DUKS: visualizacoes e analises unificadas para o Kernel Linux
Rafael Passos, Arthur Pilone, David Tadokoro, Paulo Meirelles

Free Software Competence Center, Institute of Mathematics and Statistics
University of Sao Paulo, Brazil
{repassos,arthurpilone,davidbtadokoro} @usp.br,paulormm @ime.usp.br

Abstract. The decentralized nature of the Linux kernel’s development hinders
the analysis of its maintenance model. Current tools fail to capture nuances such
as the flow of commits between repositories. We propose DUKS (Dashboard
for Unified Kernel Statistics), a framework that integrates data from mailing
lists and git trees collected from the Software Heritage to provide new
insights into the project’s health and evolution.

Resumo. A natureza descentralizada do desenvolvimento do kernel Linux difi-
culta a andlise de seu modelo de manutencdo. Ferramentas atuais ndo capturam
nuances como o fluxo de commits entre repositorios. Propomos o DUKS (Dash-
board for Unified Kernel Statistics), um framework que integra dados de listas
de e-mail e drvores git coletadas do Software Heritage para fornecer
novas percepgoes sobre a saiide e evolugcdo do projeto.

1. Introducao

O kernel do Linux é uma base da infraestrutura tecnoldgica moderna, mas seu fluxo de
trabalho ainda reflete praticas de desenvolvimento colaborativo de mais de duas décadas,
centradas no uso de e-mail !. O processo de contribuiciio baseia-se no envio de patches
(commits do git) através de listas de e-mail. Nesses canais, contribuidores e mantene-
dores conduzem um processo iterativo de revisdo para garantir a qualidade do cédigo
antes de sua integracdo ao repositdrio principal (mainline) [Palix et al. 2011]. O cresci-
mento continuo do kernel em extensao, complexidade e nimero de contribuidores levanta
preocupacdes sobre a sustentabilidade de seu modelo de manutencdo. A comunidade 2
345678 e aacademia alertam que o modelo de desenvolvimento atual pode se tornar
insustentavel [Wen 2021, Pinheiro and Meirelles 2024]. Um desafio € a dificuldade em
estimar o numero de mantenedores verdadeiramente ativos. O uso exclusivo do arquivo
MAINTAINERS é impreciso, € uma medicdo acurada exige o cruzamento de multiplas
fontes de dados, como listas de e-mail e o histérico do git, uma tarefa invidvel sem ferra-
mentas especializadas.

Adicionalmente, técnicas convencionais de mineracao de software nao capturam
as particularidades do ecossistema do kernel. Elas raramente detalham as intera¢des que

'Veja 1wn.net /Articles/702177/

2Veja 1lwn.net /Articles/572003

3Veja lwn.net /Articles/571995

*Veja lwn.net /Articles/670087

>Veja lwn.net /Articles/749676
®Vejablog.ffwll.ch/2017/01/maintainers—dont-scale.html
"Veja lwn.net /Articles/745817

8Veja 1wn.net /Articles/842415

levaram a aceitacdo ou rejei¢ao de um patch, ou consideram as fases distintas do ciclo de
desenvolvimento, como os periodos de integragdo (merge) e estabilizacdo °, que poderiam
fornecer insights valiosos sobre o fluxo de contribuicdes.

Neste artigo, propomos 0 DUKS — Dashboard for Unified Kernel Statistics '°,
uma abordagem inovadora para coletar, agregar e visualizar métricas de desenvolvi-
mento adaptadas ao modelo do kernel do Linux. Nosso método integra dados das
listas de e-mail com o grafo de cddigo-fonte e versionamento do projeto Software
Heritage [Di Cosmo and Zacchiroli 2017]. Apresentamos também uma prova de con-
ceito do DUKS, ilustrando o potencial da ferramenta para apoiar anélises sobre a satide do
modelo de manutengdo do kernel !!.

2. Processamento e Coleta de Dados

Nossa abordagem explora dados publicos do desenvolvimento do Kernel Linux, proveni-
entes de listas de e-mail e repositérios git, para fundamentar andlises empiricas e repro-
dutiveis sobre a sustentabilidade de seu modelo de desenvolvimento.

A primeira etapa consiste na coleta e estruturacdo de dados das listas de e-mail
do kernel, como as arquivadas no Kernel Lore Archives. Desenvolvemos um esquema de
dados especializado para capturar o contetido, os metadados dos patches e informacdes
relevantes extraidas do corpo e assunto dos e-mails (e.g., versao do patchset, contagem de
patches). Os dados consolidados sdo armazenados em um formato analitico aberto, como
o Apache Parquet, que permite o particionamento eficiente para andlises temporais.

A segunda etapa utiliza o histérico de cddigo-fonte arquivado pela iniciativa
Software Heritage. O projeto organiza o histérico de multiplos repositérios em
um unico grafo de Merkle deduplicado, onde as entidades sdo identificadas por hashs
estdveis, até quando originadas de repositdrios distintos [Pietri et al. 2019], propriedade
fundamental para navegar pelo histérico de desenvolvimento do kernel.

A estratégia central € a integracdo dos dados das listas de e-mail com o grafo do
Software Heritage. Ao vincular as discussdes com os artefatos de codigo corres-
pondentes, superamos as limitagdes de uma andlise restrita ao histérico git. Essa aborda-
gem unificada permite investigar a autoria dos patches, o processo de revisao, e a relacao
entre as discussoes e os commits aplicados nos diferentes repositorios do kernel.

Para nossa prova de conceito apresentada neste trabalho, selecionamos a
exportacdo do grafo comprimido do Software Heritage '2. Devido a limitacdes
de armazenamento, utilizamos o subgrafo de 1.5TiB “History and hosting” Compressed
graph [Boldi et al. 2020]. O subgrafo contém revisdes (commits) e origens (repositorios),
mas nao o codigo-fonte. A partir da URL do repositdrio, buscamos o snapshot mais
recente no grafo do Software Heritage para extrair as releases (tags) € a ultima

Veja linuxfoundation.org/resources/publications/
linux—-kernel-report-2017

0Veja github.com/linux-duks/DUKS

O pacote de replicacio estd disponivel em archive.softwareheritage.org/swh:1:
rev:dbce519d25dcaa8ccl405098ce2£f20£fd44£02636;0rigin=https://github.com/
linux—-duks/DUKS-2025-replication-pkg

2Exportacio de 18/05/2025: docs.softwareheritage.org/devel/swh—export/index.
html

revisao.

Em seguida, percorremos todo o histérico de commits via busca em largura, a
partir da revisdo mais recente, criando um dataset tabular com data, hash e assinaturas de
cada commit. Para cruzar esses dados com as listas de e-mail e o arquivo MAINTAINERS,
revertemos a pseudonimizagdo do Software Heritage, complementando nosso da-
taset com os dados de autoria obtidos diretamente dos repositdrios git originais.

Para obter uma lista de mantenedores oficiais, obtivemos as entradas do arquivo
MAINTAINERS do Linux para cada revisao de arquivo. Juntamos esses dados ao nosso
conjunto usando o DuckDB 3. Em seguida, usando a biblioteca Polars !4, agregamos
os commits por data de criagdo para formar uma série temporal das métricas. Analisa-
mos as atribui¢des de cada mensagem de commit, identificando quais dos contribuidores
marcados também estao no arquivo MAINTAINERS.

Grafo SwWH

E5— -
@

L=X_~-~ —

<"’7777”"" |l =—
4 D [m—
:
B Agregacao de Web API Dashboard
Lista de E-Mail Dados

Figura 1. Visao em Alto Nivel dos Componentes Arquiteturais do DUKS

A Figura 1 ilustra uma visdo geral da aplicacdo. Usamos ferramentas forne-
cidas pelo Software Heritage, como a swh.graph ' implementada em Rust.
Nosso proximo incremento a prova de conceito é desenvolver uma camada de compati-
bilidade para acessar as entradas das listas de e-mail (em azul da figura) e cruza-las com
as multiplas arvores git do grafo original do Software Heritage (em laranja). As
métricas sao pré-calculadas antes de serem servidas para apresentacao pelo Dashboard.

3. Um Dashboard para Estatisticas Unificadas do Kernel

Na primeira versao do DUKS, apresentamos uma visualizagdo de séries temporais focada
na atividade e na carga de trabalho dos mantenedores. Todos os dados utilizados sdao
provenientes do Software Heritage, abordando o repositério mainline.

A estratégia descrita na Secdo 2 fornece uma linha do tempo de todas as
contribui¢des observadas no repositorio. No entanto, a data do commit de um patch
aceito representa somente o passo final no processo de contribuicdo. De acordo com Jiang
et al. [Jiang et al. 2013], a maioria dos patches leva de trés a seis meses para ser integrada.
Essa média pode mudar dependendo da complexidade de cada contribuicao. Isso destaca
quanto de esfor¢o do contribuidor ocorre antes da data registrada do commit. Portanto, ao
analisar o envolvimento de um contribuidor, cada commit aceito reflete a culminacao de
potencialmente meses de trabalho e discussdo. Para levar isso em conta, aplicamos uma
contagem moével a varias métricas, estipulando atividade de contribuidores nos periodos
que antecederam cada commit.

BVeja duckdb.org/
“Vejapola.rs/
15Veja docs.softwareheritage.org/devel/apidoc/swh.graph.html

Uma das perguntas iniciais que motivaram nosso trabalho foi: Quantos mantene-
dores ativos existem no kernel do Linux? Como mencionado anteriormente, o arquivo
MAINTAINERS lista os responsaveis por cada driver e subsistema do kernel. Na Figura 2
analisamos essa questao em detalhes. Utilizamos janelas de um més ou um ano para todas
as séries temporais, exceto para as dados do arquivo MAINTAINERS, que representa um
valor fixo em um determinado ponto no tempo.

|11

500
N ?‘C"/\\‘ﬂfy\\ [&fo/\/\lm AM Q,/‘/z'f:ﬁ 00— —

0
Jan2022 Jui2022 Jan2023 Jul2023 Jan2024 Jul2024 Jan2025 Jan2022 Jul2022 Jan2023 Jul2023 Jan2024 Jul2024 Jan2025

(a) (b)

Figura 2. Atividade de Mantenedores e Contribuidores em diferentes papéis

Os graficos na Figura 2 exibem, em ordem decrescente de magnitude:
Maintainers Listed (nimero de mantenedores registrados no arquivo MAINTAINERS);
Authors (nimero de autores de commits); Supporting Maintainers (nimero de mante-
nedores atuando em papéis diferentes de Autor ou Committer); Authoring Maintainers
(nimero de autores também listados como mantenedores); Committers (nimero de in-
dividuos que criaram commits); e Committing Maintainers (nimero de mantenedores que
criaram commits).

O grafico (Figura 2.a) apoia nossa suspeita de uma disparidade entre mantenedo-
res listados e ativos. Essa diferenca permanece consideravel mesmo considerando janelas
moveis de um ano (Figura 2.b). Embora essa disparidade nao seja necessariamente um
sinal de preocupacdo, dado que muitas areas do kernel do Linux sdo estdveis e requerem
pouca ou nenhuma manutencao, a lacuna persistente entre as séries de Committers e Man-
tenedores que Fizeram Commits (as duas ultimas) indica que nem todos os individuos que
fazem commit de cédigo estao formalmente listados no arquivo MAINTAINERS.

o - [t ™ -
o o = { — — !
w w (=] w w w
) Al

—
] =]
— Authors
Commits
500

May 2024 Jul 2024 Sep 2024 Nowv 2024 Jan 2025 Mar 2025

Figura 3. Efeitos do Ciclo de Lancamento/Estabilizacao nas Contribui¢cées

Também investigamos as contribui¢des no ciclo de langamento/estabilizacao, ins-
pirados por Rahman et al. [Rahman and Rigby 2014]. Na Figura 3, mostramos a média
de commits e autores unicos em uma janela de duas semanas. Conforme explorado pelo
autor anterior, o impacto do método de gerenciamento centrado em datas € visivel.

4. Discussao e Consideracoes Finais

O fluxo de trabalho de desenvolvimento do kernel do Linux € predominantemente baseado
em discussOes e revisdes em suas listas de e-mail. Idealizamos o DUKS, uma ferramenta
inovadora de andlise de repositérios adaptada para o kernel do Linux. Ele incorpora dados
de suas listas de e-mail ao modelo de grafo usado para representar repositérios de codigo
no Software Heritage, permitindo andlises anteriormente inviiveis.

Estudos recentes exploram o valor cientifico dos dados extraidos das listas de e-
mail do kernel do Linux. Por exemplo, Schneider ef al. [Schneider et al. 2016] analisam
as diferencas na forma como os lideres se comunicam nas listas de e-mail do kernel; e
Hatta et al. [Hatta 2018] examinam o papel das listas de e-mail no desenvolvimento de
Software Livre, focando no projeto Debian.

Além disso, o GrimoireLab € um conjunto de ferramentas para recuperar, enri-
quecer e visualizar dados sobre o desenvolvimento de software [Duedas et al. 2021]. E
uma ferramenta poderosa de propdsito geral, mas nao adaptada ao kernel do Linux. Em-
bora alguns dos propdsitos do GrimoireLab se sobreponham aos nossos, nosso trabalho
considera detalhes especificos do kernel do Linux. Por exemplo, para identificar contribu-
idores, utilizamos o arquivo MAINTAINERS (exclusivo do kernel do Linux), bem como
assinaturas de atribui¢ao, também conhecidas como git trailers. No entanto, a ferramenta
coletora do GrimoireLab, Perceval [Dueias et al. 2018], descarta todos os trailers ndo
padronizados '°.

Para nossa prova de conceito, criamos nosso préprio indice do Software
Heritage incluindo apenas os repositorios relevantes para o desenvolvimento do ker-
nel do Linux. Essa abordagem elimina a necessidade de méaquinas de alto desempenho
e armazenamento para lidar com o grafo completo fornecido pelo projeto. Adicional-
mente, usamos uma pilha auto-hospedada configurada via swh-docker !7. Com essa
configuracdo, por exemplo, enfileiramos tarefas de indexacdo para os repositorios lista-
dos no arquivo MAINTAINERS, que correspondem aos subsistemas, drivers e arvores de
ferramentas do projeto. Embora essa visdo de grafo ndo seja ideal para analisar métricas
de séries temporais, ela permite diferentes estratégias de exploragdo, algoritmos € uma
nova classe de visualizacdes baseadas em grafos. No entanto, ainda é possivel derivar
estruturas de séries temporais do grafo, como demonstrado em nossa prova de conceito.

Nenhuma mensagem de commit isolada reflete, por si s6, o tempo e o esforco
que um contribuidor investe em um patch. As listas de e-mail podem ajudar a revelar
esse esfor¢o, preservando dados que possibilitam identificar multiplas versdes da mesma
contribui¢do, mapear discussoes técnicas que moldaram decisdes de design especificas e
entender quais membros da comunidade contribuiram ao longo do desenvolvimento do
patch. Ao integrar fontes complementares de informacao e considerar as particularida-
des do Kernel Linux, nossa abordagem visa a facilitar a compreensdo de seu fluxo de
contribui¢do. Consequentemente, nossa abordagem apoia multiplas anélises sobre a sus-
tentabilidade do modelo de manutengdo adotado por um dos sistemas de software mais
criticos na computagcdao moderna.

6Veja perceval/backends/core/git.py, ~ linhas 590 a 758: github.com/chaoss/
grimoirelab-perceval/tree/1.3.1
17Veja gitlab.softwareheritage.org/swh/devel/docker.git

Referéncias

Boldi, P., Pietri, A., Vigna, S., and Zacchiroli, S. (2020). Ultra-large-scale repository
analysis via graph compression. In 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pages 184—194.

Di Cosmo, R. and Zacchiroli, S. (2017). Software heritage: Why and how to preserve
software source code. In iPRES 2017.

Dueiias, S., Cosentino, V., Robles, G., and Gonzalez-Barahona, J. M. (2018). Perceval:
software project data at your will. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE *18, page 1-4, New York,
NY, USA. Association for Computing Machinery.

Duenas, S., Cosentino, V., Gonzalez-Barahona, J. M., del Castillo San Felix, A.,
Izquierdo-Cortazar, D., Caias-Diaz, L., and Pérez Garcia-Plaza, A. (2021). Grimoire-
lab: A toolset for software development analytics. PeerJ Computer Science, 7(e601).

Hatta, M. (2018). The role of mailing lists for policy discussions in open source develop-
ment. Annals of Business Administrative Science, 17(1):31-43.

Jiang, Y., Adams, B., and German, D. M. (2013). Will my patch make it? and how fast?
case study on the linux kernel. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 101-110.

Palix, N., Saha, S., Thomas, G., Calves, C., Lawall, J., and Muller, G. (2011). Faults in
linux: Ten years later. ACM SIGARCH Computer Architecture News, 39.

Pietri, A., Spinellis, D., and Zacchiroli, S. (2019). The Software Heritage Graph Dataset:
Public Software Development Under One Roof. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 138—142, Montreal, QC,
Canada. IEEE.

Pinheiro, E. and Meirelles, P. (2024). Understanding group maintainership model in the
linux kernel development. In Anais do XII Workshop de Visualiza¢do, Evolugdo e
Manutencgdo de Software, pages 113—124, Porto Alegre, RS, Brasil. SBC.

Rahman, M. T. and Rigby, P. C. (2014). Contrasting development and release stabilization
work on the linux kernel. In International Workshop on Release Engineering.

Schneider, D., Spurlock, S., and Squire, M. (2016). Differentiating Communication Styles
of Leaders on the Linux Kernel Mailing List. In Proceedings of the 12th International
Symposium on Open Collaboration, pages 1-10, Berlin Germany. ACM.

Wen, M. S. R. (2021). What happens when the bazaar grows: a comprehensive study
on the contemporary Linux kernel development model. PhD thesis, University of Sao
Paulo.

