
DUKS: visualizações e análises unificadas para o Kernel Linux
Rafael Passos, Arthur Pilone, David Tadokoro, Paulo Meirelles

Free Software Competence Center, Institute of Mathematics and Statistics
University of São Paulo, Brazil

{rcpassos,arthurpilone,davidbtadokoro}@usp.br,paulormm@ime.usp.br

Abstract. The decentralized nature of the Linux kernel’s development hinders
the analysis of its maintenance model. Current tools fail to capture nuances such
as the flow of commits between repositories. We propose DUKS (Dashboard
for Unified Kernel Statistics), a framework that integrates data from mailing
lists and git trees collected from the Software Heritage to provide new
insights into the project’s health and evolution.

Resumo. A natureza descentralizada do desenvolvimento do kernel Linux difi-
culta a análise de seu modelo de manutenção. Ferramentas atuais não capturam
nuances como o fluxo de commits entre repositórios. Propomos o DUKS (Dash-
board for Unified Kernel Statistics), um framework que integra dados de listas
de e-mail e árvores git coletadas do Software Heritage para fornecer
novas percepções sobre a saúde e evolução do projeto.

1. Introdução
O kernel do Linux é uma base da infraestrutura tecnológica moderna, mas seu fluxo de
trabalho ainda reflete práticas de desenvolvimento colaborativo de mais de duas décadas,
centradas no uso de e-mail 1. O processo de contribuição baseia-se no envio de patches
(commits do git) através de listas de e-mail. Nesses canais, contribuidores e mantene-
dores conduzem um processo iterativo de revisão para garantir a qualidade do código
antes de sua integração ao repositório principal (mainline) [Palix et al. 2011]. O cresci-
mento contı́nuo do kernel em extensão, complexidade e número de contribuidores levanta
preocupações sobre a sustentabilidade de seu modelo de manutenção. A comunidade 2

3 4 5 6 7 8. e a academia alertam que o modelo de desenvolvimento atual pode se tornar
insustentável [Wen 2021, Pinheiro and Meirelles 2024]. Um desafio é a dificuldade em
estimar o número de mantenedores verdadeiramente ativos. O uso exclusivo do arquivo
MAINTAINERS é impreciso, e uma medição acurada exige o cruzamento de múltiplas
fontes de dados, como listas de e-mail e o histórico do git, uma tarefa inviável sem ferra-
mentas especializadas.

Adicionalmente, técnicas convencionais de mineração de software não capturam
as particularidades do ecossistema do kernel. Elas raramente detalham as interações que

1Veja lwn.net/Articles/702177/
2Veja lwn.net/Articles/572003
3Veja lwn.net/Articles/571995
4Veja lwn.net/Articles/670087
5Veja lwn.net/Articles/749676
6Veja blog.ffwll.ch/2017/01/maintainers-dont-scale.html
7Veja lwn.net/Articles/745817
8Veja lwn.net/Articles/842415



levaram à aceitação ou rejeição de um patch, ou consideram as fases distintas do ciclo de
desenvolvimento, como os perı́odos de integração (merge) e estabilização 9, que poderiam
fornecer insights valiosos sobre o fluxo de contribuições.

Neste artigo, propomos o DUKS — Dashboard for Unified Kernel Statistics 10,
uma abordagem inovadora para coletar, agregar e visualizar métricas de desenvolvi-
mento adaptadas ao modelo do kernel do Linux. Nosso método integra dados das
listas de e-mail com o grafo de código-fonte e versionamento do projeto Software
Heritage [Di Cosmo and Zacchiroli 2017]. Apresentamos também uma prova de con-
ceito do DUKS, ilustrando o potencial da ferramenta para apoiar análises sobre a saúde do
modelo de manutenção do kernel 11.

2. Processamento e Coleta de Dados
Nossa abordagem explora dados públicos do desenvolvimento do Kernel Linux, proveni-
entes de listas de e-mail e repositórios git, para fundamentar análises empı́ricas e repro-
dutı́veis sobre a sustentabilidade de seu modelo de desenvolvimento.

A primeira etapa consiste na coleta e estruturação de dados das listas de e-mail
do kernel, como as arquivadas no Kernel Lore Archives. Desenvolvemos um esquema de
dados especializado para capturar o conteúdo, os metadados dos patches e informações
relevantes extraı́das do corpo e assunto dos e-mails (e.g., versão do patchset, contagem de
patches). Os dados consolidados são armazenados em um formato analı́tico aberto, como
o Apache Parquet, que permite o particionamento eficiente para análises temporais.

A segunda etapa utiliza o histórico de código-fonte arquivado pela iniciativa
Software Heritage. O projeto organiza o histórico de múltiplos repositórios em
um único grafo de Merkle deduplicado, onde as entidades são identificadas por hashs
estáveis, até quando originadas de repositórios distintos [Pietri et al. 2019], propriedade
fundamental para navegar pelo histórico de desenvolvimento do kernel.

A estratégia central é a integração dos dados das listas de e-mail com o grafo do
Software Heritage. Ao vincular as discussões com os artefatos de código corres-
pondentes, superamos as limitações de uma análise restrita ao histórico git. Essa aborda-
gem unificada permite investigar a autoria dos patches, o processo de revisão, e a relação
entre as discussões e os commits aplicados nos diferentes repositórios do kernel.

Para nossa prova de conceito apresentada neste trabalho, selecionamos a
exportação do grafo comprimido do Software Heritage 12. Devido a limitações
de armazenamento, utilizamos o subgrafo de 1.5TiB “History and hosting” Compressed
graph [Boldi et al. 2020]. O subgrafo contém revisões (commits) e origens (repositórios),
mas não o código-fonte. A partir da URL do repositório, buscamos o snapshot mais
recente no grafo do Software Heritage para extrair as releases (tags) e a última

9Veja linuxfoundation.org/resources/publications/
linux-kernel-report-2017

10Veja github.com/linux-duks/DUKS
11O pacote de replicação está disponı́vel em archive.softwareheritage.org/swh:1:

rev:dbce519d25dcaa8cc1405098ce2f20fd44f02636;origin=https://github.com/
linux-duks/DUKS-2025-replication-pkg

12Exportação de 18/05/2025: docs.softwareheritage.org/devel/swh-export/index.
html



revisão.

Em seguida, percorremos todo o histórico de commits via busca em largura, a
partir da revisão mais recente, criando um dataset tabular com data, hash e assinaturas de
cada commit. Para cruzar esses dados com as listas de e-mail e o arquivo MAINTAINERS,
revertemos a pseudonimização do Software Heritage, complementando nosso da-
taset com os dados de autoria obtidos diretamente dos repositórios git originais.

Para obter uma lista de mantenedores oficiais, obtivemos as entradas do arquivo
MAINTAINERS do Linux para cada revisão de arquivo. Juntamos esses dados ao nosso
conjunto usando o DuckDB 13. Em seguida, usando a biblioteca Polars 14, agregamos
os commits por data de criação para formar uma série temporal das métricas. Analisa-
mos as atribuições de cada mensagem de commit, identificando quais dos contribuidores
marcados também estão no arquivo MAINTAINERS.

Grafo SwH

Lista de E-Mail 
Agregação de 

Dados
Web API Dashboard

Figura 1. Visão em Alto Nı́vel dos Componentes Arquiteturais do DUKS

A Figura 1 ilustra uma visão geral da aplicação. Usamos ferramentas forne-
cidas pelo Software Heritage, como a swh.graph 15 implementada em Rust.
Nosso próximo incremento à prova de conceito é desenvolver uma camada de compati-
bilidade para acessar as entradas das listas de e-mail (em azul da figura) e cruzá-las com
as múltiplas árvores git do grafo original do Software Heritage (em laranja). As
métricas são pré-calculadas antes de serem servidas para apresentação pelo Dashboard.

3. Um Dashboard para Estatı́sticas Unificadas do Kernel
Na primeira versão do DUKS, apresentamos uma visualização de séries temporais focada
na atividade e na carga de trabalho dos mantenedores. Todos os dados utilizados são
provenientes do Software Heritage, abordando o repositório mainline.

A estratégia descrita na Seção 2 fornece uma linha do tempo de todas as
contribuições observadas no repositório. No entanto, a data do commit de um patch
aceito representa somente o passo final no processo de contribuição. De acordo com Jiang
et al. [Jiang et al. 2013], a maioria dos patches leva de três a seis meses para ser integrada.
Essa média pode mudar dependendo da complexidade de cada contribuição. Isso destaca
quanto de esforço do contribuidor ocorre antes da data registrada do commit. Portanto, ao
analisar o envolvimento de um contribuidor, cada commit aceito reflete a culminação de
potencialmente meses de trabalho e discussão. Para levar isso em conta, aplicamos uma
contagem móvel a várias métricas, estipulando atividade de contribuidores nos perı́odos
que antecederam cada commit.

13Veja duckdb.org/
14Veja pola.rs/
15Veja docs.softwareheritage.org/devel/apidoc/swh.graph.html



Uma das perguntas iniciais que motivaram nosso trabalho foi: Quantos mantene-
dores ativos existem no kernel do Linux? Como mencionado anteriormente, o arquivo
MAINTAINERS lista os responsáveis por cada driver e subsistema do kernel. Na Figura 2
analisamos essa questão em detalhes. Utilizamos janelas de um mês ou um ano para todas
as séries temporais, exceto para as dados do arquivo MAINTAINERS, que representa um
valor fixo em um determinado ponto no tempo.

(a) (b)

Figura 2. Atividade de Mantenedores e Contribuidores em diferentes papéis

Os gráficos na Figura 2 exibem, em ordem decrescente de magnitude:
Maintainers Listed (número de mantenedores registrados no arquivo MAINTAINERS);
Authors (número de autores de commits); Supporting Maintainers (número de mante-
nedores atuando em papéis diferentes de Autor ou Committer); Authoring Maintainers
(número de autores também listados como mantenedores); Committers (número de in-
divı́duos que criaram commits); e Committing Maintainers (número de mantenedores que
criaram commits).

O gráfico (Figura 2.a) apoia nossa suspeita de uma disparidade entre mantenedo-
res listados e ativos. Essa diferença permanece considerável mesmo considerando janelas
móveis de um ano (Figura 2.b). Embora essa disparidade não seja necessariamente um
sinal de preocupação, dado que muitas áreas do kernel do Linux são estáveis e requerem
pouca ou nenhuma manutenção, a lacuna persistente entre as séries de Committers e Man-
tenedores que Fizeram Commits (as duas últimas) indica que nem todos os indivı́duos que
fazem commit de código estão formalmente listados no arquivo MAINTAINERS.

Figura 3. Efeitos do Ciclo de Lançamento/Estabilização nas Contribuições

Também investigamos as contribuições no ciclo de lançamento/estabilização, ins-
pirados por Rahman et al. [Rahman and Rigby 2014]. Na Figura 3, mostramos a média
de commits e autores únicos em uma janela de duas semanas. Conforme explorado pelo
autor anterior, o impacto do método de gerenciamento centrado em datas é visı́vel.



4. Discussão e Considerações Finais

O fluxo de trabalho de desenvolvimento do kernel do Linux é predominantemente baseado
em discussões e revisões em suas listas de e-mail. Idealizamos o DUKS, uma ferramenta
inovadora de análise de repositórios adaptada para o kernel do Linux. Ele incorpora dados
de suas listas de e-mail ao modelo de grafo usado para representar repositórios de código
no Software Heritage, permitindo análises anteriormente inviáveis.

Estudos recentes exploram o valor cientı́fico dos dados extraı́dos das listas de e-
mail do kernel do Linux. Por exemplo, Schneider et al. [Schneider et al. 2016] analisam
as diferenças na forma como os lı́deres se comunicam nas listas de e-mail do kernel; e
Hatta et al. [Hatta 2018] examinam o papel das listas de e-mail no desenvolvimento de
Software Livre, focando no projeto Debian.

Além disso, o GrimoireLab é um conjunto de ferramentas para recuperar, enri-
quecer e visualizar dados sobre o desenvolvimento de software [Dueñas et al. 2021]. É
uma ferramenta poderosa de propósito geral, mas não adaptada ao kernel do Linux. Em-
bora alguns dos propósitos do GrimoireLab se sobreponham aos nossos, nosso trabalho
considera detalhes especı́ficos do kernel do Linux. Por exemplo, para identificar contribu-
idores, utilizamos o arquivo MAINTAINERS (exclusivo do kernel do Linux), bem como
assinaturas de atribuição, também conhecidas como git trailers. No entanto, a ferramenta
coletora do GrimoireLab, Perceval [Dueñas et al. 2018], descarta todos os trailers não
padronizados 16.

Para nossa prova de conceito, criamos nosso próprio ı́ndice do Software
Heritage incluindo apenas os repositórios relevantes para o desenvolvimento do ker-
nel do Linux. Essa abordagem elimina a necessidade de máquinas de alto desempenho
e armazenamento para lidar com o grafo completo fornecido pelo projeto. Adicional-
mente, usamos uma pilha auto-hospedada configurada via swh-docker 17. Com essa
configuração, por exemplo, enfileiramos tarefas de indexação para os repositórios lista-
dos no arquivo MAINTAINERS, que correspondem aos subsistemas, drivers e árvores de
ferramentas do projeto. Embora essa visão de grafo não seja ideal para analisar métricas
de séries temporais, ela permite diferentes estratégias de exploração, algoritmos e uma
nova classe de visualizações baseadas em grafos. No entanto, ainda é possı́vel derivar
estruturas de séries temporais do grafo, como demonstrado em nossa prova de conceito.

Nenhuma mensagem de commit isolada reflete, por si só, o tempo e o esforço
que um contribuidor investe em um patch. As listas de e-mail podem ajudar a revelar
esse esforço, preservando dados que possibilitam identificar múltiplas versões da mesma
contribuição, mapear discussões técnicas que moldaram decisões de design especı́ficas e
entender quais membros da comunidade contribuı́ram ao longo do desenvolvimento do
patch. Ao integrar fontes complementares de informação e considerar as particularida-
des do Kernel Linux, nossa abordagem visa a facilitar a compreensão de seu fluxo de
contribuição. Consequentemente, nossa abordagem apoia múltiplas análises sobre a sus-
tentabilidade do modelo de manutenção adotado por um dos sistemas de software mais
crı́ticos na computação moderna.

16Veja perceval/backends/core/git.py, linhas 590 a 758: github.com/chaoss/
grimoirelab-perceval/tree/1.3.1

17Veja gitlab.softwareheritage.org/swh/devel/docker.git



Referências
Boldi, P., Pietri, A., Vigna, S., and Zacchiroli, S. (2020). Ultra-large-scale repository

analysis via graph compression. In 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pages 184–194.

Di Cosmo, R. and Zacchiroli, S. (2017). Software heritage: Why and how to preserve
software source code. In iPRES 2017.

Dueñas, S., Cosentino, V., Robles, G., and Gonzalez-Barahona, J. M. (2018). Perceval:
software project data at your will. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE ’18, page 1–4, New York,
NY, USA. Association for Computing Machinery.

Dueñas, S., Cosentino, V., Gonzalez-Barahona, J. M., del Castillo San Felix, A.,
Izquierdo-Cortazar, D., Cañas-Dı́az, L., and Pérez Garcı́a-Plaza, A. (2021). Grimoire-
lab: A toolset for software development analytics. PeerJ Computer Science, 7(e601).

Hatta, M. (2018). The role of mailing lists for policy discussions in open source develop-
ment. Annals of Business Administrative Science, 17(1):31–43.

Jiang, Y., Adams, B., and German, D. M. (2013). Will my patch make it? and how fast?
case study on the linux kernel. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 101–110.

Palix, N., Saha, S., Thomas, G., Calvès, C., Lawall, J., and Muller, G. (2011). Faults in
linux: Ten years later. ACM SIGARCH Computer Architecture News, 39.

Pietri, A., Spinellis, D., and Zacchiroli, S. (2019). The Software Heritage Graph Dataset:
Public Software Development Under One Roof. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 138–142, Montreal, QC,
Canada. IEEE.

Pinheiro, E. and Meirelles, P. (2024). Understanding group maintainership model in the
linux kernel development. In Anais do XII Workshop de Visualização, Evolução e
Manutenção de Software, pages 113–124, Porto Alegre, RS, Brasil. SBC.

Rahman, M. T. and Rigby, P. C. (2014). Contrasting development and release stabilization
work on the linux kernel. In International Workshop on Release Engineering.

Schneider, D., Spurlock, S., and Squire, M. (2016). Differentiating Communication Styles
of Leaders on the Linux Kernel Mailing List. In Proceedings of the 12th International
Symposium on Open Collaboration, pages 1–10, Berlin Germany. ACM.

Wen, M. S. R. (2021). What happens when the bazaar grows: a comprehensive study
on the contemporary Linux kernel development model. PhD thesis, University of São
Paulo.


