 3 public interface Method extends HasExceptions, Methodvatcher {
4 public interface Method extends-HasExceptions { 4 Type - getDeclaringClass();
5 5 String gethame();
6 public-Type getDeclaringClass(); 6 int getModifiers();
7 public-String-getName(); 7 Type - getReturnType();
8 public-int getModifiers(); 8 Type[]- getParameterTypes();
9 public-Type- getReturnType(); 9 Type[ ] getExceptionTypes();
10 public-Type[] getParameterTypes(); 10 boolean-isAccessible(Type caller);
11 public Type[] getExceptionTypes(); 11}
12 public-boolean isAccessible(Type caller); 12
13 public boolean match(String name, Type[] params, Type caller); — 13 interface Methodvatcher {
14 public boolean match(Type[] params, Type caller); 14 boolean match(String name, Type[] params, Type caller);
15 public Method bestMatch(Method meth); 15 boolean match(Type[] params, Type caller);
16 public-boolean exactMatch(Method meth); 16 Method - bestMatch(Method meth) ;
17} 17 boolean - exactMatch(Method meth);
18 18  }
19 19

Figura 7. Classe Method com refatoracao aplicada por Claude 3.7 Sonnet

Adicionalmente, verificou-se que o Claude 3.7 Sonnet promoveu mudangas nos
nomes das classes durante o processo de extracdo, o que em contextos semelhantes pode
comprometer a rastreabilidade. Outro aspecto observado € que, ao contrario do que é con-
siderado boa prética na gestdao de codigo, as novas classes extraidas nao foram separadas
em arquivos proprios, sendo mantidas dentro do arquivo original da classe refatorada, um
comportamento que, em determinadas situacdes, pode reduzir a clareza estrutural e difi-
cultar a manutencao futura. A classe ModifierAST.java foi selecionada para uma anélise
detalhada devido a discrepancia no nimero de refatoracdes realizadas pelas ferramentas
de inteligéncia artificial. Ao comparar o arquivo original com as versodes produzidas pelas
ferramentas, observa-se que ambas buscam aumentar a legibilidade e reduzir duplica¢des,
porém adotam estratégias distintas. No cddigo original, o construtor concentrava direta-
mente toda a légica de inicializacdo e atribuicdo de modificadores em um tnico ponto,
sem delegacao explicita de responsabilidades.

A refatoracio proposta pelo Claude 3.7 Sonnet dividiu o construtor em métodos
auxiliares claramente definidos, buscando atribuir responsabilidades especificas e aumen-
tar a clareza do cddigo. Além disso, a criacao da classe ModificadorHelper foi realizada
em conformidade com o principio de responsabilidade unica, encapsulando operagdes es-
pecificas e reduzindo o acoplamento. Entretanto, essa dispersao em uma classe adicional
pode gerar sobrecarga conceitual para situagdes simples, ja que as operacdes envolvidas
sdo trivialmente expressas em poucas linhas. Embora o método isModifier tenha sido
introduzido para centralizar verificagcdes futuras, as checagens existentes continuam utili-
zando diretamente Modifier.isXxx, limitando parcialmente o potencial de reutilizagao.

Por outro lado, a versdo do GPT-4.5 introduziu a classe GerenciadorModificado-
res para encapsular e gerenciar o estado dos modificadores, reforcando o encapsulamento
e eliminando redundancias através do método verificaModificador. Essa abordagem esta
alinhada ao principio Don’t Repeat Yourself (DRY), eliminando duplicacdes de codigo.
Contudo, o uso de um gerenciador para manter o estado pode levar a inconsisténcias
futuras caso o campo mods seja modificado diretamente sem refletir no gerenciador, de-
mandando disciplina adicional ou mecanismos de sincronizagao.

Na andlise qualitativa realizada neste estudo de caso, percebeu-se que as



refatoracdes propostas pelo Claude 3.7 Sonnet mantiveram em grande parte a estrutura
original das classes, resultando em alteragdes de escopo mais restrito. Em contraste,
as transformacdes sugeridas pelo GPT-4.5 envolveram a cria¢do de novas entidades e a
redistribuicdo de responsabilidades entre elas, configurando um grau de reorganizacao
estrutural mais amplo. Essas diferencas de comportamento indicam perfis distintos de
atuacdo das ferramentas em relacdo ao tamanho e a complexidade do sistema analisado.

6. Ameacas a validade

Este estudo apresenta algumas ameacas a validade interna [Wohlin et al. 2012], princi-
palmente pelo fato dos experimentos terem sido realizados sequencialmente, o que pode
ter introduzido aprendizado indireto na andlise das respostas. Além disso, a aborda-
gem utilizada foi exclusivamente estdtica, sem execug¢do do sistema antes ou apds as
refatoracdes, o que impede a verificacdo de possiveis falhas funcionais introduzidas. Ha
também limita¢des quanto a validade externa, uma vez que o projeto analisado foi apenas
o0 jparse, dificultando a generalizacdo dos resultados para outros sistemas ou linguagens,
dada sua natureza e estrutura especificas.

A validade de constru¢ao [Wohlin et al. 2012] também € impactada pela esco-
lha exclusiva das métricas CK, que, embora uteis para avaliar aspectos estruturais, nao
capturam atributos como legibilidade ou manutenibilidade do cédigo. Além disso, os
code smells nao foram explicitamente informados nos prompts, o que fez com que
a identificacdo e execugdo das refatoracdes dependessem totalmente da capacidade
autdbnoma das ferramentas de IA. Isso pode ter enviesado os resultados, pois o desem-
penho das ferramentas também refletiu sua habilidade em detectar problemas estruturais.
Por fim, a auséncia de execugdes repetidas compromete a validade de conclusdo, ja que
variacOes naturais no comportamento das ferramentas podem ter passado despercebidas.
Reforca-se, portanto, a necessidade de estudos futuros com multiplas execugdes e testes
estatisticos para maior robustez.

7. Conclusao

Este trabalho apresentou uma avaliacdo da eficdcia das ferramentas de IA GPT-4.5 e
Claude 3.7 Sonnet aplicadas a refatoracao de software, com base em oito critérios quan-
titativos e qualitativos. A abordagem permitiu identificar diferengas estruturais relevantes
entre as ferramentas, destacando o potencial do conjunto de critérios como referéncia me-
todoldgica. A andlise revelou que Claude 3.7 Sonnet realizou mais extragdes de métodos
e classes, enquanto ambas as ferramentas promoveram redugdes significativas em acopla-
mento, complexidade e tamanho do cddigo, conforme evidenciado pelas métricas CK.

A anélise qualitativa indicou que as ferramentas sdo mais eficazes quando apli-
cadas a escopos menores € com objetivos de refatoracdo claramente definidos. Claude
3.7 Sonnet mostrou-se mais adequado para modularizacdo e reducdo de dependéncias,
ao passo que o GPT-4.5 se destacou na simplificacdo de métodos e menor incidéncia de
alteracoes indesejadas. Apesar das limitacdes impostas pelo uso de um unico sistema e
execucao unica por ferramenta, os resultados oferecem uma base promissora para estudos
futuros. Como sugestdes de trabalhos futuros, recomenda-se a replicacdo com multiplas
execucoes, maior diversidade de projetos e aprimoramentos nos prompts, de modo a apro-
fundar a compreensdo sobre o comportamento e a efetividade das [As em diferentes con-
textos de refatoracao.
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