
Model-Driven Mobile CrowdSensing for Smart Cities

Paulo César F. Melo, Fábio M. Costa

Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74.690-900 – Goiânia – GO – Brazil

{paulomelo,fmc}@inf.ufg.br

Abstract. Making cities smarter can help improve city services, optimize
resource and infrastructure utilization and increase quality of life. Smart
Cities connect citizens in novel ways by leveraging the latest advances in
information and communication technologies (ICT). The integration of rich
sensing capabilities in today’s mobile devices allows their users to actively
participate in sensing the environment. In Mobile CrowdSensing (MCS)
citizens of a Smart City collect, share and jointly use services based on sensed
data. The main challenges for smart cities regarding MCS is the heterogeneity
of devices and the dynamism of the environment. To overcome these
challenges, this paper presents an architecture based on models at runtime
(M@rt) to support dynamic MCS queries in Smart Cities. The architecture is
proposed as an extension of the InterSCity platform, leveraging on its existing
services and on its capability to integrate city infrastructure resources.

1. Introduction

Modern-time cities face challenges to achieve goals related to socio-economic
development and quality of life, notably due to the concentration of the population and
the pressures that arise from it. The concept of Smart City was proposed in response to
these challenges (Celino et al., 2013). One of its main themes is the integration of the
physical and virtual worlds (Borgia et al., 2014). This integration is achieved with the
introduction of capabilities for environmental sensing and actuation, allowing capture,
analysis and processing of real-world data, transforming the data into useful information
and allowing autonomic interventions in the urban space. Thus, smart city resources,
also called things in an Internet of Things perspective, are equipped with sensing and/or
actuation capabilities, along with communication capabilities to share information.

In this context, smart cities need to take advantage not only from information
collected from sensors that belong to its infrastructure, but also from the mobile devices
owned by its citizens, which increasingly have advances sensing capabilities (e.g.
cameras, microphone, accelerometer, GPS). In Mobile CrowdSensing (MCS) citizens of
a smart city collect, share and jointly use services based on community-sensed data
(Stojanovic et al., 2016).

Smart cities have a wide range of domains, such as MCS, and these domains can
be integrated into a complete and consistent solution as part of a software platform,
which includes foundation services for the development, integration, deployment, and
management smart city applications. In the MCS domain, the development of smart city
platforms to support applications poses a number of challenges, such as interoperability
among different resources, recruiting of appropriate data sources, collection and
processing of data from those sources, and runtime adaptation of the applications in
dynamic environments (Alvear et al., 2018).

To help overcome these challenges, this paper proposes an architecture for
processing MCS queries in smart cities using an approach based on models at runtime
that is integrated as part of an existing smart city platform called InterSCity (Del
Esposte et al., 2017). The proposed approach fulflls the following goals: (a) processing

user-defned MCS queries;i (b) providing a scalable MCS service;i (c) dynamically
adapting query processing to changes in the environment, by adjusting the set of
selected devices and sensors and by allowing users to alter queries on-the-fy (mainly in
the case of long-running queries);i and (d) providing composite resources (based on the
dynamic combination of crowd-based resources) that applications can use in a
transparent way.

In order to demonstrate the feasibility of this approach, we present a scenario for
monitoring the noise levels of a city in order to identify critical areas with high levels of
noise. Data gathered in this way can be used by environmental control applications
(Zappatore et al., 2016).

The rest of the paper is organized as follows. Section 2 presents the state of the
art on MCS, a model-driven approach for MCS and its integration with Smart Cities.
Section 3 discusses smart city platforms in general and the InterSCity platform in
particular. Section 4 describes the proposed architecture, while its implementation is
presented in Section 5. Section 6 presents a scenario to demonstrate the functionality of
the platform, and Section 7 reviews the main contributions and discusses future work.

2. Mobile CrowdSensing (MCS)

MCS refers to the opportunistic or participatory use of a large set of sensors
embedded in current general purpose mobile devices for the purpose of measuring and
mapping interesting phenomena by means of the collaborative sharing of sensors (Ganti
et al., 2011). MCS environments encompass a variety of applications that need to
communicate and exchange data. The major challenges are related to the amount and
diversity of devices, the dynamism of the scenarios, and the proper selection of devices
to fulfll a given request.

Existing platforms for MCS address challenges such as facilitating application
development, supporting effcient and scalable dissemination of sensor data, enabling
mobility management of the applications and providing incentives for participatory
sensing. However, the programming models in most of these platforms makes it
diffcult to develop dynamic applications that need to change quickly in the face of
changes in the application or its environment. The next section addresses a robust
alternative to address this issue.

2.1. Model-Driven Approach for MCS

A model-driven approach to MCS is motivated by the need to overcome the
adaptability challenges due to the variety of applications and the mobility of devices.
The use of models@runtime in MCS allows the description of the crowdsensing
behavior of an application in a dynamic way, thus enabling runtime adaptation of such
behavior. In general, the use of a model-based approach enables the shortening of the
semantic gap between the problem to be solved and the platform being used, promoting
the use of abstractions that are closer to the problem domain.

In this context, CSVM (CrowdSensing Virtual Machine) (Melo, 2014) is a
platform driven by models@runtime (Blair et al, 2009) that enables the creation and
execution of MCS queries by specifying and interpreting models described in a domain-
specifc modeling language called CSML (CrowdSensing Modeling Language).

CSVM was implemented as a distributed architecture containing 5 layers and
comprised by a central component (CSVMProvider) and a distributed component
(CSVM4Dev) which is instantiated on each participating mobile device. In addition to
its reliance on modeling techniques, CSVM demonstrates the fexibility in creating
queries from high-level models that can be modifed at runtime.

CSML is the domain-specifc modeling language (DSML) interpreted by
CSVM. It allows the creation and manipulation of models that describe queries and their
execution. Its constructs are used to model the two major functionalities required by
MCS applications, namely device registration, which integrates the device as part of the
crowdsensing environment, and query specifcation, which allows the user to create
queries that involve sensor data gathered from multiple devices. These two
functionalities are specifed in the form of two kinds of submodels, also called schemas:
Control Schema (CS) and Data Schema (DS). CS are models that represent logical
CrowdSensing confgurations and are further subdivided into Environment Control
Schemas (ECS) and Query Control Schemas (QCS). The constructs used to specify
schemas are defned in the CSML metamodel, which in turn is defned according to
OMG's metamodeling architecture, the Meta-Object Facility (MOF) (OMG, 2008).

An ECS describes the crowdsensing environment and serves as a representation
of the devices (and sensors) that are available. A QCS is a model at runtime that
specifes one or more queries in terms of the desired types, quantities, and location of
sensors, as well as the operation to be executed on sensor data (e.g., average, sum, etc.)
and the type of notifcation of sensor data to clients (e.g., following an event-driven
approach). As an example, a QCS can be used to describe a query to monitor the noise
level in a specifc place or region. Finally, a DS is a model that represents an empty
form, which specifes the type of sensor information required in a query.

CSML can be used to specify MCS functions in different domains, including
Smart Cities. Its constructs are based solely on elements of the MCS technical domain,
making it independent of any specifc application domain. In this work we are interested
in investigating the benefts of CSML’s model-driven approach to support MCS
applications in the domain of Smart Cities.

2.2. MCS for Smart Cities

MCS fts naturally in smart cities since every citizen, with their mobile phones
equipped with a variety of sensors, can be considered a data source in the city.
Cooperation between citizens that are part of a crowd enables large-scale sensing tasks.
In this context, models architectures are proposed, aiming at a horizontal approach
(Petkovics et al., 2015) or even a reference architecture with shelf components also
called off-the-shelves (Diniz et al., 2015).

Various platforms for Smart Cities try to incorporate MCS in order to provide a
more complete platform solution that involves community (human) and collaborative
sensors. Examples are CrowdOut (Aubry et al., 2014), Borja e Gama (Borja et al., 2014)
and SOFIA (Filipponi et al., 2010). CSVM in turn is a complete platform to model and
process MCS queries, handling the major requirements of the MCS domain. Its strength
lies in the use of a model-driven approach to collect, process and store the data from
devices in addition to supporting the construction of MCS applications through the use
of dynamic models. These features naturally ft in the kind of dynamic environment that
is characteristic of smart cities. However, CSVM’s architecture does not consider its
integration with other services that are required to handle the requirements of smart
cities. Examples are the integration of infrastructure sensors and social networks as data
sources, as well as the processing of big data that arises from the collection of data from
a large number of sources.

3. Platform for Smart Cities

A smart city platform must integrate multiple domains into a complete and
consistent middleware solution, providing facilities for the development, integration,
deployment, and management of applications (Santana et al., 2017). Building such
platforms involves challenges: enabling interoperability between a city’s multiples

systems, guaranteeing citizens’ privacy, managing large amounts of data, supporting
scalability, supporting adaptability of dynamic environment, and dealing with a large
variety of sensors. In order to overcome these challenges, several smart city platforms
have been developed, such as OpenIoT (Solatos et al., 2015), SMARTY (Anastasi et al.,
2013), U-City (Piro et al., 2014), and InterSCity (Batista et al., 2016), which was chosen
by this work to present a microservice architecture that allows easy adaptation of new
services like MCS and it is discussed next.

3.1 InterSCity

The InterSCity platform has a microservice-based architecture designed as a
unifed reference architecture for smart cities (Santana et al., 2017). The architecture is
shown in Figure 1 as a set of high-level cloud-based (RESTful) services. To provide
easy and decentralized communication, each InterSCity microservice has well-defned
boundaries to communicate with both IoT devices and smart city applications.
Currently, the platform is composed of six microservices that provide: integration with
different IoT devices (Resource Adaptor), data and resource management (Resource
Catalog, Data Collector and Actuator Controller), resource discovery through context
data (Resource Discovery), and graphical interface for visualization (Resource Viewer).

Figure 1. The InterSCity Platform Architecture (Del Esposte et al., 2017).

All microservices are implemented with REST APIs for synchronous messaging
over HTTP and RabbitMQ of the Advanced Message Queuing Protocol (AMQP) for
assynchronous calls. In addition, another important aspect of the platform is the
mapping of each physical entity that makes up the city (cars, buses, lampposts, traffc
lights, etc.) to a logical resource. These resources comprise attributes (e.g., location and
description) and functional capabilities to provide data and receive commands.

Some design principles were considered when building the InterSCity platform,
with emphasis on scalability (in terms of the number of devices, users and components,
and volume of city-related data) and evolvability (very dynamic urban environments
tend to change constantly in terms of organization, regulations, problems, opportunities
and challenges). However, regarding the support for MCS applications (queries) and
resources, the InterSCity architecture has two limitations: (1) lack of runtime adaptation
of query processing;i and (2) lack of transparent support for composite resources (crowd/
group of sensors). This paper addresses these limitations with an extension of the

InterSCity platform to support the processing and management of MCS applications
through a model-driven approach.

4. MCS Architecture

In general, the architecture of smart city platforms must include components to
support the construction of applications, manage and communicate with city network
nodes, integrate with existing social networks, store and manage the collected data, and
capture context variations and adapt to it (Santana et al., 2017). In line with this generic
approach, we propose an architectural extension of InterSCity to support construction
and processing of MCS queries according to the model-driven approach used in CSML.

The proposed architecture, shown on the left part of Figure 2, comprises all
components already implemented in InterSCity, augmented with a new microservice
called CrowdSensing Engine, responsible for processing MCS queries and described
next.

4.1. CrowdSensing Engine

The CrowdSensing Engine is a microservice responsible for processing MCS
queries. For the construction of this microservice the InterSCity design principles were
maintained so that the extension does not compromise the original structure. As such,
this component was developed according to the evolution requirements of the platform,
maintaining the characteristics of microservices in a way that is weakly coupled,
scalable and has well-defned interfaces for external communication. The CrowdSensing
Engine has a fve internal components, as shown in Figure 2 and described next.

Figure 2. The InterSCity CrowdSensing Engine (left) and its internal components (right).

Crowd Manager. This component is responsible for keeping the crowd always up to
date. A crowd represents the set of devices recruited to provide data for a query. Crowd
Manager manages the status of such devices to monitor for failures and availability, in
which case it interacts with the Device Recruitment component to select another device.
In addition, it is also responsible for registering the crowd in the Resource Catalog as a
logical resource with a specifc capability (e.g., temperature, humidity etc.) making its
data available to other applications (not necessarily crowdsensing ones). Note that each
query can generate a different crowd, all of which are managed by this component.

Each crowd has a CSML model that represents it and is maintained at runtime,
so that changes identifed by Crowd Manager trigger commands for the M@rt Manager
to update the model. This model is based on the query description in CSML (more
specifcally a user-generated QCS) and composed of the recruited devices.

M@rt Manager. This component keeps the runtime model up to date. This includes all
aspects of the MCS environment, notably query models and crowd models. More
specifcally, it manages adaptation rules, so that when a rule is triggered, it

communicates the event to the Synthesis Engine and Device Recruitment components
for appropriate handling. An adaption rule can be triggered when a device is
unavailable, in which case the M@rt Manager must change the model by removing the
device and inserting a newly recruited device.

Synthesis Engine. This is the central component of the microservice and all queries
must pass through it. It is responsible for interpreting all the models described in CSML
and received by the microservice. It has an interface for communication with the other
components inside the microservice, and provides a REST API for communication with
MCS applications. Therefore, all internal communication with this component is
performed through method calls and external calls are carried out via HTTP REST
protocol. This is the only component that interacts directly with MCS applications.

As part of model interpretation, it parses a JSON-based input model and
converts it into an internal model described in CSML;i then it transforms the elements of
the CSML model into HTTP commands that carry out the intent expressed in the model.

Device Recruitment. This component manages internal and specifc recruitment
policies to access CrowdSensing resources. It communicates with Resource Discovery
to select resources according of a specifc query and to construct a QCS instance. It has
a direct communication interface with Resource Discovery. It functions as a broker
between the CrowdSensing Engine and the set of cataloged (registered) resources.

Security and Privacy Manager. It is responsible for applying pre-defned privacy and
security policies. With regard to security aspects, this component should guarantee
confdentiality, availability, integrity, authenticity, non-repudiation, and auditing. To do
this, it implements communication protocols that employ encryption and access control
through an authentication system and access control lists (ACLs). Privacy is managed
based on a set of user-defned rules (usually restrictive) associated with each user,
informing access restrictions to specifc sensors or by certain types of application.

The remainder of this section describes the interaction protocols that these
components follow in order to process MCS queries.

4.2 MCS Query Processing

To perform CrowdSensing for an application, a platform must allow the
registration of devices and the subscription (or sending) of CSML queries. Device
Registration is performed by the generic components of InterSCity as shown Figure 3.
In this process, (1) the device sends an HTTP POST command with its capabilities
(sensors it wants to share), (2) Resource Adaptor sends the resource meta-data to
Resource Catalog, (3) Resource Catalog publishes an event to the RabbitMQ message
bus, which may notify (4) the Data Collector and Actuator Controller to inform that the
resource has the specifed sensor and actuation capabilities.

Figure 3. MCS Device Registration in InterSCity platform

Query Subscription (query processing), in turn, directly involves the
CrowdSensing Engine microservices as shown Figure 4(a) and 4(b). The following
steps describe how components interact during query processing. First, the application
describes the query model in CSML and (1) sends the model to the platform through the
REST API provided by CrowdSensing Engine (more specifcally, via the Synthesis
Engine component interface). The Synthesis Engine component performs the parsing,
(2) sends the model to the M@rt Manager for storage, and converts the query described
in CSML into commands to recruit the devices, which are then send (3) to Device
Recruitment.

Figure 4(a). MCS Query Processing part 1

Figure 4(b). MCS Query Processing part 2

Device Recruitment applies policies to access the MCS resources and (4) sends
recruitment requests to get data about the recruited resources. If devices are available in
accordance with the query, Resource Discovery (5) returns a list of the devices that
were recruited, identifed by uuid (notation used in InterSCity to identify each cataloged
resource). Synthesis Engine (6) receives the list sent by Device Recruitment in JSON,
performs parsing, converts the list into a QCS instance (in CSML), (7) sends the up to
date the model to M@rt Manager, and (8) sends to Crowd Manager the group of
recruited devices (at this point, it creates the group/crowd and an id for it).

Crowd Manager generates and sends commands (9) to Actuator Controller to
obtain current data from recruited devices and to generate asynchronous commands to
get the status of devices. Resource Adaptor is notifed by RabbitMQ and forwards the
notifcation to the devices (10). After data capture, Resource Adapter (11) publishes the
data obtained. Crowd Manager (12) receives the notifcation, consumes the message and
(13) sends it to Synthesis Engine, which applies the appropriate business rules and

performs data merging (referring to M@rt Manager). Finally, (14) the response is sent
to the requestor.

5. Implementation

In this section, we briefy describe some aspects of a proof-of-concept prototype
of the CrowdSensing Engine microservice. The prototype comprises an implementation
of the fve internal components described in Section 4, which are responsible for
processing CSML MCS queries. The interaction between these components are
performed through remote calls to methods, as well as through trigger events.

CrowdSensing Engine was implemented in Ruby. Its implementation is
encapsulated as a microservice that provides a RESTful interface to communicate with
other platform microservices and external applications. For asynchronous calls, we used
the RabbitMQ implementation AMQP. More specifcally, for the processing of MCS
queries, an `MCS’ topic was created.

Like the other microservices of the platform, CrowdSensing Engine is
encapsulated in its own Docker lightweight container which can be deployed and
maintained independently.

6. Example Scenario

In this section we present a scenario of applicability of the proposed approach in
order to demonstrate the feasibility of the solution and its ability to meet the major
specifc requirements for MCS in the smart cities domain. In order to demonstrate the
scope of the proposal, this scenario comprises the complete cycle of processing MCS
queries applied in the domain of smart cities.

The example application in this scenario corresponds to the monitoring of noise
level in an urban space. One of the possible ways for handling this scenario is to offer
both citizens and city managers new ways for managing environmental monitoring.
Such management can be done by a smart city platform with MCS components that
exploit the capabilities of the microphones embedded in citizen's smartphone's as sound
sensing devices in order to create large-scale noise maps and suggest city managers
suitable noise reduction interventions.

The frst step is to specify CSML queries (using an application designed for this
purpose) related to the problem domain, informing the sensors (type and quantity) that
are required for the monitoring, as well as the location to be monitored (e.g., "100 audio
sensors located in the X neighborhood during 10 hours"). It is also possible to specify
an operation to be performed over the collected data (e.g., average). Once the query is
created, it is sent to the InterSCity platform.

The second step occurs within the platform, where the CrowdSensing Engine
microservice receives the request and initiates its processing by following the steps
described in Section 4.2. After interpreting the query, the CrowdSensing Engine
microservice sends commands to discover resources (devices) that meet the
requirements specifed in the query. At this point, the resources are searched in a catalog
of resources maintained by the platform.

A list of 100 devices must be returned to the CrowdSensing Engine to update the
query model, which will include the sensor type, location, query duration, and devices
that have been recruited. If any of the devices fail or if the user changes the query
parameters during its execution, the CrowdSensing Engine identifes the fact and
initiates the adaptation process. This process involves updating the model by removing
the failed device and/or applying the new requirements stipulated by the user as changes
in the model kept at runtime.

Finally, the data obtained are processed and the results are returned to the user,
informing in this scenario the noise level of that specifed region.

7. Conclusion and Future Work

The development and deployment of smart city platforms faces a number of
challenges such as privacy, data management, heterogeneity, communication,
scalability, city models and dynamism. Through these challenges there is an increasing
need for smart city solutions that take advantage of the latent potential of existing open
source platforms.

In this paper, we presented an architecture for processing MCS queries in the
smart cities domain. More specifcally, we propose an extension of the InterSCity
platform to support CrowdSensing applications through the development of a
microservice based on a models@runtime approach for MCS. The approach uses the
CSML modeling language to model crowdsensing queries, thus supporting the
development of applications in this domain.

The main contribution this work is the demonstration of feasibility of integrating
MCS in the domain of smart cities using a models@runtime approach. In this way, the
approach proposed in this article makes it possible to opportunistically (or in a
participative way) use the latent potential of sensors embedded in smartphones through
the implementation of the Mobile CrowdSensing paradigm as part of a platform for
smart cities. This paradigm also allows to combine different resources in order to
generate more precise and useful information for the applications. In addition, this work
also includes the use of models@runtime to allow real-time adaptation and improve the
modeling of city aspects (through MCS query modeling in CSML) from which it differs
from the other platforms mentioned in Section 3.

Our ongoing work includes the performance of experiments to evaluate the
scalability and performance of the proposed microservice. For this evaluation, we will
consider the time spent by each internal component of the microservice, in order to
identify potential bottlenecks and propose improvements in its implementation.

Acknowledgement

This research is part of the INCT of the Future Internet for Smart Cities
funded by CNPq, proc. 465446/2014-0, CAPES proc. 88887.136422/2017-00,
and FAPESP, proc. 2014/50937-1 and proc. 2015/24485-9.

References

Alvear, O., et al. "Crowdsensing in Smart Cities: Overview, Platforms, and
Environment Sensing Issues." Sensors 18.2 (2018): 460.

Anastasi, Giuseppe, et al. "Urban and social sensing for sustainable mobility in smart
cities." Sustainable Internet and ICT for Sustainability (SustainIT), 2013. IEEE,
2013.

Aubry, E., Silverston, T., Lahmadi, A., & Festor, O. (2014, March). “CrowdOut: a
mobile crowdsourcing service for road safety in digital cities.” In Pervasive
Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE
International Conference on (pp. 86-91). IEEE.

Batista, D. M., Goldman, A., Hirata, R., Kon, F., Costa, F. M., & Endler, M. "Interscity:
Addressing future internet research challenges for smart cities." Network of the
Future (NOF), 2016 7th International Conference on the. IEEE, 2016.

Blair, G.;i Bencomo, N.;i France, R. B. “Models@ run.time.” Computer, v. 42, n. 10,
2009.

Borgia, E. “The Internet of Things vision: Key features, applications and open
issues.” Computer Communications, v. 54, p. 1-31, 2014.

Borja, R., & Gama, K. (2014). “Middleware para cidades inteligentes baseado em um
barramento de serviços. ” X Simpósio Brasileiro de Sistemas de Informação (SBSI),
1, 584-590.

Celino, I., Kotoulas, S. “Smart Cities [Guest editors' introduction].” IEEE Internet
Computing, v. 17, n. 6, p. 8-11, 2013.

Del Esposte, A. D. M., Kon, F., Costa, F. M., & Lago, N. “InterSCity: A Scalable
Microservice-based Open Source Platform for Smart Cities”, 6th International
Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Porto,
Portugal, 2017

Diniz, H. B., Silva, E. C. G. F., and Gama, K. "Uma Arquitetura de Referência para
Plataforma de Crowdsensing em Smart Cities." XI Brazilian Symposium on
Information System. 2015.

Filipponi, L., Vitaletti, A., Landi, G., Memeo, V., Laura, G., & Pucci, P. (2010, July).
“Smart city: An event driven architecture for monitoring public spaces with
heterogeneous sensors.” In Sensor Technologies and Applications
(SENSORCOMM), 2010 Fourth International Conference on (pp. 281-286). IEEE.

Ganti, R. K.;i YE, F.;i LEI, H. “Mobile crowdsensing: Current state and future
challenges.” Communications Magazine, IEEE, 49(11):32–39, 2011

Melo, P. C. F. "CSVM: Uma plataforma para crowdsensing móvel dirigida por modelos
em tempo de execução." (2014).

OMG, Q. V. T. “Meta object facility (mof) 2.0 query/view/transformation
specifcation.” Final Adopted Specifcation (November 2005), 2008.

Petkovics, A., et al. "Crowdsensing solutions in smart cities: Introducing a horizontal
architecture." Proceedings of the 13th International Conference on Advances in
Mobile Computing and Multimedia. ACM, 2015.

Piro, G., et al. "Information centric services in smart cities." Journal of Systems and
Software 88 (2014): 169-188.

Santana, E. F. Z., Chaves, A. P., Gerosa, M. A., Kon, F., & Milojicic, D. S. (2017).
Software platforms for smart cities: Concepts, requirements, challenges, and a
unifed reference architecture. ACM Computing Surveys (CSUR), 50(6), 78.

Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J. P., Riahi, M. &
Skorin-Kapov, L. (2015). Openiot: Open source internet-of-things in the cloud. In
Interoperability and open-source solutions for the internet of things (pp. 13-25).
Springer, Cham.

Stojanovic, D., Predic, B. and Stojanovic, N. "Mobile crowd sensing for smart urban
mobility." European Handbook of Crowdsourced Geographic Information (2016):
371.

Zappatore, M., Longo, A., & Bochicchio, M. A. Using mobile crowd sensing for noise
monitoring in smart cities. In Computer and Energy Science (SpliTech), International
Multidisciplinary Conference on (pp. 1-6). IEEE, 2016.

	1. Introduction
	The rest of the paper is organized as follows. Section 2 presents the state of the art on MCS, a model-driven approach for MCS and its integration with Smart Cities. Section 3 discusses smart city platforms in general and the InterSCity platform in particular. Section 4 describes the proposed architecture, while its implementation is presented in Section 5. Section 6 presents a scenario to demonstrate the functionality of the platform, and Section 7 reviews the main contributions and discusses future work.
	2. Mobile CrowdSensing (MCS)
	3. Platform for Smart Cities
	4. MCS Architecture
	The proposed architecture, shown on the left part of Figure 2, comprises all components already implemented in InterSCity, augmented with a new microservice called CrowdSensing Engine, responsible for processing MCS queries and described next.
	4.1. CrowdSensing Engine

	5. Implementation
	6. Example Scenario
	In this section we present a scenario of applicability of the proposed approach in order to demonstrate the feasibility of the solution and its ability to meet the major specific requirements for MCS in the smart cities domain. In order to demonstrate the scope of the proposal, this scenario comprises the complete cycle of processing MCS queries applied in the domain of smart cities.
	7. Conclusion and Future Work
	The development and deployment of smart city platforms faces a number of challenges such as privacy, data management, heterogeneity, communication, scalability, city models and dynamism. Through these challenges there is an increasing need for smart city solutions that take advantage of the latent potential of existing open source platforms.
	In this paper, we presented an architecture for processing MCS queries in the smart cities domain. More specifically, we propose an extension of the InterSCity platform to support CrowdSensing applications through the development of a microservice based on a models@runtime approach for MCS. The approach uses the CSML modeling language to model crowdsensing queries, thus supporting the development of applications in this domain.
	Acknowledgement
	This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq, proc. 465446/2014-0, CAPES proc. 88887.136422/2017-00, and FAPESP, proc. 2014/50937-1 and proc. 2015/24485-9.
	References

