
Clustering Similarity Measures for Architecture Recovery of
Evolving Software

Douglas E. U. Silva1, Roberto A. Bittencourt1, Rodrigo T. Calumby1

1 UEFS – Universidade Estadual de Feira de Santana
Av. Transnordestina, s/n, Novo Horizonte

Feira de Santana – BA, Brasil – 44036-900

douglaseusilva@gmail.com, roberto@uefs.br, rtcalumby@uefs.br

Abstract. Automated software architecture recovery of module views from
source code is a challenging research issue. Different similarity measures are
used to evaluate clustering algorithms in the software architecture recovery of
module views. However, few studies seek to evaluate whether such measures ac-
curately capture the similarities between two clusterings. This work presents an
evaluation of six clustering similarity measures through the use of intrinsic qual-
ity and stability measures and the use of ground truth architectures proposed by
developers. The results suggest that the MeCl metric is the most adequate to
measure similarity in the context of comparison with ground truth models pro-
vided by developers. However, when the architectural models do not exist, the
Purity metric shows the best results, as measured by the correlation with the
intrinsic Silhouette coefficient.

1. Introduction
Clustering algorithms are quasi-automatic techniques that seek to identify clusters of sim-
ilar software entities from their features. In general, we may state that clustering software
entities into modules, from a relation of similarity between them is a way to modularize a
system. These modules formed by such clustering algorithms are usually called clusters.

Previous work by Wu et al. (2005) extracted monthly versions of some open
source systems and applied different clustering algorithms to them, defining stability and
authoritativeness metrics to evaluate the algorithms. Informally, stability indicates that
when a system undergoes changes, generated clusters must reflect these changes at the
architectural level. On the other hand, authoritativeness evaluates how resulting clusters
resembles a clustering created by a software architect, i.e., an architectural model. Un-
fortunately, their work used architecture views based on file allocation in source code
directories as the authority, and not a reference model of system modules explicitly de-
fined by software architects. More recent work by Garcia et al. (2013) and Lutellier et al.
(2015) evaluated several algorithms against five open source systems from the perspec-
tive of comparison with reference models and four different similarity metrics. Although
those papers advance the process of evaluating clustering techniques for software archi-
tecture recovery, one needs to define the best clustering similarity metrics by taking into
account appropriate clustering similarity criteria.

This work evaluates six similarity metrics, taking into account their authoritative-
ness and stability as well as their discriminatory power, and the comparison with intrinsic
clustering metrics and with variability measures of the evolving software.



2. Background
Agglomerative hierarchical algorithms are a class of clustering algorithms that start with
singleton clusters and, after N − 1 steps, all items are contained in a single cluster. Typ-
ically, rule of thumb cutoff points stop the clustering process before reaching the single
cluster in order to generate meaningful clusterings.

2.1. Clustering Similarity Metrics
The work of Wu et al. (2005) proposed the evaluation of clustering algorithms from three
criteria, from which we use two. a) Authoritativeness. Clusters generated by the algo-
rithms should resemble some authority. Therefore, authoritativeness compares clusterings
computed by an algorithm against a reference model clustering. b) Stability. Similar clus-
terings should be produced by similar versions of a software system. Therefore, stability
assessment compares clusterings of consecutive versions of the target system.

Next, we present some clustering similarity metrics from the literature.

Precision-Recall. Defined by Anquetil and Lethbridge (1999) for the field of software
architecture recovery, Precision-Recall, as a measure of similarity between two software
clusterings A and B, is computed based on the comparison of entity pairs, and is defined
as follows: a) Precision: Percentage of intra-cluster pairs in clustering A that are also
intra-cluster pairs in clustering B. b) Recall: Percentage of intra-cluster pairs present in
clustering B that are also intra-cluster pairs in clustering A.

To balance the precision and recall values, we use the F1 measure which is defined
as the harmonic mean of precision and recall.

B-Cubed Precision-Recall. The B-Cubed version of Precision-Recall was created by
associating precision and recall for each item in the clustering. The B-Cubed metric
defines precision as the number of items in the same cluster belonging to its category, and
recall as how many items in its category appear in the cluster.

As in the Precision-Recall metric, we also use the F1-measure to combine the
precision and recall values computed by the B-Cubed metric. For simplicity, we will call
the F1-measure of B-Cubed Precision-Recall as B-Cubed-F1.

Purity. Purity is a metric defined to quantify how much a cluster Ci is “pure”, that is,
how many items are correctly identified when comparing two clusterings A e B. This
way, Purity can be used as a similarity metric to computer the similarity between two
clusterings.

MoJo and MoJoSim. Tzerpos and Holt (1999) defined a dissimilarity metric between
two architectural clusterings called MoJo. This metric is based on the number of oper-
ations to transform one clustering into another. Move entails removing one entity from
one cluster and allocating it to another, and Join implies joining two existing clusters,
decreasing the number of clusters of one.

To measure similarity between two clusterings, we define MoJoSim:

MoJoSim(A,B) = 1− MoJo(A,B)

n
(1)

where n is the number of entities to be clustered.



EdgeSim. This metric was defined by Mitchell and Mancoridis (2001a) to deal with the
shortcomings of MoJo, that does not take into account the edges between entities.

Given a graph G = (V,E) representing the structure of a system, V being the
set of source code entities, and E the set of weighted dependencies between entities,
EdgeSim counts a set of pairs of edges which are either intra-cluster or inter-cluster in both
clusterings A and B. This collection of edges is called the Υ set. From the computation
of the Υ set, EdgeSim(A, B) is defined as:

EdgeSim(A,B) =
weights(Υ)

weights(E)
(2)

where weights(Υ) is the sum of the weights of the edges of the Υ set.

MeCl. Designed by Mitchell and Mancoridis (2001) to complement EdgeSim, MeCl
measures the similarity between two clusterings from a different perspective, considering
both vertices and edges.

MeCl(A,B) = 1− weights(ΥB)

weights(E)
(3)

where weights(ΥB) is the sum of the weights of the set of edges that are intra-cluster in A
but are inter-cluster in B, generating costs when inserting new inter-cluster edges. When
the edges are not weighted, their weight is taken as equal to one. MeCl is not reflexive,
i.e., MeCl(A,B) 6= MeCl(B,A), thus we take the minimum of both to measure MeCl.

2.2. Intrinsic Metrics of Clustering Quality
To evaluate the metrics, we compared the values of authoritativeness to an intrinsic metric
of clustering quality named Silhouette coefficient. This is an internal clustering evaluation
method used when there is no ground truth to compare to. It produces higher values when
clusters are compact and well spaced from each other. Equation 4 shows its definition.

S =
b(i)− a(i)

max (a(i), b(i))
(4)

where a(i) is the average distance of the item i to all other items in its cluster, and b(i) is
the average distance to all the items in the closest cluster to the given i.

The Silhouette of a cluster is the average of the Silhouettes of the cluster items.
The Silhouette of a clustering is the average of the clusters’ Silhouettes. The Silhouette
value ranges from −1 to 1, indicating a good clustering quality as it approaches 1.

2.3. Variability Metrics for Evolving Software Systems
To evaluate the adequacy of a stability metric, we need intrinsic measures of software
variability. Thus, we used information on software system variability over time. Given
the current version n of a system and its next version (n + 1), we may derive measures of
change existence and magnitude, which we name deltas. We used two types of deltas: one
in the number of lines of code (∆LOC) and another in the number of classes (∆Classes),
both computed between two consecutive versions of a software system.



Figure 1. Experimental Design.

3. Experimental Design
Figure 1 shows the experimental design of this study. In the first step, weekly versions of
the open source software systems are extracted. In the second, these versions are compiled
and their designs, i.e., simplified system graphs, are extracted from the compiled files. In
the third, we apply the clustering algorithms to the extracted designs. In the fourth and
fifth steps, the clusterings are evaluated through authoritativeness and stability metrics. In
the sixth, authoritativeness values are correlated with Silhouette values. In the seventh,
stability values are correlated with ∆LOC and ∆Classes. Finally, in the eighth, the
results of authoritativeness and stability are studied in terms of descriptive statistics, and
the computed correlations are analyzed to compare the clustering similarity metrics.

Table 1 lists the algorithms we used in our evaluation. The agglomerative algo-
rithms compute similarity between clusters through information retrieval (IR) techniques.
The IR techniques use only the vocabulary of code identifiers (e.g., class names, method
names), following a pipeline of tokenizing, stop-word removal, normalizing, stemming,
tf -idf computation and LSI reduction. We used the cut-off points 75 and 90 for the
agglomerative algorithms such as presented in the work of Wu et al. (2005). In our evalu-
ation, we use the software systems listed in Table 2. All of them are open source software
systems developed in Java.

Table 1. Clustering Algorithms Used in the Analysis.
Name Type Linkage Rule
SL75 Hierarchical Single
SL90 Hierarchical Single
CL75 Hierarchical Complete
CL90 Hierarchical Complete

Table 2. Target systems with ground truth architectures.
System Analysis Interval # Classes # Modules

SweetHome3D 03/08/09 to 02/28/10 142 to 165 9
Ant 10/29/06 to 10/21/07 487 to 511 16

Lucene 03/21/10 to 03/13/11 473 to 513 7
ArgoUML 11/19/06 to 11/11/07 1388 to 1524 19



4. Results
Here we describe our evaluation in terms of authoritativeness and stability.

A good clustering similarity metric is expected to have sufficient discriminatory
power to identify differences between the clustering generated by the clustering algorithm
and the clustering generated by experts: small differences should produce large values of
authoritativeness while large differences should produce small values of authoritativeness.
In a preliminary evaluation, we computed authoritativeness for each metric.

In addition, we compared the authoritativeness values of each metric with the
Silhouette values of the algorithmic clustering. To do so, we computed the Silhouette
in the clusterings generated by the algorithms in each system and measured the Pearson
correlation between the values of authoritativeness and Silhouette.

Since the Silhouette generates values from −1 to 1, we normalized Silhouette
values through the expression Snormalized = S+1

2
to bring Silhouette to the metrics scale.

Figure 2 illustrates data concentration and dispersion for the authoritativeness
computed with each metric. Looking at the box plots, when comparing model-based
metrics with each other, MeCl had higher median values of authoritativeness with a good
dispersion range, followed by EdgeSim (with the exception of ArgoUML), and then Pu-
rity, MojoSim, B-Cubed-F1, followed by F1, with greater dispersion. For all box plots in
this section, the axis named as pr is the F1-measure of the Precision-Recall values, while
the axis named as bcubed is the F1-measure of the B-Cubed Precision-Recall values.

Figure 3 shows the correlations of each metric with Silhouette. We noticed from
them that, in the per system graph, the measures of Purity, B-Cubed-F1, and F1 more
strongly correlated with Silhouette. In the per metric graph, there was a trend of reducing
the correlation of each metric with Silhouette with the increase of system size.

A good clustering similarity metric is expected to have sufficient discriminatory
power to identify differences between consecutive versions of systems: small changes
should produce large values of stability while large changes should produce small values
of stability. In a preliminary evaluation, we first computed stability for each metric.

In addition, we compared the stability values of each metric with the deltas in both
lines of code and in the number of classes between consecutive system versions. To do
so, we computed the clustering stability produced by the algorithms for each system and
measured the Pearson correlation between the stability for each metric and the ∆LOC or
the ∆Classes.

Figure 4 illustrates data concentration and dispersion for the stability values com-
puted with each metric. We noticed that most metrics maintain high stability values,
which is consistent with minor weekly changes. However, we also noticed that the stabil-
ity of most metrics produced outliers with less stability, which captures situations where
slightly larger changes occurred in the systems. Comparing the metrics by looking at the
box plots, we noticed that MeCl had higher median values of stability, followed by Ed-
geSim (with the exception of ArgoUML), MojoSim, Purity and B-Cubed-F1. F1, on the
other hand had very low stability values.

On the other hand, it is important to compare stability oscillations with variations
of the evolving software itself, measured by ∆LOC and the ∆Classes. It is expected that



Figure 2. Authoritativeness and Silhouette per System

Figure 3. Correlations of Authoritativeness with Silhouette per System and per
Metric.

stability correlates inversely with the deltas, i.e., the greater the changes in the software
from one week to the next, the lower the stability.

Figures 5 and 6 show the correlations of each stability metric with ∆LOC and
∆Classes. Since all correlation values were negative, we inverted their signs to facilitate
understanding. The graphs show that, except for F1, all metrics obtained high correlations
with both deltas in the graphs per system. However, with smaller systems, correlations
were higher with software engineering metrics, and, with larger systems, they were higher
with the classification metrics. In the per metric graph, there was a trend of correlation
increase from small (SweetHome3D) to medium systems (Lucene), with later decrease
with medium (Ant) and large systems (ArgoUML).



Figure 4. Stability per System

Figure 5. Correlations of Stability with ∆LOC per System and per Metric.

5. Discussion
From our experiments, most metrics generally show good authority and stability results
except for F1 as shown in the box plots (Figures 2 and 4). However, when we look closely
at the dispersion and concentration of stability and authoritativeness, we find that MeCl
values are better when compared to the other metrics for both dimensions.

For authoritativeness, MeCl presents a range of values between 0.6 and 0.8, larger
than the other metrics. This leads us to believe that, in the existence of reference models
and from the data that we had available, MeCl would be the best metric to be used. How-
ever, if we consider Silhouette as the best intrinsic measure of clustering quality, Purity,
B-Cubed-F1 and F1 show stronger correlation between authoritativeness and Silhouette.

For stability, all metrics showed high stability values. Even so, MeCl showed the
highest median values, close to 1, in all systems, in addition to also showing outliers.
With these results, MeCl would be the best candidate for stability. When looking at the



Figure 6. Correlations of Stability with ∆Classes per System and per Metric.

correlations with ∆LOC and ∆Classes, we identify a trend of higher correlations for
B-Cubed-F1, Purity, and F1 metrics as systems grow. Initially, all metrics show a high
correlation around 0.7. However, the traditional classification metrics manage to main-
tain values somewhat larger with ArgoUML when compared to the software engineering
metrics (e.g, MojoSim, EdgeSim and MeCl) with ArgoUML.

6. Conclusions
This work evaluated six clustering similarity metrics as candidates for measuring the qual-
ity of clusterings generated by clustering algorithms. For authoritativeness, MeCl stands
out from the other metrics followed by EdgeSim (except for ArgoUML), then by Purity
(greater dispersion), MojoSim, B-Cubed-F1, and F1 when the metrics are compared to
each other. However, in the absence of reference models, the correlation with the Sil-
houette is stronger with Purity, B-Cubed-F1, and F1 metrics. For stability, MeCl also
stands out with high median values in all cases. Correlations with ∆LOC and ∆Classes
increased from Sweethome3D to Lucene and were lower for both Ant and ArgoUML.

As future work, we intend to evaluate agglomerative algorithms based on struc-
tural dependencies and to compare them with those based on information retrieval.

References
Anquetil, N. and Lethbridge, T. C. (1999). Experiments with clustering as a software

remodularization method. In 6th Working Conference on Reverse Engineering.

Garcia, J., Ivkovic, I., and Medvidovic, N. (2013). A Comparative Analysis of Software
Architecture Recovery Techniques. In Int’l Conf. Automated Software Engineering.

Lutellier, T., Chollak, D., Garcia, J., Rayside, D., Kroeger, R., Tan, L., Rayside, D.,
Medvidovic, N., and Kroeger, R. (2015). Comparing Software Architecture Recovery
Techniques Using Accurate Dependencies. In 37th Int’l Conf. Software Engineering.

Mitchell, B. S. and Mancoridis, S. (2001). Comparing the decompositions produced by
software clustering algorithms using similarity measurements. In International Con-
ference on Software Maintenance.

Tzerpos, V. and Holt, R. C. (1999). MoJo: a distance metric for software clusterings. In
6th Working Conference on Reverse Engineering.

Wu, J., Hassan, A. E., and Holt, R. C. (2005). Comparison of Clustering Algorithms in the
Context of Software Evolution. In 21st International Conf. on Software Maintenance.


