
Applying Software Craftsmanship Practices to a Scrum
Project: an Experience Report

Percival Lucena, Leonardo P. Tizzei
1 IBM Research

São Paulo - Brazil

{plucena,ltizzei}br.ibm.com

Abstract. The Software Craftsmanship manifesto has defined values and
principles that software development teams should follow to deliver quality
software that fulfills functional and non-functional requirements without
dealing with high amounts of technical debt. Software craftsmanship approach
to software development prioritizes technical practices in order to provide a
clean code base. This work analyzes a set of practices that can be applied to
a Scrum project that aims to incorporate Software Craftsmanship values. The
process implementation described may be a useful contribution for software
development teams who also intend to implement Software Craftsmanship on
their projects.

1. Introduction
The 2015 CHAOS report [Hastie and Wojewoda 2015] published by Standish Group has
analyzed more than 50,000 software development projects from different sizes and com-
plexities. Although the projects that have adopted Agile software development method-
ology had a higher success rate than those that had adopted Waterfall approach, more
than 40% of Agile projects had problems related to incomplete scope, low quality, or
have exceeded the estimate delivery time. In the last few years, several software develop-
ment companies have adopted Agile Software development methodologies, most of them
adopting the Scrum framework [VersionOne 2016]. According to the study published by
[Melo et al. 2013], those companies face similar problems as described in the CHAOS
report. The high number of unsuccessful Scrum projects suggests that the successful
framework use requires specific conditions to be met.

In order to maximize the number of successful Agile projects, several metrics
that measure some quality aspects of the code have been proposed. Technical debt is
one of these metrics and it is often used in current Agile projects. It was introduced by
[Cunningham 1993] to define incomplete software artifacts that barely satisfy the func-
tional requirements. Under these circumstances, adding features to the software, or fixing
defects, requires interest by writing more code to complete features that should already
be available in prior released versions. Technical debt is also related to software that does
not meet non-functional requirements such as performance, security, and usability.

According to the Scrum Guide [Schwaber and Sutherland 2011], the Product
Owner is responsible for maximizing the value of the product and the work of the develop-
ment team. The Scrum Guide itself does not define how the Product Owner should priori-
tize the backlog stories. In many tight schedule projects, the Product Owner may decide to

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

11

maximize the number of delivered stories by reducing or even eliminating the quality as-
surance related tasks and other technical activities required to implement non-functional
requirements, increasing the overall technical debt. Martin Fowler has identified this
problem and described it as Flaccid Scrum [Fowler 2009]. The [VersionOne 2016] report
has identified this issue as one of the main causes of failure of Scrum projects .

Software Craftsmanship presents an alternative craft model that places people at
the center of the software development process [McBreen 2002]. Although Software
Craftsmanship presents useful values to tackle some of the Scrum limitations, these val-
ues are abstract, and few practical guidelines are available in the literature. Due to this
lack of guidelines to adopt Software Craftsmanship values, developers often adopt ad-hoc
approaches. This paper presents an experience report that describes a set of guidelines,
which include practices and tools, to adopt Software Craftsmanship values on a Scrum
project. These guidelines have been applied to a real world project. Besides investigating
technical practices that can help reduce technical debt, it also analyzes the impact Soft-
ware Craftsmanship can bring on the organization including the role and responsibility
of the team, the customers, the Product Owner and the ethical questions and trade offs
involved in delivering software with quality.

The rest of this paper is structured as follows: Section 2 presents basic concepts
of Software Craftsmanship and Section 3 describe practices and tools that were used to
adopt Software Craftsmanship values on a Scrum project. Section 4 discusses benefits and
limitations of practices and tools described in previous sections and Section 5 concludes
and suggests future work.

2. Software Craftsmanship Overview
This section introduces the Software Craftsmanship software development approach fol-
lowed by a brief discussion of related work.

2.1. Background
[McConnell 1998] has discussed if software development should be considered art, craft,
engineering or science. Although the craftsmanship metaphor is disputable, the related
movement brought to light important discussions about the importance of adopting good
technical practices as a part of the software development methodology [Bria 2008]. The
movement has started in December 2008, when the Software Craftsmanship Summit was
held in Chicago, Illinois establishing a set of principles for Software Craftsmanship. In
March, 2009, after an online group conversation, Doug Bradbury wrote a summary of the
general conclusions in the form of a Manifesto for Software Craftsmanship [Pagel 2009].

Table 1. Software Craftsmanship Manifesto compared to Agile Manifesto
Software Craftsmanship Agile
Well-crafted software Working software
Steadily adding value Responding to change
Community of professionals Individuals and interactions
Productive partnerships Customer collaboration

Table 1 presents a comparison between Agile Manifesto values the Software
Craftsmanship manifesto. The first value described on the Craftsmanship manifesto of-
fered an alternative approach for the lack of quality in Agile projects as described by

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

12

[Martin 2008b] on Agile conference keynote. The manifesto also aims at extending the
original Agile manifesto values by proposing new ways to deliver software, to organize
teams, and to deal with customer demands.

2.2. Related Work
The seminal book about Software Craftsmanship [McBreen 2002] describes concepts that
help differentiate Software Craftsmanship from traditional Software Engineering. Al-
though this work defines several quality assurance concepts that could be added to tra-
ditional Agile Software development, it does not provide details on how the software
development teams could implement such concepts. [Winter 2015] offers a more con-
crete view on how to implement Software Craftsmanship on a Agile Project based on
clean code concepts [Martin 2008a] [Martin 2011] and Extreme Programming techniques
[Beck 2004].

[Oliveira et al. 2015] have applied a framework to identify and measure technical
debt on Scrum projects, but the authors do not provide guidelines on how to improve the
Scrum process to minimize technical debt. [Brown et al. 2010] have analyzed technical
debt causes to Scrum projects and suggest using Extreme Programming and Software
Craftsmanship technical practices to the project. [Mushtaq and Qureshi 2012] also pro-
pose integrating Extreme Programming techniques to the Scrum project in order to reduce
technical debt, which is only one of the several goals of the craftsmanship manifesto. This
work will discuss a broader set of aspects including software delivery, team organization
and customer relationship.

3. Software Craftsmanship Applied to Scrum
This section describes how we applied software craftsmanship to a Scrum project. An
overview of this Scrum project is presented in Section 3.1. Sections 3.2-3.5 describe how
existing practices and tools have been used to adopt Software Craftsmanship. The goal is
to report a set of guidelines for developers willing to implement quality code according to
Software Craftsmanship values. These guidelines were developed based on the experience
of developers and specificities of the aforementioned Scrum project.

3.1. Target Application
An e-commerce application was developed for a telecommunications company that han-
dles customized mobile devices through its sales channel. The application was designed
to be available on web and mobile devices through its own website, but also embedded
as a multi-tenant application inside third party e-commerce websites. The developer team
was composed of ten developers, an architect, a Scrum master, and a Product Owner. The
team members were distributed in United States and in Brazil and they developed the
application in 12 2-week sprints. The application back-end was developed in Java and
Ruby and the front-end was developed using AngularJS. Software developers had good
knowledge of technologies involved and the company has traditionally adopted software
engineering best practices.

3.2. Well-crafted software vs Working Software
The Agile Manifesto [Fowler and Highsmith 2001] values working software over com-
prehensive documentation. Many agile teams believe architecture activities are part of the

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

13

system documentation and therefore are not essential to the project. Nevertheless, system
architecture is a key activity for creating mechanisms that enable a software to meet all
the non-functional requirements. Weak architectures often result in systems with high
technical debt.

In order to incorporate good architecture practices to our Scrum project our team
has adopted Scott Ambler’s Agile Model Driven Development (AMDD) [Ambler 2003]
which proposes to include modeling tasks to Scrum stories. According to AMDD, models
should be created before coding. An initial domain based model was also created at Sprint
0 together with the definition of the basic architecture mechanisms. We have combined
the practice with Model Driven Architecture (MDA) tools capable of generating basic
code from models and keep them in sync with the source code base.

Source code quality is also an essential attribute of well-crafted software. Martin’s
“clean code principles” [Martin 2008a] is a practical guide to implement Software Crafts-
manship code quality practices. Clean code principles define coding standards, rules for
unit tests creation, and help to define the system architecture.

A small subset of the “clean code principles” was implemented by our team
using the SonarQube static analysis tool. This tool is based on the Squale method
[Mordal-Manet et al. 2009] which defines practices as an intermediate level between
quality metrics and criteria. A Squale practice abstracts the extracted code information
combining and weighting different user defined metrics. Squale practices cover documen-
tation, programming conventions, and test coverage. The SonarQube tool were run as part
of the code review process. Figure 1 shows standard code analysis reports generated by
this tool. The software development team has agreed to follow SonarQube Standards. No
source code pull request was accepted in case it presented any blocker severity issue.

Figure 1. Static Code Analysis using SonarQube

Despite teams effort to eliminate technical debt, according to [Oliveira et al. 2015]
a small amount of it is inevitable in project. Since there is no simple way of eliminating
technical debt completely, our project team has decided to measure and manage it. During
the project Sprints, the gathered technical debt was measured in the project by logging

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

14

hours spent on technical debt tasks separated from the hours spent on backlog tasks. Each
type of task was kept on a separate backlog to help better manage it and visualize the
tasks. Although many times, the technical debt tasks could not be paid immediately, the
team made some effort to slow down the technical debt growth rate. Figure 2 shows total
technical debt accumulated measured by SonarQube tool and the total numbers of hours
worked on backlog stories. The gathered data suggests that team velocity slowed down as
the technical debt hours grew because the team spent more hours on technical debt tasks
and less time on backlog stories tasks.

Figure 2. Team Velocity measured in backlog worked hours vs SonarQube Total
Technical Debt Hours

Figure 3. Number of code lines deleted over time

Another metric used to estimate technical debt gathered was the number of code
lines deleted from the git source code repository. Although some re-factoring was often
needed we have inferred that big changes were usually derived from poor planing or loose
understanding of the requirements. Figure 3 shows source code deletions accumulated
during a certain period of time. Despite the fact this technical debt metric is less accurate
than the one provided by the static analysis source code tool it can be easily extracted from
git repositories and can be used as an indicator to track the effort spent paying technical
debt.

In order to improve source code quality and thus reduce technical debt our team
has adopted a few Extreme Programming technical practices [Beck 2004] to the Scrum
based software development process. The co-located team was organized in a way that
team members could do Pair Programming by rotating positions in the room. We also

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

15

have implemented a mandatory code review process using git pull requests. Once a pull
request is sent to the version control system, someone who is available on team reviews the
set of changes, discuss the modifications, and even push follow-up commits if necessary.
During our Sprint retrospective meetings we have learned that the code review process
has helped the team to improve the application architecture and fix potential defects that
were not previously covered neither by our unit tests nor by SonarQube tool.

3.3. Steadily adding value vs Responding to change

Scrum’s short Sprints iterations allows Product Owners to re-prioritize backlog stories,
allowing the team to respond to business changes. Sprint reviews are good opportunities
for the team to present the increment developed on the Sprint. Unfortunately, the software
presented on Sprint reviews is sometimes executed in hardware environments different
from the customer real enterprise environment and it includes mocks to external system
interfaces. When the software is finally deployed in the real customer environment one
often finds integration and performance issues which could be prevented earlier. Late
software deployments also limit useful feedback for the development team and delays
customer return of the investment.

Extreme Programming has addressed this problem though the Continuous Integra-
tion technical practice. This practice focused on integrating and test source code changes
as often as possible [Beck 2004]. The Devops movement [Bass et al. 2015] has evolved
this concept into the Continuous Delivery process that allows the software to be delivered
automatically to its hosting environments. Devops adoption requires a paradigm change.
The Devops movement has worked on a set organizational culture that removed the tra-
ditional Operation processes that manually controlled the infrastructure responsible for
running IT projects.

Due to organizational or technical constraints a large percentage of Agile teams
still do not implement a continuous delivery process [VersionOne 2016]. Continuous
deployments offer constant feedback, helping the team to focus on issues that can not be
foreseen by the Product Owner and that can only be discovered in real use cases. The
Devops practice is usually implemented with pipelines which consist of an automated
process that executes tasks such as building the source code, packaging the dependent
libraries, run unit, integration and performance tests and deploy the resulting software to
a specific environment. A Devops pipeline is usually composed of several deployment
environments used for different proposes.

Our project team has created separate environments for development, testing, pre-
production, and production. The process was automated using Jenkins Multi-Tenant as
Continuous Integration tool. Git pull requests trigger our pipeline which runs a maven
script to execute a Junit test-suite. In case the build breaks, the team receives a message
so they can fix the broken issues. In case no test fails, a new executable package is
created and then deployed to the first development stage of the Devops pipeline. Then,
Selenium integration tests and JMeter performance tests are run against the development
environment. In case all the tests succeed, the pipeline allows to move the new artifact to
the remaining environments.

All the team members receive quick feedback on the results of the changes. The
automated pipeline helped the team to improve the confidence level for deployments

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

16

which most of times took only a few minutes to complete. The agility provided by the
Devops process allowed the Product Owner to verify and use the software latest releases
providing the team useful feedback about the ongoing Sprint. Production deployments
occurred flawlessly providing value to the end user as soon as possible.

3.4. Community of professionals vs Individuals and interactions

The Agile manifesto [Fowler and Highsmith 2001] values Individuals and Iterations over
processes and tools. Based on such concept, the development team could choose what
practices are the best to deliver working software without wasting time with processes
that do not aggregate value to the customer. Unfortunately, some Agile lightweight
frameworks, such as Scrum, do not define what technical practices should be adopted
[Fowler and Highsmith 2001]. In some Scrum projects the Scrum Master and the Product
Owner may also interfere in the project organization, preventing the software develop-
ment team to self organize and decide which software development process should be
followed. In such case, a professional attitude is required from the software development
team who should commit to its code of ethics, being able to deliver quality software,
no matter how the enterprise is organized and what internal and external demands are in
place.

[Mancuso 2015] suggests that Software Craftsman practitioners should embrace
a code of ethics to guarantee professionalism in software development activities. The
code of ethics should protect the development team with principles that would be strictly
followed under any circumstances. By following a code of ethics, self organizing teams
should be able to define their development process with lesser external interference. A
cultural change in relationship with customers is also necessary. Software developer
teams should not be intimidated to change their set of useful technical practices despite
of any external pressures on their work.

Our project team has adopted the ACM Code of Ethics
[Association for Computing Machinery 2016] as the base for our nonnegotiable
principles and work rules. This code of ethics shares several points in common with
Software Craftsmanship professionalism values including the commitment to achieve the
highest quality of work, acquire, and maintain professional competence and to be honest
and trustworthy.

3.5. Productive partnerships vs Customer collaboration

The Agile Manifesto [Fowler and Highsmith 2001] values customer collaboration over
contract negotiation. In traditional software development contracts we have triple con-
straints: cost, time, and schedule. The Scrum framework provides a prioritized backlog
that changes over the Sprints executions. It is not feasible to change the contracts, every
time the Product backlog changes. Traditional software development contracts should
have a big slack in order to accommodate those changes.

Time and material contracts are arrangements under which the software develop-
ment contractors are paid on the basis of the worked hours agreed upon fixed add-on to
cover the contractor’s overheads and profit. Time material contracts are used on other
industries who require open scope activities and fit well to backlog changes required on
Agile based development. By establishing a flexible work model the software develop-

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

17

ment team can work together with customers implementing valuable stories as needed
without major concerns about exceeding fixed budgets and schedules.

On top of collaborating with the customer, the software development team should
establish a productive partnership with the customer which requires engagements from
the mutual parties. For the sake of successfully applying Software Craftsmanship values
to a Scrum project, one needs to rethink the relationship among the software development
team, the management and the customers. Extreme Programming offers the Planning
Game technical practice to help the software development team to prioritize the backlog
together with the Product Owner. The software development team estimates candidate
stories for the next Sprint so the Product Owner can choose among the most valuable set
of stories that can be added to the Sprint. Estimates are created as late as possible so they
are based on the best possible information. The planning game has helped our software
development team to have a closer partnership with our customer by providing the most
valuable stories to the Sprints.

Towards the goal of creating a valuable product for the customer the software
development team should also be committed to understand the customer business to pro-
vide the best solution for the problem. Backlog stories written by a single Product owner
might not provide all the necessary information about the business scenarios. Domain
driven design [Evans 2004] proposes that software developers and the customer Domain
Experts should collaborate to create an accurate description and model of the domain
problems. This cultural change involves a true partnership between the customer organi-
zation and the software development team so they can work together and share responsi-
bilities about the project. Domain Driven Design also require the software developers to
speak a ubiquitous language so the software model represents the same business concept
on their bounded context. Domain Driven Design was implemented by our team as part
of the Sprint Planning and also as part of Agile Modeling tasks added to the stories imple-
mentation. We found that those extra activities helped to reduce technical debt because
stories details would be defined before hand reducing the re-factoring tasks required by
incomplete or inaccurate requirements and models.

4. Discussion

[Jacobson and Seidewitz 2014] consider Scrum an incomplete software development
methodology as it does not provide technical practices required by the software devel-
opment team to create a quality product. As a result Scrum teams should define their
own set of technical practices based on their needs. As discussed on previous sections,
our team has identified a set of practices congruent to Software Craftsmanship values that
complement the Scrum framework. Table 2 summarizes the technical practices adopted
by our team and the life cycle phase in which they were used. Different development
teams may find other technical practices more suitable for their working context.

We have evaluated our practices regarding the technical debt gathered through the
Sprint. We have kept technical debt tasks separated from the Sprint backlog stories in
order to understand the impact of those tasks in the Sprint execution. Static code analysis
and code re-factoring measures provided useful indicators for the accumulated technical
debt. This approach can be followed by other project teams who need to track the impact
of adopting a specific set of technical practices in their projects.

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

18

Table 2. Software Craftsmanship Practices added to the Scrum Process
Technical Practice Life Cycle Phase
1 Code of Ethics All phases
2 Planning Game Planning
3 Agile Modeling Development
4 Domain Driven Design Development
5 Coding Standards Development
6 Static Code Analysis Development
7 Code Review Development
8 Pair Programming Development
9 Automated Unit Testing Testing
10 Automated Integration Testing Testing
11 Automated Performance Testing Testing
12 Automated Build and Deploy Deploy

5. Conclusions
Software craftsmanship goal is to improve existing agile manifesto principles raising the
bar of quality level delivered to software development projects. This paper has discussed
a set of technical practices that can be added to the Scrum project in order to implement
all the software craftsmanship manifesto values. Our approach has extended the work
proposed by [Mushtaq and Qureshi 2012] that incorporated Extreme Programming prac-
tices to Scrum. Our approach has added more practices from different sources including
Agile modeling, Devops, and from Software Craftsmanship. The combination of all those
different practices have helped our team to define requirements more accurately through
agile modeling, improve the source code quality through code standards, code reviews
and static code analysis, and do extensive automated testing and deployment.

Although the team velocity at the first Sprints was smaller than similar projects
who had adopted fewer technical practices, we have noticed that our team had a more
stable velocity through the project. Overall, the team and was able to deliver a more
valuable project to the customer with a higher quality than previous projects.

References
Ambler, S. W. (2003). Agile model driven development is good enough. Software, IEEE,

20(5):71–73.

Association for Computing Machinery (2016). Software engineering code of ethics and profes-
sional practice. http://www.acm.org/about/se-code\#full.

Bass, L., Weber, I., and Zhu, L. (2015). Devops: A Software Architect’s Perspective, chapter 1,
pages 10–15. Pearson Education (US).

Beck, K. (2004). Extreme Programming Explained: Embrace Change, 2nd Edition. The XP
Series. Addison-Wesley.

Bria, M. (2008). Craftsmanship—the fifth agile manifesto value. InfoQ, Aug, 20.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, A., Nord,
R., Ozkaya, I., et al. (2010). Managing technical debt in software-reliant systems. In FSE/SDP
Workshop on Future of software engineering research, pages 47–52. ACM.

Cunningham, W. (1993). The wycash portfolio management system. ACM SIGPLAN OOPS
Messenger, 4(2):29–30.

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

19

Evans, E. (2004). Domain-driven design tackling complexity in the heart of software. Addison W.

Fowler, M. (2009). Flaccid scrum.

Fowler, M. and Highsmith, J. (2001). The agile manifesto. Software Development, 9(8):28–35.

Hastie, S. and Wojewoda, S. (2015). Standish group 2015 chaos report. bit.ly/1JOlpiW.

Jacobson, I. and Seidewitz, E. (2014). A new software engineering. Communications of the ACM,
57(12):49–54.

Mancuso, S. (2015). The Software Craftsman: Professionalism, Pragmatism, Pride, chapter 1,
pages 24–36. Prentice Hall.

Martin, R. (2008a). Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall.

Martin, R. (2008b). Quintessence: The fifth element for the agile manifesto. bit.ly/1WRAGeL.

Martin, R. (2011). The Clean Coder: A Code of Conduct for Professional Programmers. Robert
C. Martin Series. Pearson Education.

McBreen, P. (2002). Software craftsmanship: The new imperative. Addison-Wesley Professional.

McConnell, S. (1998). The art, science, and engineering of software development. Software,
IEEE, 15(1):120–118.

Melo, C. d. O., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A., and Kon,
F. (2013). The evolution of agile software development in Brazil. Journal of the Brazilian
Computer Society, 19(4):523–552.

Mordal-Manet, K., Balmas, F., Denier, S., Ducasse, S., Wertz, H., Laval, J., Bellingard, F., and
Vaillergues, P. (2009). The squale model—a practice-based industrial quality model. In Inter-
national Conference on Software Maintenance, pages 531–534. IEEE.

Mushtaq, Z. and Qureshi, M. R. J. (2012). Novel hybrid model: Integrating Scrum and XP.
International Journal of Information Technology and Computer Science, 4(6):39.

Oliveira, F., Goldman, A., and Santos, V. (2015). Managing technical debt in software projects
using scrum: An action research. In Agile Conference, pages 50–59. IEEE.

Pagel, P. (2009). History of the software craftsmanship manifesto. bit.ly/1TGsLza.

Schwaber, K. and Sutherland, J. (2011). The scrum guide. Scrum Alliance.

VersionOne (2016). 7th annual state of agile development survey.

Winter, B. (2015). Agile Performance Improvement: The New Synergy of Agile and Human Per-
formance Technology, chapter 5: The Agile Software Engineer’s Toolkit. Apress.

I Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software (WASHES 2016)

20

