
BULNER: BUg Localization with word embeddings and
NEtwork Regularization

Jacson Rodrigues Barbosa1,5, Ricardo Marcondes Marcacini3, Ricardo Britto4,
Frederico Soares6, Solange Rezende1, Auri M. R. Vincenzi2, Márcio E. Delamaro1

1ICMC-Universidade de São Paulo (USP)
2DC-Universidade Federal de São Carlos (UFSCar)

3Universidade Federal de Mato Grosso do Sul (UFMS)
4Ericsson AB / Blekinge Institute of Technology

5INF-Universidade Federal de Goiás (UFG)
6Tribunal de Justiça do Estado de Goiás

jacsonrb@usp.br, ricardo.marcacini@ufms.br, ricardo.britto@[ericsson.com,bth.se],

fasoares@tjgo.jus.br, {solange,delamaro}@icmc.usp.br, auri@dufscar.br

Abstract. Bug localization (BL) from the bug report is the strategic activity of
the software maintaining process. Because BL is a costly and tedious activity,
BL techniques information retrieval-based and machine learning-based could
aid software engineers. We propose a method for BUg Localization with word
embeddings and Network Regularization (BULNER). The preliminary results
suggest that BULNER has better performance than two state-of-the-art methods.

1. Introduction
Bug localization (BL) from bug reports is an expensive step in the software life cycle
because of the manual process of localization. For example, the Mozilla project receives
almost 300 bug reports per day, and each one needs a manual triage. Also, often, a
bug report (84-93% of bugs) impacts one or a few files [Thung et al. 2014]. There
is a family of bug localization techniques that uses Information Retrieval (IR). IR
suggests defective parts of a software system by automatically relating a bug report’s
vocabulary and associated source code metrics. IR often uses Vector Space Model
(VSM) but, due to VSM limitations, recent studies apply distributional semantics of
words [Rahman and Roy 2018].

In this paper, we propose BULNER, an IR-based bug localization method,
which stands for BUg Localization with word embeddings and Network Regularization.
BULNER considers both word embedding features of bug reports and features extracted
from project source file metrics. We combined these features in an information network
proposed in BULNER. We present a network regularization-based machine learning
method that obtains a more appropriate representation model for identifying potential
buggy files from bug report texts. Our research answers the following research questions:
RQ1 - How effective is BULNER? RQ2 - What is the contribution of each model?
We carried out an experimental evaluation using three well-known real-world datasets.



BULNER is competitive with two other state-of-the-art methods, and the experimental
results indicate that combining different representation models, such as information
networks and the vector-space model, is a promising method.

2. Bug Localization Data Model Representation
Bug localization has been modeled as an information retrieval task, where the bug report
is treated as a query, and sources code files that conform to the system are documents. The
goal is to select the files that better match the query based on a defined similarity measure.
The effectiveness of the similarity measure depends on the text representation model of
bug reports, often based on Bag-of-Words (BoW) and Word Embeddings (WEmb).

BoW representation uses terms (e.g., keywords) extracted from texts as features
in a vector space model. BoW is a document-term matrix, where each row (vector)
represents a document, each column represents a term (word) present in the document
collection, and each cell contains a measure (term frequency and inverse document
frequency) [Tan et al. 2005]. BoW representation has as main characteristics of the
high dimensionality and the high sparsity. However, these characteristics affect the
performance of machine learning algorithms negatively. Furthermore, machine learning
algorithms are not able to infer relations between terms or relations between documents
as they are not established by BoW.

In bug localization context, each source code is defined as weights’ vector
in BoW, and they use cosine similarity function to identify closely related vector.
Zhou et al. define BugLocator, an IR-based bug localization method based on revised
Vector Space Model. From the initial bug report, BugLocator applies textual similarity
using similar bugs’ information that was fixed before. Then, it ranks all suspicious sources
files [Zhou et al. 2012].

WEmb are a mapping table from words to continuous vectors (e.g., vec(“dog”)
= [0.8, 0.3, 0.1], vec(“cat”) = [0.7, 0.5, 0.1] , vec(“pasta”) = [0.2, 0.1, 0.7]). In this
example, the first parameter of each word represents some kind of animal. We could
calculate the semantic similarity between words by cosine similarity and consequently
calculate the similarity between sentences or entire documents. To obtain each above
vector, we use Skip-gram model proposed in the word2vec method for language
modeling [Mikolov et al. 2013]. It is a unsupervised method that define meaning each
word in its context (e.g., context(“dog”) = [“Pet,” “tail,” “smell,”], context(“cat”) = [“pet,”
“tail,” “home”]). Two sets of context words also have common conceptually. According
to the distributional hypothesis, we can estimate how close these two words are to each
other by comparing with others in same context [Mikolov et al. 2013].

Ye et al. use word embedding to train on software documents (API documents,
reference documents, and tutorials). They adapt the Skip-gram model and aggregated
software documents to estimate semantic similarities between them. Then, from an initial
bug report (query document), the bug localization model computes the ranking score for
all source code [Ye et al. 2016].

3. Proposed Method
In this section, we introduce a new method for Bug Localization, called BULNER.
Our method innovates by considering both the semantic content of bug reports through



language models and source code content through code metrics. Figure 1 shows an
overview of the BULNER method. The method has two stages: (1) language modeling
and (2) network regularization. Given a new bug report, BULNER identifies the most
similar bug reports, and the source code files that probably contain the related bug. While
the BULNER’s first stage enables more accurate computation of the similarity between
bug reports, the second performs fine-tuning of the language model by considering
relationships between bug reports, source code files, and code metrics.

Figure 1. An overview of the BULNER.

Unlike existing methods that calculate the similarity between bug reports through
keywords or language models, BULNER learns a new vector space model to directly
compares bug reports and source code files. We call this new vector space of Bug-Code
Vector Space Model. Moreover, our method allows the inclusion of domain information,
such as code metrics, during the learning process of this vector space model.

The first stage of the BULNER method uses a neural network. The primary
purpose of this stage is to learn word vector representations from a sizeable textual dataset
of the software engineering domain. For example, the term ‘abort’ has the following
correlated terms in the language model used in BULNER: ‘interrupted,’ ‘terminate,’ ‘halt,’
‘timed-out,’ and ‘exit.’ The BULNER method uses the language model based on the
skip-gram model trained over 15GB of textual data from Stack Overflow posts, as proposed
in [Efstathiou et al. 2018]. The output of the skip-gram model is a representation called
word embedding, where each term t contains a representation Y(t) in the d-dimensional
vector space, i.e., Y(t) ∈ Rd.



The second stage of the BULNER method uses network regularization to perform
the fine-tuning of the model obtained in the first stage. Given a bug reports dataset,
we propose a heterogeneous network-based representation N = (O,R,W ), where O
represents a set of objects oi of the network, R represents a set of relations roi,oj between
objects, and W represents a set of weights wroi,oj of the relations. We organize the set of
network objects into four different types O = {OB, OT , OS, OM}, where OB are objects
that identify each bug report,OT are terms t extracted from textual data of the bug reports,
OS are source files related to bug reports, and OM are code metrics (discretized into
intervals) computed from the source code files.

The general idea of network regularization is to obtain a new representation
F ∈ Rd in the d-dimensional vector space model, which satisfies two assumptions:
(1) two objects oi and oj that share neighbors in the network must have similar vector
representation, i.e., F(oi) ∼ F(oj), and (2) term-type objects in the network must have
vector representation similar to the word embedding representation, i.e., F(t) ∼ Y(t).

It is inspired by the theoretical regularization framework of Ji et al. [Ji et al. 2010].
In Equation 1 we propose a regularization function for the BULNER method, where the
goal is to minimize the function according to a representation model F for all objects of
the network, given a word embedding Y.

Q(F) =
{OB ,OT ,OS ,OM }

∑
Oi,Oj

1

2
∑
oi∈Oi

∑
oj∈Oj

wroi,oj ∣F(oi) − F(oj)∣
2
+ lim
µ→∞

µ ∑
t∈OT

∣F(t) −Y(t)∣2 (1)

The first term of the regularization function is responsible for the first assumption,
in which related objects must have similar representations to minimize the distance
wroi,oj ∣F(oi) − F(oj)∣

2. Regarding the second assumption, the proposed regularization
function ensures that the d-dimensional representation of a term will remain the same as
the word embedding representation, i.e., limµ→∞ µ∑t∈OT

∣F(t) −Y(t)∣2.

In practical terms, we can minimize the regularization function of the Equation 1
by using label (information) propagation techniques. In this case, BULNER initializes
the representation of the term type objects according to word embedding Y, whereas the
representation of the remaining objects of the network can be randomly initialized. In
each iteration, BULNER propagates the information of the term objects (i.e., WEmb) to
the objects of the bug report type. The information is then propagated from bug reports to
source code files objects and then to objects representing code metrics. The information
is propagated back and each object oi ∈ O adjusts its F(oi) representation. This process
continues until there are no more significant changes in the F representation or until it
reaches a maximum number of iterations, i.e., until the convergence of the BULNER
method in which F is the learned representation for bug-code vector space model.

After the regularization process, we can directly compute the similarity between a
bug report object ob ∈ OB and a source code type object os ∈ OS as defined in the cosine
similarity of Equation 2.

cos(ob, os) =
F(ob) ⋅ F(os)

∥F(ob)∥∥F(os)∥
(2)



sim(rnew, rtrain) = (1 − α)BOW (rnew, rtrain) + αBULNER(rnew, rtrain) (3)

A new bug report can be represented in the bug-code space vector through the
word embedding of its terms and thus obtain a representation F(ob). Equation 3 defines
a new similarity function for bug localization in BULNER, which is a linear combination
of similarity between bug reports in BoW model and similarity in Bug-Code Vector Space
model since new bug reports contain only textual information. While we can define
the BoW function as the cosine similarity between bug report keywords, the BULNER
function represents the cosine similarity between the bug report representation F(ob)
and the source code file F(os) (Equation 2). The α parameter is a combination factor
that allows defining the weight of the bug-code vector space model in the new similarity
function, which can be estimated empirically. We use this new similarity function to
calculate the scores for source files potentially related to the new bug reports.

4. Experimental Evaluation
4.1. Dataset
To evaluate our approach, we obtained data from three open source projects: AspectJ,
Birt, and Tomcat. We extracted bug report data associated with each project from
the Bugzilla repository provided by Ye et al. [Ye et al. 2014], while we mined each
project’s repository (located in GitHub) to obtain code-related metrics. For each bug
report, we checked out a before-fix version of the source code from Github. Then,
we used Understand™1 to calculate different code metrics (object-oriented, volume and
complexity metrics).

4.2. Baselines
We consider two methods in the literature for experimental evaluation. The first uses
only the BoW model and cosine similarity to retrieve similar bug reports and related
source files [Zhou et al. 2012]. The second combines the BoW model and WEmb
models [Ye et al. 2016].

4.3. Evaluation Metrics
We use Mean Average Precision (MAP) as an evaluation criterion. Equation 4 calculates
the precision in identifyingNP buggy files, given a maximum value of k recommendations.
Equation 5 calculates the precision average, where NPI is the total number of positive
instances. Equation 6 calculates the MAP, where M is the total of bug reports. We use
MAP with k = {1, 5, 10}, presented as MAP@1, MAP@5 and MAP@10.

P (k) = NB

k
(4) AP =

N

∑
i=1

P (i)
NPI

(5) MAP =
1

M

M

∑
j=1

AP (j) (6)

5. Results and Discussion
5.1. RQ1: How effective is BULNER?
Table 1 shows the best method’s performance (max MAP performance independent of
combination factor) for the three datasets. The results suggest that BULNER is the best

1Understand™: https://scitools.com/.

https://scitools.com/


method for the three datasets. BULNER achieves this result by combining BoW with
WEmb and Network Regularization. It receives as input a heterogeneous network (N ),
and it treats each type of objects and links separately. Moreover, BULNER minimizes
classification error when preserving consistency for each relation graph (R) by applying
graph regularization [Ji et al. 2010]. A statistical analysis of the results (Student’s t-Tests
with 95% confidence) does not allow us to state that the BULNER method is significantly
superior to other methods, mainly due to the few data sets used in the experimental
evaluation.

Table 1. MAP Performance Comparison with the State-of-the-art Methods
AspectJ Tomcat Birt

Methods MAP@1 MAP@5 MAP@10 MAP@1 MAP@5 MAP@10 MAP@1 MAP@5 MAP@10
BoW+Cosine 0.1185 0.1738 0.1879 0.2121 0.2908 0.3017 0.0900 0.1372 0.1477
Embedding 0.1185 0.1738 0.1811 0.2134 0.2908 0.3001 0.0928 0.1402 0.1504
Bulner 0.1390 0.1913 0.2059 0.2201 0.2952 0.3078 0.0968 0.1420 0.1525

5.2. RQ2: What is the contribution of each method?

We evaluate the contributions of each method by the combination factor (α). In Figure 2,
when α=0, all methods have the performance equal to baseline (BoW+Cosine), but when
we increment α, each method has different behavior. In general, BULNER has better
performance for: AspectJ when 0.15 < α < 0.3; Birt when α = 0.1 and Tomcat when
0.05 < α < 0.1. These variations between software project occur because each one has its
context.

5.3. Threats to Validity

Regarding Internal validity, as only bug reports with “resolved” status were selected
(because they represent bug reports that span the entire life cycle), the proposed model did
not consider an immature bug report, such as those newly created by stakeholders. This
restriction may have an impact on the performance of the proposed model. Regarding
External validity, the results of this study can not be generalized to proprietary software
since only Open Source software projects were analyzed. Finally, concerning Conclusion
validity, we choose dataset provided by Ye et al. that is largely used to maximize the
quality of the data collected.

6. Related Work

Zhou et al. propose an IR-based bug localization tool that using a revised Vector
Space Model (rVSM) to represent software documents (bug report and source
code) [Zhou et al. 2012]. In our study, we define a baseline using the Vector Space Model
to representing data sources.

Wen et al. define an IR-based bug localization model that combining
three models: the natural language model, code entity names model, and Boosting
model [Wen et al. 2016]. In our work, we also evaluate the impact of combining models.
Firstly, we only used the embedding model in BULNER, and then we incremental added
value of regularization and combined it with the embedding model.



Combination Factor

M
AP

@
1

0,050

0,075

0,100

0,125

0,150

0 0,1 0,2 0,3 0,4 0,5

(a) AspectJ (MAP@1)

Combination Factor

M
AP

@
1

0,05

0,06

0,07

0,08

0,09

0,10

0 0,1 0,2 0,3 0,4 0,5

(b) Birt (MAP@1)

Combination Factor

M
AP

@
1

0,17

0,18

0,19

0,20

0,21

0,22

0,23

0 0,1 0,2 0,3 0,4 0,5

(c) Tomcat (MAP@1)

Combination Factor

M
AP

@
5

0,100

0,125

0,150

0,175

0,200

0 0,1 0,2 0,3 0,4 0,5

(d) AspectJ (MAP@5)

Combination Factor

M
AP

@
5

0,050

0,075

0,100

0,125

0,150

0 0,1 0,2 0,3 0,4 0,5

(e) Birt (MAP@5)

Combination Factor
M

AP
@

5

0,25

0,26

0,27

0,28

0,29

0,30

0 0,1 0,2 0,3 0,4 0,5

(f) Tomcat (MAP@5)

Combination Factor

M
AP

@
10

0,100

0,125

0,150

0,175

0,200

0,225

0 0,1 0,2 0,3 0,4 0,5

(g) AspectJ (MAP@10)

Combination Factor

M
AP

@
10

0,050

0,075

0,100

0,125

0,150

0,175

0 0,1 0,2 0,3 0,4 0,5

(h) Birt (MAP@10)

Combination Factor

M
AP

@
10

0,24

0,26

0,28

0,30

0,32

0 0,1 0,2 0,3 0,4 0,5

(i) Tomcat (MAP@10)

Figure 2. Methods’ performance. ▲ BULNER; ● BoW+Cosine; ◆ Embedding.

7. Conclusion

We proposed a method BULNER, which locates bugs in terms of source files from bug
reports and source code data. Our method is competitive with two other state-of-the-art
methods. BULNER is very promising. In one case, it can recommend the 30% suspicious
file within top 5 for one bug report. For future works, we intend to compare our work with
different types of network embedding methods, for example, network embedding with
side information or advanced information preserving network embedding. Additionally,
we plan to extend our dataset with source code change genealogy and evaluate the impact
on the performance of the methods. Our BULNER source code, as well as the datasets
used, are publicly available at https://github.com/jacsonrbinf/bulner.



References
[Efstathiou et al. 2018] Efstathiou, V., Chatzilenas, C., and Spinellis, D. (2018). Word

embeddings for the software engineering domain. In Proceedings of the 15th
International Conference on Mining Software Repositories, MSR ’18, pages 38–41,
New York, NY, USA. ACM.

[Ji et al. 2010] Ji, M., Sun, Y., Danilevsky, M., Han, J., and Gao, J. (2010). Graph
regularized transductive classification on heterogeneous information networks. In
Balcázar, J. L., Bonchi, F., Gionis, A., and Sebag, M., editors, Machine Learning
and Knowledge Discovery in Databases, pages 570–586, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Mikolov et al. 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.
(2013). Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran
Associates, Inc.

[Rahman and Roy 2018] Rahman, M. M. and Roy, C. K. (2018). Improving ir-based bug
localization with context-aware query reformulation. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2018, pages 621–632, New
York, NY, USA. ACM.

[Tan et al. 2005] Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data
Mining. Addison-Wesley.

[Thung et al. 2014] Thung, F., Le, T.-D. B., Kochhar, P. S., and Lo, D. (2014). Buglocalizer:
Integrated tool support for bug localization. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 767–770, New York, NY, USA. ACM.

[Wen et al. 2016] Wen, M., Wu, R., and Cheung, S. (2016). Locus: Locating bugs from
software changes. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 262–273.

[Ye et al. 2014] Ye, X., Bunescu, R., and Liu, C. (2014). Learning to rank relevant files
for bug reports using domain knowledge. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pages
689–699, New York, NY, USA. ACM.

[Ye et al. 2016] Ye, X., Shen, H., Ma, X., Bunescu, R., and Liu, C. (2016). From
word embeddings to document similarities for improved information retrieval in
software engineering. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 404–415.

[Zhou et al. 2012] Zhou, J., Zhang, H., and Lo, D. (2012). Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports. In
2012 34th International Conference on Software Engineering (ICSE), pages 14–24.


	Introduction
	Bug Localization Data Model Representation
	Proposed Method
	Experimental Evaluation
	Dataset
	Baselines
	Evaluation Metrics

	Results and Discussion
	RQ1: How effective is BULNER?
	RQ2: What is the contribution of each method?
	Threats to Validity

	Related Work
	Conclusion

