
BPEL4PEOPLE Anti-Patterns: Discovering Authorization
Constraint Anti-Patterns in Web Services

Henrique J. A. Holanda1, Carla K. de M. Marques2, Francisca Aparecida P. Pinto3,
Yann-Gaël Guéhéneuc4

1 Department of Computer, State University of Rio Grande do Norte
Mossoró, RN, Brazil, 59.610-210

{henriqueholanda@uern.com}

2Federal Institute of Rio Grande do Norte
Mossoró, RN, Brazil,

{carla.marques@ifrn.edu.br }

3Department of Computer, Federal Rural University of the Semi-Arid
and State University of Rio Grande do Norte

Mossoró, RN, Brazil, 59625-900

{aparecidapradop@gmail.com}

4Department of Computer Engineering, University of Montreal,
École Polytechnique de Montréal

{yann-gael.gueheneuc@polymtl.ca}

Abstract. Despite the abundance of analysis techniques to discover anti-
patterns in BPEL, there is hardly any support for authorization constraint errors
in web services orchestrated by BPEL4People. Most techniques simply abstract
from people (human user interactions), while people dependencies can be the
source of all kinds of errors. This paper focuses on the discovery authoriza-
tion constraint anti-patterns in web services orchestrated by BPEL4People. We
present an analysis approach that is expressed in terms of rule card, the well-
known, stable, adaptable, and effective model-checking techniques can be used
to discover authorization constraint errors. Moreover, our approach enables a
seamless integration of control-flow and authorization constraint verification.

1. Introduction

A BPEL4People is a software system that manages and executes operational processes
involving people, applications, and/or information sources on the basis of process mod-
els. BPEL4People systems are driven by explicit process models, i.e., based on a pro-
cess model, a system is configured that supports the modeled process where exist user
interactions. In this paper, we primarily focus on the analysis of the models used to
configure web services orchestrated by BPEL4People. However, our approach is also
applicable to other software system that manages and executes operational processes
involving people. In the last 15 years, many analysis techniques have been developed
to analyze web services orchestrated by BPEL4People. Most analysis techniques focus



on verification, i.e., the discovery of design errors. Although many process representa-
tions have been used or proposed, most researchers are using Petri Nets as a basic model
[H.J.A Holanda and Serra 2010]. The flow-oriented nature of BPEL4People processes
makes the Petri Net formalism a natural candidate for the modeling and analysis of work
flows.

Unfortunately, lion’s share of attention has been devoted to control-flow while ig-
noring other perspectives such as data-flow and resource allocation. Analysis techniques
typically check for errors such as deadlocks, live locks, etc. while abstracting from data
and uses. Existing approaches typically suffer from the following two problems: i) they
look at only one perspective in isolation (e.g., only control-flow); and ii) the types of errors
they capture are usually not configurable and mainly driven by the verification algorithms
themselves rather than by user requirements [Dumas et al. 2005].

To address some of the limitations of existing approaches, we propose a new anal-
ysis framework based on uses of ”anti-patterns” expressed in terms of rule card. Assuming
a rule card representation, we define anti-patterns related to the BPEL4People. The term
”anti-patterns” was coined in 1995 by Andrew Koenig. He stated that ”An anti-pattern is
just like pattern, except that instead of solution it gives something that looks superficially
like a solution but isn’t one” [Moha et al. 2012]. The goal of anti-patterns is to formally
describe repeated mistakes such that they can be recognized and repaired. In this paper,
we use rule card to formalize our anti-patterns. This formalization can be used to dis-
cover the occurrence of such anti-patterns in BPEL4People. Although not elaborated on
in this paper, the same techniques can be used to define correctness notions related to the
control-flow and check these in an integral way.

An example of an anti-pattern is Dangling Inputs Group of Users (DIGU). This
anti-pattern describes the situation where some group of users’ needs to be attributed for
one task, but either it has never been created. The remainder of this paper is organized as
follows. Section 2 presents related work. Section 3 introduces BPEL and BPEL4People.
Section 3.2 introduces anti-patter. Section 5 presents the specification of authorization
Constrain anti-pattern in web services orchestrated with BPEL4People. Section 4 presents
our proposed approach. Section 5.1 presents the experiments and results. Section 6 con-
cludes the paper and gives suggestions of future works.

2. Related Work
In the past years, several catalogs to specify and detect anti-patterns of
SOA [Moha et al. 2012], [Palma et al. 2014b], Rest [Palma et al. 2014a] and
BPEL [Palma et al. 2013] services and languages have been proposed. In
[Smith and Williams 2003] the authors detected and evaluated more new software
antipatterns and in [Sinnig et al. 2005] the authors detected and evaluated patterns in
model-based engineering. We can highlight the drawbacks of the current literature as
follows:

• Anti-patterns and approaches to detect them were considered only for SOA
[Palma et al. 2014b] , [Palma et al. 2014a] and [Palma et al. 2013] models;
• Extending BPEL Engines with BPEL4People [Holmes et al. 2008];
• A model checking approach to verify BPEL4WS workflows

[Bianculli et al. 2007];



• Web Services Human Task (WS-HumanTask) [Ings et al. 2012];
• Access control and authorization constraints for WS-BPEL [Bertino et al. 2006];
• Verifying BPEL workflows under authorization constraints [Zha 2006];

Finally, there is no detection approach for detecting authorization constraint anti-patterns
in web services orchestrated by BPEL4People anti-patterns until now, so we focus on
those issues with a solution to propose a concrete approach for specifying and detecting
authorization constraint anti-patterns in web services orchestrated by BPEL4People.

3. BPEL4People and Anti-Patterns
Web Services Business Processes Execution Language focuses on business processes that
orchestrate Web service interactions. However, in general, business processes are com-
prised of a broad spectrum of activities that most often require the participation of people
to perform tasks, review or approve steps and enter data — for example, a credit approval
scenario that may require approval on certain transaction limits or activity levels. These
human interactions are now addressed in the new specifications. Human user interactions
are currently not covered by the WS-BPEL, which is primarily designed to support au-
tomated business processes based on WS. In practice, however, many business process
scenarios require user interaction. So far, we’ve seen that user interaction in business
processes can get quite complex. Although BPEL specification 1.1 (and the upcoming
BPEL 2.0) doesn’t specifically cover user interactions, BPEL is appropriate for human
work flows. Work flow services that leverage the rich BPEL support for asynchronous
services are created today. In this fashion, people and manual tasks become just another
asynchronous service from the perspective of the orchestrating process and the BPEL
processes stay 100% standard.

3.1. BPEL4People

We now see the next generation of work flow specifications emerging around BPEL with
the objective of standardizing the explicit inclusion of human tasks in BPEL processes.
This proposal is called BPEL4People and was originally put forth by IBM and SAP in July
2005. Other companies, such as Oracle, have also indicated that they intend to participate
in and support this effort.

The most important extensions introduced in BPEL4People are people activities
and people links. People activity is a new BPEL activity used to define user interactions;
in other words, tasks that a user has to perform. For each people activity, the BPEL
server must create work items and distribute them to users eligible to execute them. Peo-
ple activities can have input and output variables and can specify deadlines. To specify
the implementation of people activities, BPEL4People introduced tasks. Tasks specify
actions that users must perform. Tasks can have descriptions, priorities, deadlines, and
other properties. To represent tasks to users, we need a client application that provides
a user interface and interacts with tasks: it can query available tasks, claim and revoke
them, and complete or fail them.

To associate people activities and the related tasks with users or groups of users,
BPEL4People introduced people links. People links are somewhat similar to partner links;
they associate users with one or more people activities. People links are usually associated
with generic human roles, such as process initiator, process stakeholders, owners, and



administrators [Ings et al. 2012]. BPEL4People extends the capabilities of WS-BPEL to
support a broad range of human interaction patterns, allowing for expanded modeling
of business processes within the WS-BPEL language. BPEL4People is comprised of
two specifications including: i) WS-BPEL Extension for People which layers features
on top of WS-BPEL to describe human tasks as activities that may be incorporated as
first-class components in WS-BPEL process definitions; ii) Web Services Human Task
introduces the definition of stand-alone human tasks, including the properties, behavior
and operations used to manipulate them. Capabilities provided by Web Services Human
Task may be utilized by Web services-based applications beyond WS-BPEL processes.

3.1.1. Integrating Authorization Constraints

BPEL4People support features to exclude some users from performing a task because of
some tasks they had done before or force some user to perform a sequence of tasks. We
call such requirement as authorization constraint, as the term is widely used in access con-
trol literature. In this section we will use GSPN to express the authorization constraints
to facilitate formal analysis. Two kinds of authorization constraints, namely “4-eyes prin-
ciple” and “chained execution”, are proposed in BPEL4People specification. The “4-eyes
principle”, also known as “separation of duty”, is a common scenario in many application
areas when a decision must be made by two or more people independently of one another,
often for the security reasons, and “chained execution” refers a process fragment where a
sequence of steps must be executed by one person.

3.1.2. Separation of duty

The separation of duty (SoD) is a well-known principle in authorization to prevent fraud
or error by requiring that at least two individuals are involved in some specific work. SoD
is also useful when two persons have to co-operate in a work but none of them should
know all the details. The basic form of SoD states that two given distinct tasks t1 and t2
must be performed by different individuals. This can be defined as states that person p0
cannot perform both t1 and t2. We can define variations of this similarly, e.g., “task t1 and
t2 must be performed by different roles”. We can also define SoD constraint for a specific
person, e.g., “person A cannot invoke both task t1 and t2”.

3.1.3. Binding of duty

“Binding of duty” (BoD) is the dual of SoD, which states that some distinct tasks must
be performed by one person. BoD is used to define the responsibility of a person, e.g.: It
states that if p0 performs t1, then p0 must also perform t2, and vice versa. SoD and BoD
may be combined to define more complex constraints.

3.2. Anti-Patterns

Changes resulting from the evolution of orchestrated with BPEL4People can degrade its
design of web services and can often cause the appearance of poor solutions in the archi-
tecture: anti-patterns.



Patterns and anti-patterns exist to capture expertise, and to communicate knowl-
edge. Anti-patterns are opposed to patterns which are good specifications (solutions) for
recurring problems. An anti-pattern is a surface-level symptom that hints at the presence
of a deeper, more serious problem. Anti-patterns could hinder [Palma et al. 2013] future
maintenance and evolution of web services.

Anti-patterns detection is therefore important to assess the design of web services
and ease their maintenance and evolution. However, methods and techniques for detec-
tion authorization constraint anti-patterns in web services orchestrated by BPEL4People
do not yet exist. Anti-patterns have many definitions: they are ”poor” solutions to recur-
ring design problems, known solutions for solving problems, which are not practical and
usable, and wrong practices that are quite commonly used. Anti-patterns have symptoms
and consequences and are induced by some root clauses.

The presence of anti-patterns must be identified in unsuccessful system and their
absence shown in successful systems. Anti-patterns usually cause costly and complicated
architectures, which are costly and difficult to maintain. Having anti-patterns in a system
can hinder a project. Developers study anti-patterns to avoid pitfalls. But sometimes can
create pitfalls in knowledge transfer if not applied appropriately. The idea that the use
of anti-patterns in knowledge transfer may be a dangerous strategy if applied incorrectly
than discovery and corrected before.

4. Specification of Authorization Constrain Anti-pattern in Web Services
Orchestrated with BPEL4People

In this section we introduce the specification of 7 (seven) authorization constrain anti-
pattern. These anti-patterns were adapted from the literature [Smith and Williams 2000],
[Moha et al. 2012], [Palma et al. 2014b], [Palma et al. 2014a], [Palma et al. 2013] and
[Zha 2006].

• Dangling Inputs Group of Users (DlGU): DIGU is an anti-pattern where one group
of users remain unused.
• Dangling Outputs Group of Users (DOGU): DOGU is an anti-pattern where one

group of users is assigned for one service but it was not defined.
• Duplicated Group of Users (DGU): DGU corresponds to a group of highly similar

users.
• Ambiguous Name of groups of users (ANGU): Ambiguous Name is an anti-

pattern where the developers use the names of groups that are very short or long,
include too general terms, or even show the improper use of verbs, etc. Ambigu-
ous names are not semantically and syntactically sound and impact the discover
ability and the re-usability of a Web service.
• Missing User (MU): When a user that performs a task is excluded to perform

another task that he/she is not one user potential of this another task.
• Strongly Missing Groups of Users (SMGU): When who performs a task was the

members of one group and another task excludes the members of this group, how-
ever no member of this group is a potential user of this another task.
• Weakly Missing Groups of Users (WMGU): When who performs a task was the

members of one group and another task excludes the members of this group
though some member of this group is a potential user of this another task and
others not.



5. Approach
With the aim of detecting anti-patterns in authorization constrain in web services orches-
trated with BPEL4People, we used the approach shown in 1. This approach involves three
major steps:

• Step 1 (Specification) concerns specifying rules for the detection of authorization
constrain anti-patterns that, later on, will be applied on web services orchestrated
with BPEL4People.
• Step 2 (Generation) transforms orchestrated with BPEL4People into an interme-

diary representation, i.e., more abstract and simplified, by filtering some process
facts those are not required to apply rules to ease: (i) the implementation of the
rules defined in the previous step and (ii) the further analysis of the processes.
• Step 3 (Detection) consists in applying the rules defined in Step 1 on the trans-

formed processes in the previous step. Finally, a list of existing anti-patterns with
the involved process fragments will be shown.

Static service antipatterns require only static analysis for their detection and, thus,
only their structural properties are needed to detect them within the services. Coupled
with the information about how these parts will be distributed across the web services
orchestrated with BPEL4People, we use rules to detect the potential anti-patterns that
may occur. Our approach for detecting anti-patterns leverages static analysis to detecting
anti-patterns in authorization constrain in web services orchestrated with BPEL4People.

Figure 1. Proposed Detection Approach.

5.1. Experiments and Results

This section applies the proposed detection approach for seven authorization constraint
anti-patterns in Web services orchestrated by BPEL4People anti-patterns, specified in
Sections 4.

• Step 1 concerns specifying rules for the detection of authorization constrain
anti-patterns that, later on, will be applied on Web services orchestrated with
BPEL4People.
• Step 2 transforms orchestrated BPEL4People code into an intermediary represen-

tation, i.e., an more abstract and simplified code, by filtering some processes, those
are not required to apply rules. This step consists also in implementing the rules
showed in 2. We implement the rules in a modularized way, i.e., we implement
each side of different logical operators (e.g., AND, OR) in a rule and join them af-
terwards to check the conformance with the defined conditions using the approach
in [8].
• Finally, Step 3 applies the rules defined in Step 1 on the transformed processes in

the previous step. The detection step follows the specification of the rules and the



transformation of BPEL4People codes into an intermediary representation, i.e.,
more abstract and simplified files XML. We show with a small scale experiment
the effectiveness of our proposed approach.

We specify seven anti-patterns and we analyze and perform anti-pattern detection
of these seven anti-pattern for three Web services orchestrated by BPEL4People using our
approach.

• Employee-of-month: this Web services is started and as a first step, the people are
determined that qualify as voters for the Employee of the month. Next, all the
voters identified before get a chance to cast their votes. After that, the election
result is determined by counting the votes casted. After the result is clear, two
different people from the set of people entitled to approve the election either accept
or reject the voting result. In case any of the two rejects, then there is no Employee
of the month elected in the given month, and the process ends. In case all approvals
are obtained successfully, the employees are notified about the outcome of the
election, and a to-do is created for the elected Employee of the month to prepare
an inaugural speech. Once this is completed, the process completes successfully;
• WS-PurchSys: this is a BPEL4People source code for a purchasing process, it is

showed in Algorithm 1. Four tasks are defined: manager approve, finance approve,
notify staff, and purchase. The potential owners of each task are: manager approve
(Alan); finance approve (Ben); purchase (Ben, Cindy, Diana); notify staff (Diana,
Edward). The excluded owner of purchase is the actual owner of finance approve.
The excluded owner of notify staff is the actual owner of purchase; and
• Web-Service1: this Web services consists of two groups of users (”Group 1” and

”Group 2”) and five services (”Service 1”, ”Service 2”, ”Service 3” (”Service 3”
excludes who performed the ”Service 2”), ”Service 4” (”Service 4” excludes who
performed the ”Service 1”) and ”Service 5”).

We could detect the seven authorization constrain antipatterns specified in Section
4 in the three Web services orchestrated with BPEL4People given as an examples.

We present in Table 1 the anti-patterns detection results for the three Web ser-
vices orchestrated with BPEL4People followed by some discussion about accuracy and
performance detection. Initially some anti-patterns were not detected in these Web ser-
vices orchestrated with BPEL4People. Subsequently some changes were inserted in these
codes to test the accuracy and performance of the detection algorithm then anti-patterns
were detected.

Through our experiment, we aim to show the accuracy and performance of the
detection algorithms in terms of precision, recall and detection time, presented in Table 1.
Antipattern detection algorithms have at least a precision of 99%. Assuming that the anti-
patterns have a negative impact on the design, we target a recall of 100% for anti-patterns,
which ensures that we do not miss any existing anti-patterns. The precision concerns the
detection accuracy of our specified rules and the corresponding detection algorithms.

The primary threat to the validity concerns the external validity of our re-
sults, i.e., generalizing the proposed approach to other Web services orchestrated with
BPEL4People. We perform specification and detection of seven authorization constrain
anti-patterns. However, we ran the experiment on a set of three Web services orchestrated



Figure 2. Rules specifications and diagrams.

with BPEL4People to minimize this threat. We plan to replicate the experiment on oth-
ers Web services orchestrated with BPEL4People as a future work. We do not execute
the Web services orchestrated with BPEL4People, hence analyze the processes statically,
and the injections were performed internally, which are threats to the internal validity.
However, we plan to execute the web services orchestrated with BPEL4People flows to
dynamically analyze them in the future.

The subjective nature to define rule cards is a threat to construct validity. However,
we lessen this threat by defining the rule cards after a thorough literature review. Finally,
the conclusion validity threats refer to the relation between the treatment and the out come.
We paid full attention not to violate the assumptions of the performed statistical tests. We
mainly used non-parametric tests that do not require to make any presumption about the
data distribution. The threats to internal validity concern the possibility of replicating this
study. To minimize this threat, we provide all the details required to replicate the study,
including the source code repositories and the raw data used to compute the statistics on
our web services. One major challenge to minimize the threat to the external validity is the
very limited availability of open-source Web services orchestrated with BPEL4People.

Finally, a list of anti-patterns, among the seven specified, existing in three Web
services orchestrated by BPEL4People is showed in Table 1.

6. Conclusions and Future Work
In this paper we assessed the authorization constrain in Web services orchestrated with
BPEL4People and eased the maintenance and evolution of these architectures.



Table 1. Experiments results.

We proposed an approach to specify authorization constrain anti-patterns and de-
tect them in Web services orchestrated with BPEL4People. We present our static analysis-
based approach to detect antipatterns in BPEL4People codes. We have also proposed to
assess the design and QoS of Web services orchestrated with BPEL4People. To achieve
this goal, we propose an approach to specify authorization constrain anti-patterns and de-
tect them in Web services orchestrated with BPEL4People. Finally, we want to quantify
the impact of detection anti-patterns on the maintenance and evolution of Web services
orchestrated with BPEL4People.

The contribution of this paper is specifying and detect authorization constrain anti-
patterns in Web services orchestrated with BPEL4People, by leveraging static code anal-
ysis and information about prospective deployment of the application components using
Web services orchestrated with BPEL4People. We applied and validated the detection al-
gorithms using three Web services orchestrated by BPEL4People showed in Section 5.1,
in terms of precision and recall. We specified and detected seven authorizations constrain
antipatterns in an initial experiment with tree Web services orchestrated by BPEL4People.
Results showed that this approach has an average detection precision of more than 97%
and recall of 100%. Hence, we make a strong recommendation that designers be ex-
posed to antipatterns repeatedly until the pattern is well established. Only then should
anti-patterns be used to strengthen the pattern in the designer’s mind.

7. Acknowledgements

We would like to thank the CNPQ, CAPES, UERN, UFERSA, IFRN, SEDUC-CE and
Canada Chair.

References

(2006). Verifying BPEL Workflows Under Authorisation Constraints, volume 4102 of
Lecture Notes in Computer Science. Springer.

Bertino, E., Crampton, J., and Paci, F. (2006). Access control and authorization con-
straints for ws-bpel. In Web Services, 2006. ICWS ’06. International Conference on,
pages 275–284.



Bianculli, D., Ghezzi, C., and Spoletini, P. (2007). A model checking approach to verify
bpel4ws workflows. In Service-Oriented Computing and Applications, 2007. SOCA
’07. IEEE International Conference on, pages 13–20.

Dumas, M., van der Aalst, W. M., and ter Hofstede, A. H. (2005). Process-aware In-
formation Systems: Bridging People and Software Through Process Technology. John
Wiley & Sons, Inc., New York, NY, USA.

H.J.A Holanda, J. Merseguer, G. C. and Serra, A. B. (2010). Performance evaluation of
web services orchestrated with ws-bpel4people. In International Journal of Computer
Networks & Communications, volume 2, pages 117–134. AIRCC Publishing Corpora-
tion.

Holmes, T., Vasko, M., and Dustdar, S. (2008). Viebop: Extending bpel engines with
bpel4people. In PDP, pages 547–555. IEEE Computer Society.

Ings, D., Clément, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley,
M., and Trickovic, I. (2012). Web services human task (ws-humantask) specification
version 1.1. OASIS Committee Specification Draft 12 / Public Review Draft 05.

Moha, N., Palma, F., Nayrolles, M., Conseil, B., Guéhéneuc, Y.-G., Baudry, B., and
Jézéquel, J.-M. (2012). Specification and Detection of SOA Antipatterns. In Liu, C.,
Ludwig, H., Toumani, F., and Yu, Q., editors, Service-Oriented Computing, volume
7636 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg.

Palma, F., Dubois, J., Moha, N., and Guéhéneuc, Y. (2014a). Detection of REST patterns
and antipatterns: A heuristics-based approach. In Service-Oriented Computing - 12th
International Conference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceed-
ings, volume 8831 of Lecture Notes in Computer Science, pages 230–244. Springer.

Palma, F., Moha, N., and Gueheneuc, Y.-G. (2013). Detection of process antipatterns: A
bpel perspective. In Enterprise Distributed Object Computing Conference Workshops
(EDOCW), 2013 17th IEEE International, pages 173–177.

Palma, F., Moha, N., Tremblay, G., and Guéhéneuc, Y. (2014b). Specification and de-
tection of SOA antipatterns in web services. In Software Architecture - 8th European
Conference, ECSA 2014, Vienna, Austria, August 25-29, 2014. Proceedings, pages
58–73.

Sinnig, D., Gaffar, A., Reichart, D., Forbrig, P., and Seffah, A. (2005). Patterns in
model-based engineering. In Jacob, R., Limbourg, Q., and Vanderdonckt, J., editors,
Computer-Aided Design of User Interfaces IV, pages 197–210. Springer Netherlands.

Smith, C. U. and Williams, L. G. (2000). Software performance antipatterns. In Proceed-
ings of the 2Nd International Workshop on Software and Performance, WOSP ’00,
pages 127–136, New York, NY, USA. ACM.

Smith, C. U. and Williams, L. G. (2003). More new software antipatterns: Even more
ways to shoot yourself in the foot. In 29th International Computer Measurement Group
Conference, December 7-12, 2003, Dallas, Texas, USA, Proceedings, pages 717–725.
Computer Measurement Group.


