
Model-Driven Mobile CrowdSensing for Smart Cities

Paulo César F. Melo, Fábio M. Costa

Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74.690-900 – Goiânia – GO – Brazil

{paulomelo,fmc}@inf.ufg.br

Abstract. Making  cities  smarter  can  help  improve  city  services,  optimize
resource  and  infrastructure  utilization  and  increase  quality  of  life.  Smart
Cities  connect  citizens  in  novel  ways  by  leveraging  the  latest  advances  in
information and communication technologies (ICT). The integration of rich
sensing capabilities in today’s mobile devices allows their users to actively
participate  in  sensing  the  environment.  In  Mobile  CrowdSensing  (MCS)
citizens of a Smart City collect, share and jointly use services based on sensed
data. The main challenges for smart cities regarding MCS is the heterogeneity
of  devices  and  the  dynamism  of  the  environment.  To  overcome  these
challenges, this paper presents an architecture based on models at runtime
(M@rt) to support dynamic MCS queries in Smart Cities. The architecture is
proposed as an extension of the InterSCity platform, leveraging on its existing
services and on its capability to integrate city infrastructure resources.

1. Introduction

Modern-time cities face challenges to achieve goals related to socio-economic
development and quality of life, notably due to the concentration of the population and
the pressures that arise from it. The concept of Smart City was proposed in response to
these challenges (Celino et al., 2013). One of its main themes is the integration of the
physical and virtual worlds (Borgia et al., 2014). This integration is achieved with the
introduction of capabilities for environmental sensing and actuation, allowing capture,
analysis and processing of real-world data, transforming the data into useful information
and allowing autonomic interventions in the urban space. Thus, smart city resources,
also called things in an Internet of Things perspective, are equipped with sensing and/or
actuation capabilities, along with communication capabilities to share information.

In this context, smart cities need to take advantage not only from information
collected from sensors that belong to its infrastructure, but also from the mobile devices
owned  by  its  citizens,  which  increasingly  have  advances  sensing  capabilities  (e.g.
cameras, microphone, accelerometer, GPS). In Mobile CrowdSensing (MCS) citizens of
a smart city  collect,  share and jointly  use services based on community-sensed data
(Stojanovic et al., 2016).

Smart cities have a wide range of domains, such as MCS, and these domains can
be integrated into a complete and consistent solution as part of a software platform,
which includes foundation services for the development, integration, deployment, and
management smart city applications. In the MCS domain, the development of smart city
platforms to support applications poses a number of challenges, such as interoperability
among  different  resources,  recruiting  of  appropriate  data  sources,  collection  and
processing of data from those sources, and runtime adaptation of the applications in
dynamic environments (Alvear et al., 2018).

To  help  overcome  these  challenges,  this  paper  proposes  an  architecture  for
processing MCS queries in smart cities using an approach based on models at runtime
that  is  integrated  as  part  of  an  existing  smart  city  platform  called  InterSCity  (Del
Esposte et al., 2017). The proposed approach fulflls the following goals: (a) processing



user-defned  MCS  queries;i  (b)  providing  a  scalable  MCS  service;i  (c)  dynamically
adapting  query  processing  to  changes  in  the  environment,  by  adjusting  the  set  of
selected devices and sensors and by allowing users to alter queries on-the-fy (mainly in
the case of long-running queries);i and (d) providing composite resources (based on the
dynamic  combination  of  crowd-based  resources)  that  applications  can  use  in  a
transparent way.

In order to demonstrate the feasibility of this approach, we present a scenario for
monitoring the noise levels of a city in order to identify critical areas with high levels of
noise.  Data gathered in this  way can be used by environmental  control  applications
(Zappatore et al., 2016).

The rest of the paper is organized as follows. Section 2 presents the state of the
art on MCS, a model-driven approach for MCS and its integration with Smart Cities.
Section  3  discusses  smart  city  platforms  in  general  and  the  InterSCity  platform in
particular. Section 4 describes the proposed architecture,  while its implementation is
presented in Section 5. Section 6 presents a scenario to demonstrate the functionality of
the platform, and Section 7 reviews the main contributions and discusses future work.

2. Mobile CrowdSensing (MCS)

MCS refers to the opportunistic or participatory use of a large set of sensors
embedded in current general purpose mobile devices for the purpose of measuring and
mapping interesting phenomena by means of the collaborative sharing of sensors (Ganti
et  al.,  2011).  MCS environments  encompass  a  variety  of  applications  that  need  to
communicate and exchange data. The major challenges are related to the amount and
diversity of devices, the dynamism of the scenarios, and the proper selection of devices
to fulfll a given request.

Existing platforms for MCS address challenges such as facilitating application
development, supporting effcient and scalable dissemination of sensor data, enabling
mobility  management  of  the  applications  and  providing  incentives  for  participatory
sensing.  However,  the  programming  models  in  most  of  these  platforms  makes  it
diffcult  to develop dynamic applications  that  need to change quickly in the face of
changes  in  the  application  or  its  environment.  The  next  section  addresses  a  robust
alternative to address this issue.

2.1. Model-Driven Approach for MCS

A model-driven approach to MCS is motivated by the need to overcome the
adaptability challenges due to the variety of applications and the mobility of devices.
The  use  of  models@runtime  in  MCS  allows  the  description  of  the  crowdsensing
behavior of an application in a dynamic way, thus enabling runtime adaptation of such
behavior. In general, the use of a model-based approach enables the shortening of the
semantic gap between the problem to be solved and the platform being used, promoting
the use of abstractions that are closer to the problem domain.

In  this  context,  CSVM  (CrowdSensing  Virtual  Machine)  (Melo,  2014)  is  a
platform driven by models@runtime (Blair et al, 2009) that enables the creation and
execution of MCS queries by specifying and interpreting models described in a domain-
specifc modeling language called CSML (CrowdSensing Modeling Language). 

CSVM was implemented as a distributed architecture containing 5 layers and
comprised  by  a  central  component  (CSVMProvider)  and  a  distributed  component
(CSVM4Dev) which is instantiated on each participating mobile device. In addition to
its  reliance  on  modeling  techniques,  CSVM demonstrates  the  fexibility  in  creating
queries from high-level models that can be modifed at runtime.



CSML  is  the  domain-specifc  modeling  language  (DSML)  interpreted  by
CSVM. It allows the creation and manipulation of models that describe queries and their
execution.  Its constructs are used to model the two major functionalities required by
MCS applications, namely device registration, which integrates the device as part of the
crowdsensing environment,  and query specifcation,  which  allows the  user  to  create
queries  that  involve  sensor  data gathered  from  multiple  devices.  These  two
functionalities are specifed in the form of two kinds of submodels, also called schemas:
Control  Schema (CS) and Data Schema (DS).  CS are  models  that  represent  logical
CrowdSensing  confgurations  and  are  further  subdivided  into  Environment  Control
Schemas (ECS) and Query Control  Schemas (QCS).  The constructs  used to specify
schemas are defned in the CSML metamodel,  which in turn is defned according to
OMG's metamodeling architecture, the Meta-Object Facility (MOF) (OMG, 2008).

An ECS describes the crowdsensing environment and serves as a representation
of  the  devices  (and sensors)  that  are  available.  A QCS is  a  model  at  runtime  that
specifes one or more queries in terms of the desired types, quantities, and location of
sensors, as well as the operation to be executed on sensor data (e.g., average, sum, etc.)
and the type of notifcation of sensor data to clients (e.g.,  following an event-driven
approach). As an example, a QCS can be used to describe a query to monitor the noise
level in a specifc place or region. Finally, a DS is a model that represents an empty
form, which specifes the type of sensor information required in a query.

CSML can be used to specify MCS functions in different domains, including
Smart Cities. Its constructs are based solely on elements of the MCS technical domain,
making it independent of any specifc application domain. In this work we are interested
in  investigating  the  benefts  of  CSML’s  model-driven  approach  to  support  MCS
applications in the domain of Smart Cities. 

2.2. MCS for Smart Cities

MCS fts naturally in smart cities since every citizen, with their mobile phones
equipped  with  a  variety  of  sensors,  can  be  considered  a  data  source  in  the  city.
Cooperation between citizens that are part of a crowd enables large-scale sensing tasks.
In  this  context,  models  architectures  are  proposed,  aiming  at  a  horizontal  approach
(Petkovics et  al.,  2015) or even a reference architecture with shelf  components  also
called off-the-shelves (Diniz et al., 2015).

Various platforms for Smart Cities try to incorporate MCS in order to provide a
more complete platform solution that involves community (human) and collaborative
sensors. Examples are CrowdOut (Aubry et al., 2014), Borja e Gama (Borja et al., 2014)
and SOFIA (Filipponi et al., 2010). CSVM in turn is a complete platform to model and
process MCS queries, handling the major requirements of the MCS domain. Its strength
lies in the use of a model-driven approach to collect, process and store the data from
devices in addition to supporting the construction of MCS applications through the use
of dynamic models. These features naturally ft in the kind of dynamic environment that
is characteristic of smart cities. However, CSVM’s architecture does not consider its
integration with other services that are required to handle the requirements of smart
cities. Examples are the integration of infrastructure sensors and social networks as data
sources, as well as the processing of big data that arises from the collection of data from
a large number of sources.

3. Platform for Smart Cities

A smart  city  platform must  integrate  multiple  domains  into  a  complete  and
consistent  middleware solution,  providing facilities  for the development,  integration,
deployment,  and  management  of  applications  (Santana  et  al.,  2017).  Building  such
platforms  involves  challenges:  enabling  interoperability  between  a  city’s  multiples



systems, guaranteeing citizens’  privacy, managing large amounts of data,  supporting
scalability, supporting adaptability of dynamic environment, and dealing with a large
variety of sensors. In order to overcome these challenges, several smart city platforms
have been developed, such as OpenIoT (Solatos et al., 2015), SMARTY (Anastasi et al.,
2013), U-City (Piro et al., 2014), and InterSCity (Batista et al., 2016), which was chosen
by this work to present a microservice architecture that allows easy adaptation of new
services like MCS and it is discussed next.

3.1 InterSCity

The InterSCity  platform has  a  microservice-based architecture  designed as  a
unifed reference architecture for smart cities (Santana et al., 2017). The architecture is
shown in Figure 1 as a set of high-level cloud-based (RESTful) services. To provide
easy and decentralized communication, each InterSCity microservice has well-defned
boundaries  to  communicate  with  both  IoT  devices  and  smart  city  applications.
Currently, the platform is composed of six microservices that provide: integration with
different  IoT devices  (Resource Adaptor),  data  and resource management  (Resource
Catalog, Data Collector and Actuator Controller), resource discovery through context
data (Resource Discovery), and graphical interface for visualization (Resource Viewer). 

Figure 1. The InterSCity Platform Architecture (Del Esposte et al., 2017).

All microservices are implemented with REST APIs for synchronous messaging
over HTTP and RabbitMQ of the Advanced Message Queuing Protocol (AMQP) for
assynchronous  calls.  In  addition,  another  important  aspect  of  the  platform  is  the
mapping of each physical entity that makes up the city (cars, buses, lampposts, traffc
lights, etc.) to a logical resource. These resources comprise attributes (e.g., location and
description) and functional capabilities to provide data and receive commands.

Some design principles were considered when building the InterSCity platform,
with emphasis on scalability (in terms of the number of devices, users and components,
and volume of city-related data) and evolvability (very dynamic urban environments
tend to change constantly in terms of organization, regulations, problems, opportunities
and challenges). However, regarding the support for MCS applications (queries) and
resources, the InterSCity architecture has two limitations: (1) lack of runtime adaptation
of query processing;i and (2) lack of transparent support for composite resources (crowd/
group  of  sensors).  This  paper  addresses  these  limitations  with  an  extension  of  the



InterSCity platform to support the processing and management of MCS applications
through a model-driven approach.

4. MCS Architecture

In general, the architecture of smart city platforms must include components to
support the construction of applications, manage and communicate with city network
nodes, integrate with existing social networks, store and manage the collected data, and
capture context variations and adapt to it (Santana et al., 2017). In line with this generic
approach, we propose an architectural extension of InterSCity to support construction
and processing of MCS queries according to the model-driven approach used in CSML.

The proposed architecture,  shown on the left  part  of Figure 2,  comprises  all
components already implemented in InterSCity,  augmented with a new microservice
called CrowdSensing Engine,  responsible for processing MCS queries and described
next.

4.1. CrowdSensing Engine

The CrowdSensing Engine is a microservice responsible for processing MCS
queries. For the construction of this microservice the InterSCity design principles were
maintained so that the extension does not compromise the original structure. As such,
this component was developed according to the evolution requirements of the platform,
maintaining  the  characteristics  of  microservices  in  a  way  that  is  weakly  coupled,
scalable and has well-defned interfaces for external communication. The CrowdSensing
Engine has a fve internal components, as shown in Figure 2 and described next.

Figure 2. The InterSCity CrowdSensing Engine (left) and its internal components (right).

Crowd Manager. This component is responsible for keeping the crowd always up to
date. A crowd represents the set of devices recruited to provide data for a query. Crowd
Manager manages the status of such devices to monitor for failures and availability, in
which case it interacts with the Device Recruitment component to select another device.
In addition, it is also responsible for registering the crowd in the Resource Catalog as a
logical resource with a specifc capability (e.g., temperature, humidity etc.) making its
data available to other applications (not necessarily crowdsensing ones). Note that each
query can generate a different crowd, all of which are managed by this component.

Each crowd has a CSML model that represents it and is maintained at runtime,
so that changes identifed by Crowd Manager trigger commands for the M@rt Manager
to update the model.  This model  is  based on the query description in CSML (more
specifcally a user-generated QCS) and composed of the recruited devices.

M@rt Manager. This component keeps the runtime model up to date. This includes all
aspects  of  the  MCS  environment,  notably  query  models  and  crowd  models.  More
specifcally,  it  manages  adaptation  rules,  so  that  when  a  rule  is  triggered,  it



communicates the event to the Synthesis Engine and Device Recruitment components
for  appropriate  handling.  An  adaption  rule  can  be  triggered  when  a  device  is
unavailable, in which case the M@rt Manager must change the model by removing the
device and inserting a newly recruited device.

Synthesis Engine. This is the central component of the microservice and all queries
must pass through it. It is responsible for interpreting all the models described in CSML
and received by the microservice. It has an interface for communication with the other
components inside the microservice, and provides a REST API for communication with
MCS  applications.  Therefore,  all  internal  communication  with  this  component  is
performed through method calls  and external  calls  are  carried  out  via  HTTP REST
protocol. This is the only component that interacts directly with MCS applications.

As  part  of  model  interpretation,  it  parses  a  JSON-based  input  model  and
converts it into an internal model described in CSML;i then it transforms the elements of
the CSML model into HTTP commands that carry out the intent expressed in the model.

Device  Recruitment.  This  component  manages  internal  and  specifc  recruitment
policies to access CrowdSensing resources. It communicates with Resource Discovery
to select resources according of a specifc query and to construct a QCS instance. It has
a direct  communication  interface  with Resource Discovery.  It  functions  as  a broker
between the CrowdSensing Engine and the set of cataloged (registered) resources.

Security and Privacy Manager. It is responsible for applying pre-defned privacy and
security  policies.  With  regard  to  security  aspects,  this  component  should  guarantee
confdentiality, availability, integrity, authenticity, non-repudiation, and auditing. To do
this, it implements communication protocols that employ encryption and access control
through an authentication system and access control lists (ACLs). Privacy is managed
based  on  a  set  of  user-defned  rules  (usually  restrictive)  associated  with  each  user,
informing access restrictions to specifc sensors or by certain types of application.

The  remainder  of  this  section  describes  the  interaction  protocols  that  these
components follow in order to process MCS queries.

4.2 MCS Query Processing

To  perform  CrowdSensing  for  an  application,  a  platform  must  allow  the
registration  of  devices  and  the  subscription  (or  sending)  of  CSML queries.  Device
Registration is performed by the generic components of InterSCity as shown Figure 3.
In this  process,  (1) the device sends an HTTP POST command with its  capabilities
(sensors  it  wants  to  share),  (2)  Resource  Adaptor  sends  the  resource  meta-data  to
Resource Catalog, (3) Resource Catalog publishes an event to the RabbitMQ message
bus, which may notify (4) the Data Collector and Actuator Controller to inform that the
resource has the specifed sensor and actuation capabilities.

Figure 3. MCS Device Registration in InterSCity platform 



Query  Subscription (query  processing),  in  turn,  directly  involves  the
CrowdSensing Engine  microservices  as  shown Figure  4(a)  and 4(b).  The  following
steps describe how components interact during query processing. First, the application
describes the query model in CSML and (1) sends the model to the platform through the
REST API provided by CrowdSensing Engine  (more  specifcally,  via  the  Synthesis
Engine component interface). The Synthesis Engine component performs the parsing,
(2) sends the model to the M@rt Manager for storage, and converts the query described
in CSML into  commands to  recruit  the devices,  which are then  send (3) to  Device
Recruitment. 

Figure 4(a). MCS Query Processing part 1

Figure 4(b). MCS Query Processing part 2

Device Recruitment applies policies to access the MCS resources and (4) sends
recruitment requests to get data about the recruited resources. If devices are available in
accordance with the query, Resource Discovery (5) returns a list  of the devices that
were recruited, identifed by uuid (notation used in InterSCity to identify each cataloged
resource). Synthesis Engine (6) receives the list sent by Device Recruitment in JSON,
performs parsing, converts the list into a QCS instance (in CSML), (7) sends the up to
date  the  model  to  M@rt  Manager,  and  (8)  sends  to  Crowd Manager  the  group  of
recruited devices (at this point, it creates the group/crowd and an id for it).

Crowd Manager generates and sends commands (9) to Actuator Controller to
obtain current data from recruited devices and to generate asynchronous commands to
get the status of devices. Resource Adaptor is notifed by RabbitMQ and forwards the
notifcation to the devices (10). After data capture, Resource Adapter (11) publishes the
data obtained. Crowd Manager (12) receives the notifcation, consumes the message and
(13)  sends it  to  Synthesis  Engine,  which  applies  the appropriate  business  rules  and



performs data merging (referring to M@rt Manager). Finally, (14) the response is sent
to the requestor.

5. Implementation

In this section, we briefy describe some aspects of a proof-of-concept prototype
of the CrowdSensing Engine microservice. The prototype comprises an implementation
of  the  fve  internal  components  described  in  Section  4,  which  are  responsible  for
processing  CSML  MCS  queries.  The  interaction  between  these  components  are
performed through remote calls to methods, as well as through trigger events. 

CrowdSensing  Engine  was  implemented  in  Ruby.  Its  implementation  is
encapsulated as a microservice that provides a RESTful interface to communicate with
other platform microservices and external applications. For asynchronous calls, we used
the RabbitMQ implementation AMQP. More specifcally, for the processing of MCS
queries, an `MCS’ topic was created.

Like  the  other  microservices  of  the  platform,  CrowdSensing  Engine  is
encapsulated  in  its  own  Docker  lightweight  container  which  can  be  deployed  and
maintained independently.

6. Example Scenario

In this section we present a scenario of applicability of the proposed approach in
order to demonstrate the feasibility of the solution and its ability to meet the major
specifc requirements for MCS in the smart cities domain. In order to demonstrate the
scope of the proposal, this scenario comprises the complete cycle of processing MCS
queries applied in the domain of smart cities.

The example application in this scenario corresponds to the monitoring of noise
level in an urban space. One of the possible ways for handling this scenario is to offer
both  citizens  and city  managers  new ways for  managing  environmental  monitoring.
Such management can be done by a smart city platform with MCS components that
exploit the capabilities of the microphones embedded in citizen's smartphone's as sound
sensing devices in order to create  large-scale noise maps and suggest city managers
suitable noise reduction interventions.

The frst step is to specify CSML queries (using an application designed for this
purpose) related to the problem domain, informing the sensors (type and quantity) that
are required for the monitoring, as well as the location to be monitored (e.g., "100 audio
sensors located in the X neighborhood during 10 hours"). It is also possible to specify
an operation to be performed over the collected data (e.g., average). Once the query is
created, it is sent to the InterSCity platform.

The second step occurs within the platform, where the CrowdSensing Engine
microservice  receives  the  request  and initiates  its  processing  by following the  steps
described  in  Section  4.2.  After  interpreting  the  query,  the  CrowdSensing  Engine
microservice  sends  commands  to  discover  resources  (devices)  that  meet  the
requirements specifed in the query. At this point, the resources are searched in a catalog
of resources maintained by the platform.

A list of 100 devices must be returned to the CrowdSensing Engine to update the
query model, which will include the sensor type, location, query duration, and devices
that  have been recruited.  If any of the devices  fail  or if  the user changes the query
parameters  during  its  execution,  the  CrowdSensing  Engine  identifes  the  fact  and
initiates the adaptation process. This process involves updating the model by removing
the failed device and/or applying the new requirements stipulated by the user as changes
in the model kept at runtime.



Finally, the data obtained are processed and the results are returned to the user,
informing in this scenario the noise level of that specifed region. 

7. Conclusion and Future Work 

The development  and deployment of smart  city  platforms faces a number of
challenges  such  as  privacy,  data  management,  heterogeneity,  communication,
scalability, city models and dynamism. Through these challenges there is an increasing
need for smart city solutions that take advantage of the latent potential of existing open
source platforms.

In this paper, we presented an architecture for processing MCS queries in the
smart  cities  domain.  More  specifcally,  we  propose  an  extension  of  the  InterSCity
platform  to  support  CrowdSensing  applications  through  the  development  of  a
microservice based on a models@runtime approach for MCS. The approach uses the
CSML  modeling  language  to  model  crowdsensing  queries,  thus  supporting  the
development of applications in this domain. 

The main contribution this work is the demonstration of feasibility of integrating
MCS in the domain of smart cities using a models@runtime approach. In this way, the
approach  proposed  in  this  article  makes  it  possible  to  opportunistically  (or  in  a
participative way) use the latent potential of sensors embedded in smartphones through
the implementation of the Mobile CrowdSensing paradigm as part of a platform for
smart  cities.  This  paradigm  also  allows  to  combine  different  resources  in  order  to
generate more precise and useful information for the applications. In addition, this work
also includes the use of models@runtime to allow real-time adaptation and improve the
modeling of city aspects (through MCS query modeling in CSML) from which it differs
from the other platforms mentioned in Section 3. 

Our  ongoing  work  includes  the  performance  of  experiments  to  evaluate  the
scalability and performance of the proposed microservice. For this evaluation, we will
consider the time spent by each internal component of the microservice,  in order to
identify potential bottlenecks and propose improvements in its implementation.
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