
Propositional Dynamic Logic for Planning
Mario R. F. Benevides12, Anna C. C. M. Oliveira2

1Instituto de Computação
Universidade Federal Fluminense (UFF)

Niterói - RJ

2PESC/COPPE
Universidade Federal Rio de Janeiro (UFRJ)

Rio de Janeiro - RJ

mario@ic.uff.br, acoliveira@cos.ufrj.br

Abstract. This paper presents an on going work on Propositional Dynamic Lo-
gic PDL in which atomic programs are STRIPS actions. We think that this new
framework is appropriate to reasoning about actions and plans when dealing
with planning problem. Unlike PDL atomic programs, STRIPS actions have
pre-conditions and post-conditions. We propose a novel operator of action com-
position that takes into account the features of STRIPS actions. We propose an
axiomatization and prove its soundness. Completeness, decidability and com-
putational complexity are left as future work.

Resumo. Este artigo apresenta um trabalho em andamento sobre Lógica
Dinâmica Proposicional PDL em que programas atômicos são ações do
STRIPS. Pensamos que esse novo arcaboço é apropriado para raciocinar sobre
ações e planos ao lidar com problemas de planejamento. Ao contrário dos pro-
gramas atômicos PDL, as ações do STRIPS têm pré-condições e pós-condições.
Propomos um novo operador de composição de ações que leva em consideração
os recursos das ações do STRIPS. Propomos uma axiomatização e provamos
sua correção. Completude, decidibilidade e complexidade computacional são
deixadas como trabalho futuro.

1. Background
This section presents a brief overview of two topics on which the later development is ba-
sed on. First, we make a brief review of the syntax and semantics of [Harel et al. 2000].
Second, we present the classical planning problem. Finally, we present a brief introduc-
tion to STRIPS.

1.1. Propositional Dynamic Logic
In this section, we present the syntax and semantics of the most used dynamic logic called
PDL for regular programs.

Definition 1.1 The PDL language consists of a set Φ of countably many proposition sym-
bols, a set Π of countably many basic programs, the boolean connectives ¬ and ∧, the
program constructors ; (sequential composition), ∪ (non-deterministic choice) and ? (ite-
ration) and a modality 〈π〉 for every program π. The formulas are defined as follows:

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ, with π ::= a | π1; π2 | π1 ∪ π2 | π? | ϕ?

where p ∈ Φ and a ∈ Π.

In all the logics that appear in this paper, we use the standard abbreviations ⊥ ≡
¬>, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ→ φ ≡ ¬(ϕ ∧ ¬φ) and [π]ϕ ≡ ¬〈π〉¬ϕ.

Each program π corresponds to a modality 〈π〉, where a formula 〈π〉ϕ means
that there is a run of π after which ϕ is true, considering that π halts. There is also the
possibility of using [π]ϕ (as an abbreviation for ¬〈π〉¬ϕ) indicating that the property
denoted by ϕ holds after every possible run of π.

The semantics of PDL is normally given using a transition diagram, which con-
sists of a set of states and binary relations (one for each program) indicating the possible
execution of each program at each state. In PDL literature a transition diagram is called a
frame.

Definition 1.2 A frame for PDL is a tuple F = 〈W,Rπ〉 where

• W is a non-empty set of states;
• Ra is a binary relation over W , for each basic program a ∈ Π;
• We can inductively define a binary relation Rπ, for each non-basic program π, as

follows
– Rπ1;π2 = Rπ1 ◦Rπ2 ,
– Rπ1∪π2 = Rπ1 ∪Rπ2 ,
– Rϕ? = {(w,w) | M, w
 ϕ},
– Rπ? = R?

π, where R?
π denotes the reflexive transitive closure of Rπ.

Definition 1.3 A model for PDL is a pairM = 〈F ,V〉, where F is a PDL frame and V
is a valuation function V : Φ→ 2W .

The semantical notion of satisfaction for PDL is defined as follows:

Definition 1.4 LetM = 〈F ,V〉 be a model. The notion of satisfaction of a formula ϕ in
a modelM at a state w, notationM, w
 ϕ, can be inductively defined as follows:

• M, w
 p iff w ∈ V(p);
• M, w
 > always;
• M, w
 ¬ϕ iffM, w 6
 ϕ;
• M, w
 ϕ1 ∧ ϕ2 iffM, w
 ϕ1 andM, w
 ϕ2;
• M, w
 〈π〉ϕ iff there is w′ ∈ W such that wRπw

′ andM, w′
 ϕ.

For more details on PDL see [Harel et al. 2000].

1.2. Planning Problem
The planning problem consists of an automated process to check if a goal is achievable, gi-
ven the starting state and the defined actions. With the information acquired in the process,
it’s possible to construct the possibility graph [Luger 2008, Russell and Norvig 2003].

This is interesting for the field of artificial intelligence because it results in a tree
of possibilities given a set of actions and an initial state, with which one can find a path
to reach the intended state. This can be applied in robot and games programming, for
performance analysis, and in some decision making processes.

Definition 1.5 The classic planning problem is a tuple 〈S,Ac, s0, SG〉, where S is the set
of all possible states, Ac a set of actions, s0 ∈ S is the initial state, and SG ⊆ S is a set
containing the possible goals.

1.3. Example

In order to illustrate each method, the Blocks World problem is used. In this example,
the world is supposed to be a table with labeled wood blocks on it. All blocks have the
same size, and each one can be either on the table or on top of just one other block. Each
configuration of the blocks corresponds to a different state of the Blocks World.

State s0

A B

State s1

B

A

There are two actions that can be performed in this example. The first one is the
action of stacking a block on top of another. And the second is the action of unstacking a
block from top of another. The unstacked block is put on the table.

State s0

A B

stack(A,B,s0) -

�unstack(A,B,s1)

State s1

B

A

The operators descriptions are:

stack(x, y):
PRECONDITION Table(x) ∧ Clear(x) ∧ Clear(x) ∧ x 6= y
POSCONDITION On(x, y) ∧ ¬Clear(y) ∧ ¬Table(x)

unstack(x, y):
PRECONDITION Clear(x) ∧On(x, y)
POSCONDITION Clear(y) ∧ Table(x) ∧ ¬On(x, y)

1.4. STRIPS (Stanford Research Institute Problem Solver)

The Stanford Research Institute Problem Solver is a problem solver developed by Fikes
and Nilsson in 1971 [Fikes and Nilsson 1971, Fikes et al. 1998]. The language was cre-
ated with the goal of implementing efficient operators. It was developed to be a planner
for the first mobile robot controlled by artificial inteligence, “Shakey the robot”.

In Strips, the problem space is formed by an initial state, a set of operators with
their effects, and goal conditions. The search space is a set of all possible worlds that are
transversed to locate a goal. It applies the operators which change the current state, until
it reaches the goal conditions. An operator consists of a set of preconditions and effects,
which can be in a delete list, or an add list.

The description of each operator follows the schemata below.

< operator >:
PRECONDITION < formula >
ADD LIST < list− of − formulas >
DELETE LIST < list− of − formulas >

A Blocks World representation, in STRIPS, is presented below.

The operators descriptions are:

stack(x, y):
PRECONDITION Table(x) ∧ Clear(x) ∧ Clear(x) ∧ x 6= y
ADD LIST On(x, y)
DELETE LIST Clear(y), Table(x)

unstack(x, y):
PRECONDITION Clear(x) ∧On(x, y)
ADD LIST Clear(y), Table(x)
DELETE LIST On(x, y)

2. PDL with STRIPS Actions

2.1. Language

The language is a standard PDL-language with composition, choice, test and iteration.
Let Act = {a, b, c, · · ·} be the set of action names and α denote an element of Act.

Definition 2.1 An action is a triple 〈α, pre(α), pos(α)〉, where α is an action name and
pre(α) and pos(α) are PDL formulas.

Definition 2.2 The dynamic modal language is a multi-modal language consisting of a
set Φ of countably many propositional symbols (the elements of Φ are denoted by p, q,
..), the booleans connectives ¬ and ∧ and a family of modal operators 〈π〉, one for each
program π. Formulas and programs are defined as follows:

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ
π ::= α | π1; π2 | π1 + π2 | π∗ | ϕ?, where α ∈ A.

Definition 2.3 The pre-condition of a program π, pre(π), and the post-condition of a
program π, pos(π), can be inductively defined as follows

• if π = α, then pre(π) = pre(α) and pos(π) = pos(α),
• if π = π1; π2, then pre(π) = pre(π1) and pos(π) = pos(π2),
• if π = π1+π2, then pre(π) = pre(π1)∨pre(π2) and pos(π) = pos(π1)∨pos(π2),
• if π = ϕ?, then pre(π) = pos(π) = ϕ,
• if π = π∗1 , then pre(π) = pre(π1) and pos(π) = pos(π1).

2.2. Semantics
The definitions of frame and models are exactly the same as Definition 1.2 and Definition
1.3 for PDL.

Definition 2.4 A proper SPDL model is a model M =< F ,V >, satisfying the fol-
lowing conditions:

1. for all actions α and for all u, v ∈ W : (u, v) ∈ Rα iffM, u
 pre(α) andM, v

pos(α)},

2. for all programs π: ∀u ∈ W, ifM, u
 pre(π), then ∃v(u, v) ∈ Rπ.

The definition of satisfaction and validity in proper models remains exactly the
same for regular models (definition 1.4).

Lemma 2.1 LetM =< F ,V > be a proper SPDL model. Then,

Rπ = {(u, v) ∈ W ×W | M, u
 pre(π) andM, v
 pos(π)}.

Proof: By induction on the construction of π.
• π = α (basic action): it follows straightforward from definition

2.4.
• H.I.: suppose it holds for programs |π| < k. We have to prove

that it holds for programs π = π1; π2, π1 + π2, π
∗
1, ϕ? of length

|π| = k.
– π = π1; π2. By definition 1.2, uRπ1;π2v iff uRπ1 ◦ Rπ2v.

But this implies the there exists w s.t. uRπ1w and wRπ2v.
By the I.H. M, u
 pre(π1) and M, v
 pos(π2)}.
Using definition 2.3, Rπ1;π2 = {(u, v) ∈ W | M, u

pre(π1; π2) andM, v
 pos(π1; π2)}.

– π = π1 +π2, π
∗
1, ϕ?. These cases are analogous to the pre-

vious case. They follow straightforward from definitions
2.3 and 1.2.

4

2.2.1. Axiomatization

We use the standard boolean abbreviations ⊥, ∨,→ and↔ and the following abbreviati-
ons for the duals: [π]A := ¬〈π〉¬A, for each program π.

The axiomatization presented below is the standard one of PDL extended with the
axiom for the parallel operator.

Axioms

1. All tautologies,
[π](p→ q)→ ([π]p→ [π]q),

2. [π1; π2]p↔ [π1][π2]p,
3. [π1 + π2]p↔ [π1] ∧ [π2]p,
4. [π∗]p↔ p ∧ [π][π∗]p,
5. [π∗](p→ [π]p)→ ([π]p→ [π∗]p),
6. [p?]q ↔ p→ q,
7. pre(π)↔ 〈π〉pos(π)
8. pre(π)→ 〈π〉>

Inference Rules

M.P. ϕ, ϕ→ ψ/ψ U.G. ϕ/[π]ϕ SUB. ϕ/σϕ

where σ is a map uniformly substituting formulas for propositional variables.

Axioms 1, 2, 3, 4, 5, and 6 and the inference rules are standard in PDL for regular
programs [Harel et al. 2000, Goldblatt 1992, Blackburn et al. 2001]. Axiom 7 says that,
if the precondition of a program is satisfied, then there exists a state reached after the
execution of the program where the post condition must hold. Axiom 8 asserts that if
the pre-condition of a program holds, then it must be the case that the program can be
executed.

2.2.2. Soundness

In order to prove soundness it is necessary to show both that every axiom is valid in
this class of frames and the inference rules also preserve the validity. The validity of
axioms 1, 3, 4, 5 and 6 and the inference rules are well-known from the PDL literature
[Harel et al. 2000, Goldblatt 1992, Blackburn et al. 2001]. Due to the pre-conditions and
post-conditions of programs, axiom 2 must be revisited. Thus, we only prove the validity
of axioms 2, 7 and 8.

Lemma 2.2 Axiom 2 is valid, i.e.,
 [π1; π2]p↔ [π1][π2]p.

Proof: For the sake of clarity, we prove the validity of the dual of axiom 2.
The soundness of axiom 2 follows straightforward.
⇒ Suppose that, for some modelM = (F ,V) and some state u in this

model,M, u
 〈π1; π2〉p (1),
(1) iff ∃v, uRπ1;π2v andM, v
 p,
uRπ1;π2v iff ∃w, uRπ1w and wRπ2v (2).
By (1) and (2), we have M, w
 〈π2〉p. And using (2) again we
obtainM, u
 〈π1〉〈π2〉p

⇐ Suppose that, for some modelM = (F ,V) and some state u in this
model,M, u
 〈π1〉〈π2〉p (1),
(1) iff ∃w, uRπ1w andM, w
 〈π2〉p (2),
(2) iff ∃v, wRπ2v andM, v
 p (3),
From (2) and (3), ∃w, uRπ1w and wRπ2v andM, v
 p,
iff ∃w, uRπ1w ◦ wRπ2v andM, v
 p,
iff ∃w, uRπ1;π2v andM, v
 p,
Thus,M, u
 〈π1; π2〉p.

4

Lemma 2.3 Axiom 7 is valid, i.e.,
 pre(π)↔ 〈π〉pos(π).

Proof:
⇒ Suppose that, for some modelM = (F ,V) and some state u in this

model,M, u
 pre(π) (1) andM, u 6
 〈π〉pos(π) (2)
(2) iff ∀v, uRπv ⇒ M, v
 ¬pos(π). (3)
Using (1) and definition 2.4, of proper models, ∃v, uRπv. From
(3), we haveM, v
 ¬pos(π).
But this is a contradiction with lemma 2.1.

⇐ Suppose that, for some modelM = (F ,V) and some state u in this
model,M, u 6
 pre(π) (1) andM, u
 〈π〉pos(π) (2)
(2) iff ∃v, uRπv andM, v
 ¬pos(π),
But this is a contradiction with lemma 2.1.

4

Lemma 2.4 Axiom 8 is valid, i.e., pre(π)→ 〈π〉>.

Proof: It follows straightforward from definition 2.4.
4

Theorem 2.1 (Soundness): STRIPS-PDL is sound with respect to the class of SPDL
proper models.

Proof: The proof of soundness is analogous to the proof of soundness for
dynamic logic, it is not difficult to see that every SPDL proper model is a
model for the axioms and the inference rules preserve validity.

4

3. Conclusions
In this work we introduce a new dynamic logic called STRIPS- PDL. Its aim is to reason
about actions and planning in artificial intelligence scenario. We propose an axiomatic
system and prove its soundness.

As a future work, we would like to prove completeness and decidability of
STRIPS-PDL and also establish its computational complexity. We also would like to
investigate new extension of this logic with other operator like: parallel composition and
epsitemic actions. Finally, it would interesting to develop a planner based on our fra-
mework.

Referências
Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. Cambridge University

Press, UK.

Fikes, R. E., Nillson, N. J., and Cocosco, C. A. (1998). A review of ”strips: A new
approach to the application of theorem proving to problem solving by r.e. fikes, n.j.
nillson, 1971”.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of
theorem proving to problem solving. In Proceedings of the 2Nd International Joint
Conference on Artificial Intelligence, IJCAI’71, pages 608–620, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Goldblatt, R. (1992). Logics of Time and Computation. CSLI Lecture Notes 7. CSLI,
Stanford.

Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logics. MIT Press.

Luger, G. F. (2008). Artificial Intelligence: Structures and Strategies for Complex Pro-
blem Solving. Addison-Wesley Publishing Company, USA, 6th edition.

Russell, S. J. and Norvig, P. (2003). Artificial intelligence - a modern approach, 2nd
Edition. Prentice Hall series in artificial intelligence. Prentice Hall.

