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Abstract. Mobile network technology has been driven by a huge demand for
throughput and reliability to support new emerging services. The quality of
service is based on measurements of indicators with a high level of precision.
Accurate controlling of parameters to fulfil the quality requirements will be es-
sential for future applications. In LTE and 5G standards, the Channel Quality
Indicator can be calculated using different algorithms. It is key to determine the
best coding and modulation as well as the power control. Thus, it depends on
the exact signal-to-noise ratio estimation. MSE based on hard-decision has a
very low computational cost, however, it can insert non-linearities. This paper
proposes a neural network to estimate an SINR from a modified MSE function.

1. Introduction
The future wireless communications systems will provide an extensive variety of appli-
cations and use cases. Many of them have distinct requirements, which can lead to diver-
gent decisions to be addressed accordingly to the same indicator. The Modulation Coding
Scheme (MCS) index, for instance, must be lower than an error-free limit condition when
the requirement is reliability. On the other hand, if the service demands throughput, the
MCS index has to be as close as possible to the highest spectral efficiency point that still
achieves the maximum target Bit Error Rate (BER). But in both cases, the indicator needs
a very precise Signal-to-Interference-Plus-Noise Ratio (SINR) estimation.

In OFDM systems, this measurement can be performed using pilot
carriers [Khan et al. 2017], cyclic prefix [Baumgartner et al. 2014] or preambles
[Malik et al. 2011]. Basically, the benefit of such methods is the use of pre-known trans-
mitted information to estimate the SINR on the receiver side. However, only small por-
tions of the frame are taken into account. Statistically, the larger is the amount of data used
for estimation, the better is the accuracy and predictability of results. The computation of
all sub-carriers provides superior estimation about the data region. This approach can also
consider inaccuracies in respect of interference and channel estimation processes. Thus,
the adoption of classical Mean Square Error (MSE) can be a viable solution. However,
this method has some drawbacks. To achieve an acceptable estimation of the SINR over
real channel conditions, it is necessary to increase the performance of the estimator and
Deep Neural Network (DNN) is an interesting approach to accomplish this goal.

The most recent mobile communication standards employ robust channel coding
schemes, such as Polar Code, Turbo Code and Low Density Check Parity Code (LDPC),
which allows the system to operate with very low SINR, including negative values in log-
arithmic scale [Bin Li et al. 2002]. When estimation is calculated using grid-based and
hard decisions, another problem emerges. If a link condition worsens quickly, the current
modulation order can lead to very high BER, which also means that the estimation based
on Euclidean distance on the receiver side is poor. This paper proposes a modified MSE
calculation to mitigate this inaccuracy. Based on that, it is possible to fit an even better
solution using a small neural network. The remaining of this paper is organized as fol-
lows: Section 2 presents the system model used to generate data. Section 3 describes the



proposed modified MSE function. Section 4 presents nonlinear regression issues. Section
5 presents the proposed DNN-based estimator and Section 6 brings the final conclusions
of this paper.

2. System Model
The mobile network system considered in this paper is based on the PHY layer descrip-
tion provided by 3GPP for the Fifth Generation of Mobile Networks (5G) in Release
15 [3GPP TS 38.211 version 15.2.0 Release 15 2018]. Using Orthogonal Frequency Di-
vision Multiplexing (OFDM) technique, the data Resource Blocks (RBs) are transmitted
employing M -Quadrature Amplitude Modulation (QAM) with M ∈ {4, 16, 64, 256}.The
data symbols are mapped into the OFDM subcarriers and the inverse Fast Fourier Trans-
form (iFFT) is used to generate the time-domain OFDM block. Cyclic Prefix (CP) is
inserted to protect the data from the time dispersive channels. On the receiver side, the
CP is removed after the time-domain synchronization. The Fast Fourier Transform (FFT)
is used to obtain the received symbols in the frequency-domain.

Since the estimator only employs the M -QAM symbols to evaluate the MSE, this
estimator can also be employed in Single Carrier (SC) schemes. The setup will con-
sider a system with perfect synchronization, carrier recovery and equalization in order
to generate data and evaluate the function behaviour with pure Additive White Gaussian
Noise (AWGN) and without interference. The system model considered in this paper
assumes the M -QAM symbols in the frequency domain after the equalization, then the
scheme depicted in Figure 1 can be properly used. The sweep control block selects the
gain values of the AWGN source and provides the specified Signal-to-Noise Ratio (SNR)
to the data set block (ηk). A random bits generator provides input data to the M -QAM
block. This block, in turn, produces the symbols to be added to the noise. Subsequently,
the MSE function to be evaluated process this signal, calculates the average and generates
the output (λk) to the data set block. The number of symbols used to calculate the average
value is specified further. The adjusted range is from -40dB to +40dB with steps of 0.1dB.

Figure 1. Data set generation diagram.

3. Modified MSE Function
This section presents the assumptions and adjustments used to improve a MSE calculation
using a grid-based decision. By considering the k-th received symbol xk, correspondent
to the transmitted symbol sk,

‖ek‖2 =‖xk − sk‖2, (1)

where sk is a symbol pertained to the sample space of a defined constellation. If the re-
ceiver applies a grid-based hard-decision for a M-QAM scheme to estimate the transmit-
ted symbols, where dmin is the minimum distance between adjacent symbols, the absolute



values of coordinates of estimated transmitted symbols ŝk can be determined as

|<(ŝk)| = dmin

⌊
|<(xk)|
dmin

⌋
+ 1, (2)

|=(ŝk)| = dmin

⌊
|=(xk)|
dmin

⌋
+ 1. (3)

However, depending on the constellation, the maximum value of a ‖ŝ‖ coordinate is

Smax =
dmin

2
(
√
M − 1). (4)

If an absolute value of a received symbol coordinate crosses the most external decision
limit, i.e Smax +dmin/2, we can assume that the most probable absolute coordinate is Smax.
This occurrence is a detectable portion of all grid crossings. Moreover, it is the key event
for the following considerations:

i) If there is no events, the calculated errors using (2) and (3) are correct.

ii) If the value Smax is attributed to the respective coordinate of ‖ŝ‖ when an event
occurs, the error is closer to the correct value than those calculated using (2) or (3).

iii) On condition that the symbols are equiprobable and equidistant, the frequency
of this detected event is statistically the same as undetected events for this coordinate and
for each one of the internal symbols (N/2, where N =

√
M and M is the modulation

order of a square constellation).

By considering a first level event as the detected component that does not sur-
pass Smax + dmin and if dmin=2, a similar undetected error δk inserts an underestimation
calculated as

ξk = (1 + δk)− (1− δk) = 2δk. (5)

A second level event is a detected component that exceeds Smax + dmin but does not surpass
the next hard decision limit. The undetected inserted error, in this case, is given by

ξm = (3 + δm)− (1− δm) = 2(1 + δm). (6)

As the SNR decreases, higher levels of hard decision limits are overstepped and higher
values of errors are inserted. Compensation factors could be used to adjust each level of
outdistancing based on its statistical rate and error amplitude. But this estimation would
comprise the computation of a complex arrangement.

Taking into account only the first level event and the mentioned considerations, a
better function can be rewritten. If an α factor is used to represent the rate of undetected
events and β = 1 + α, the modified function for a k-th received symbol

‖ek‖2 = ak + bk, (7)

where

ak =

{
(|<(xk)| − |<(ŝk)|)2, if |<(xk)| ≤ Smax

β(|<(xk)| − Smax)
2, otherwise,

(8)

bk =

{
(|=(xk)| − |=(ŝk)|)2, if |=(xk)| ≤ Smax

β(|=(xk)| − Smax)
2, otherwise.

(9)



Eq. (7) can be used to compute the average MSE for the lth user as

ε̄l =

∑
k∈L‖ek‖2

L
, (10)

where L is the set of symbols received by user Ul and L is the number of symbols of L.
Figure 2 shows the MSE obtained by applying (10) and setting L = 1000, using 16-QAM
and 256-QAM as examples. The parameter β = 1 +N/2, where N =

√
M , is the factor

based on the first level event. The difference caused by the omission of other levels will
be further estimated by the proposed neural network. The results for β = 1 and assuming
the classical grid-based method for evaluating the MSE are also presented as benchmarks.
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(a) 16-QAM.
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(b) 256-QAM.

Figure 2. Modified MSE vs SNR - AWGN channel.

Other constellation formats can be considered using the same approach. The main
difference will be the employed proportion of detectable grid crossings (β factor).

4. Nonlinear regression
The samples provided by (10) are compared to the target (ηn) in order to produce data for
the regression function. From the difference vector, a function can be created via curve
fitting techniques. Polynomial regression is an option. However, in this case, the result
is not satisfactory. A high order polynomial is necessary to fit the curve. Moreover, the
curve fitting diverges from the observed data samples for values at the edge of the range.

A deep learning neural network, constituted of two hidden layers, can provide
a suitable function. Figure 3 shows the achievement of a trained neural network. The
chosen modulation option is 256-QAM. The values of predictions close to the edge are
also consistent.

Figure 3. Nonlinear Regression using DNN.



As the DNN precisely fulfils the nonlinear regression, it can be used for the infer-
ence of imprecision given by the modified MSE function output, as shown in Figure 4.

Figure 4. Modified MSE plus DNN scheme.

5. Deep learning network description
Keras platform was applied for implementing the neural network. The learning pro-
cess considered an SINR=-10dB as the worst scenario. The configured DNN topology
is shown in Figure 5. It has two hidden layers with four neurons per layer and a single
input. A sigmoid activation function is applied in the second hidden layer. All the other
layers employ linear activation functions. The biases are labelled as b1, b2 and b3. More
neurons can be added to the input layer with a specific time gap in a future implemen-
tation as an attempt to anticipate the estimation. Other approaches were already used to
predict, as proposed in [Ngo et al. 2020]. Predictive strategies are interesting when the
link condition indicates a fast-changing situation. However, this paper is focused on the
deployment of an accurate and instantaneous indicator. But it can also be connected to
other neural network topologies for prediction purposes.
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Figure 5. Implemented Deep Learning Network topology.

Figure 6 shows the achieved results for the proposed scheme. The chosen modu-
lation is 256-QAM since it is the most complex case. As can be seen, the estimated values
of SNR are very close to the ideal. A mean square error of 400 measures, made by the
proposed function, was calculated. By considering ρk as the k-th measure of this vector
and ηk as the respective ideal target, the value is given by

M =
1

400

400∑
k=1

(ρk − ηk)2 = 0.00608495. (11)



Figure 6. Proposed function response.

6. Conclusions
A precise estimation of the Signal-to-Interference-Plus-Noise Ratio was efficiently exe-
cuted adopting the proposed modified Mean Square Error function plus a low-complexity
Deep Learning Network. The DNN can be used in place of complex statistical compu-
tation. The adoption of machine learning as support for deterministic algorithms is an
interesting approach. It can provide a lower complexity solution compared to an end-to-
end neural network system. From this point on, different strategies can be executed to
perform a better accuracy and prediction. Even a simplified implementation of lookup
tables needs a good scheme to set the values. In this case, this proposed method can be
also utilized. The same neural network topology can be applied to all modulation options
described in the system model section using different predefined biases and weights.
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