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Abstract. In this work we will be constructed F -structures-valued models as
generalization of Boolean-valued models and proved that these models that ver-
ify Leibniz’ Law validate all the set-theoretic axioms of da Costa’s Paraconsis-
tent Set Theory.

Resumo. Neste trabalho vamos construir os modelos de F-estruturas valuadas
como uma generalização dos modelos Booleanos valuados e provaremos que
esses modelos que verificam a Lei de Leibniz validam todos os axiomas conjun-
tistas da Teoria Paraconsistente de Conjunto de da Costa..

1. Introduction and Preliminaries

The publication in 1963 of da Costa’s Habilitation thesis Sistemas Formais Inconsistentes
constitutes a landmark in the history of paraconsistency. In that thesis, da Costa intro-
duced the hierarchy Cn (for n ≥ 1) and Cω of C-systems [da Costa 1963]. Recall that
Paraconsistency is the study of logic systems having a negation ¬ which is not explo-
sive, that is, there exist formulas α and β in the language of the logic such that β is not
derivable from the contradictory set {α,¬α}.

Now, consider the signature Σ = {→,∧,∨,¬} and recall that Cω is defined over
the language LΣ determined by the Hilbert calculus from axiom schemas from Intuition-
istic Positive Calculus, the rule modus ponens and the following axiom schemas: (Cω 1)
α∨¬α and (Cω 2) ¬¬α→ α. We are going to consider the usual notion of derivation of
a formula α form Γ in Cω and we denote by Γ ` α.

Later, da Costa visited Universidad Nacional del sur in 1969 and proposed Fidel
to find a semantics for Cn and Cω. In that time, they knew the negation ¬ was not congru-
encial. In fact, as we are going to see, Cω is not algebrizable with Blok-Pigozzi’s method.
Fidel jumped this difficulty by means of a presentation of a novel algebraic-relational



class of structures called F -structure by adapting Lindenbaum-Tarski method in order to
prove soundness and completeness theorem.

Now, recall that an algebra A = 〈A,∨,∧,→, 0, 1〉 is said to be a Heyting algebra
if the reduct 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice and the condition x∧y ≤ z iff
x ≤ y → z (∗) holds. Besides, the algebra A = 〈A,∨,∧,→, 1〉 is said to be generalized
Heyting algebra if the reduct A = 〈A,∨,∧〉 it is a distributive lattice and ∗ is verified.

Recall, that a Cω-structure ([Fidel 1977]) is a system 〈A, {Nx}x∈A〉 where A is a
generalized Heyting algebra and {Nx}x∈A is a family of subset of A such that the follow-
ing conditions hold for every x ∈ A:

(i) x ∨ x′ = 1 for each x′ ∈ Nx,
(ii) for every x′ ∈ Nx there is x′′ ∈ Nx′ such that x′′ ≤ x.

Besides, we say that a function v : Fm → 〈A, {Nx}x∈A〉 is a Cω-valuation (or
simply valuation) if the following conditions hold:

(v1) v(α) ∈ A where α is atomic formula,
(v2) v(α#β) = v(α)#v(β) where # ∈ {∧,∨,→},
(v3) v(¬α) ∈ Nv(α) and v(¬¬α) ≤ v(α).

For us a formula α will be semantically valid if for all valuation v and every Cω-
structure 〈A, {Nx}x∈A〉, v(α) = 1 and then, we denote � α. Moreover, for a given set of
formulas Γ, it is said that α is a semantic consequence of Γ, and we write Γ � α if for
every valuation v and every Cω-structure 〈A, {Nx}x∈A〉, if v(β) = 1 for every β ∈ Γ then
v(α) = 1.

Theorem 1.1 ([Fidel 1977]) Let Γ ∪ {α} be a set of formulas of Cω. Then, Γ ` α if only
if Γ � α.

In order to see that Cω is paraconsistent logic, we are going to consider the struc-
ture M3 = 〈H3, N0 = {1}, N 1

2
= {1}, N1 = {0, 1}〉 where H3 = ({0, 1

2
, 1},∧,∨,→

, 0, 1) is a 3-valued Gödel algebra (or 3-valued Heyting algebra). Thus, is is clear that
6� (¬α ∧ α)→ β for all α, β. To see this, it is enough to consider a valuation v such that
v(α) = 1

2
, v(¬α) = 1 and v(β) = 0. So, from Theorem 1.1, we have 6` (¬α ∧ α) → β

and taking into account the (meta-)deduction theorem, we have {¬α, α} 6` β.

2. The F -structure-valued models for paraconsistent set theory

In [L-T 2015], Löwe and Taradfer proposed a 3-valued model for the negation-free frag-
ment of a paraconsistent set theory based on the idea of boolean-valued models for Set
Theory, see [Bell 2005]. In this work, we are going to present full models for a paraconsis-
tent set theory. To this end, we fix a model of set theory V and a completed Cω-structure



〈A, N〉. Let us construct a universe of names by transfinite recursion:

Vξ
〈A,N〉 = {x : x a function and ran(x) ⊆ A and dom(x) ⊆ V

〈A,N〉
ζ for some ζ < ξ}

V〈A,N〉 = {x : x ∈ Vξ
〈A,N〉 for some ξ}

The class V〈A,N〉 is called the Cω-structure-valued model over 〈A, N〉. Let us
observe that we only need the set A in order to define Vξ

〈A,N〉. By L∈, we denote the
first-order language of set theory which consists of only the propositional connectives
{→,∧,∨,¬} of the Cω and two binary predicates ∈ and ≈. We can expand this language
by adding all the elements of V〈A,N〉; the expanded language we will denote L〈A,N〉.

Induction principles. The sets

Vζ = {x : x ⊆ Vξ, for some ξ < ζ}

are definable for every ordinal ξ and then, every set x belongs to Vα for some α. So, this
fact induce a function rank(x) = least ordinal ξ such that x ∈ Vξ. Since rank(x) <

rank(y) is well-founded we induce a principle of induction on rank: let Ψ be a property
over sets. Assume for every set x, if Ψ(y) holds for every y such that rank(y) < rank(x),
then Ψ(x) holds. Thus, Ψ(x) for every x.

From the latter, Induction Principles (IP) holds in V〈A,N〉. Assume for every x ∈
V〈A,N〉, if Ψ(y) holds for every y ∈ dom(x) then Ψ(x) holds. Hence, Ψ(x) holds for
every x ∈ V〈A,N〉.

By simplicity, we note every set u ∈ V〈A,N〉 by its name u of L〈A,N〉. Besides, we
will write ϕ(u) instead of ϕ(x/u). Now, we are going to define a valuation by induction
on the complexity of a closed formula in L〈A,N〉. Indeed,

Definition 2.1 For a given complete Cω-structure A = 〈A, N〉, the mapping || · ||A :

L〈A,N〉 → 〈A, N〉 is defined as follow:

||u ∈ v||A =
∨

x∈dom(v)

(v(x) ∧ ||x ≈ u||A),

||u ≈ v||A =
∧

x∈dom(u)

(u(x))→ ||x ∈ v||A) ∧
∧

x∈dom(v)

(v(x)→ ||x ∈ u||A),

||ϕ#ψ||A = ||ϕ||A#̃||ψ||A, for every # ∈ {∧,∨,→}
||¬α||A ∈ N||α||A and ||¬¬α||A ≤ ||α||A,

||∃xϕ||A =
∨

u∈V〈A,N〉
||ϕ(u)||A and ||∀xϕ||A =

∧
u∈V〈A,N〉

||ϕ(u)||A.

||ϕ||A is called the truth-value of the sentence ϕ in the language L〈A,N〉 in the
Cω-structure-valued model over 〈A, N〉.

In the in the book [Rasiowa 1974], it was presented a algebraic semantics for
certain first-order algebraizable logics. Following this algebraic treatment of this systems,



we define, for every formula α(x), ||α(x/u)||A = ||α(u)||A for any u ∈ V. It is clear that
we can prove this condition for negation-free formulas but for formulas with negation, we
need to require it as axiom. This condition is well-known as substitution lemma.

Definition 2.2 A sentence ϕ in the language L〈A,N〉 is said to be valid in V〈A,N〉, which
is denoted by V〈A,N〉 � ϕ, if ||ϕ||A = 1.

For the sake of simplicity, we write ||ϕ|| instead of ||ϕ||A. Besides, it is clear that
every completed Cω-structure 〈A, N〉, the element

∧
x∈A

x is the first element of A and so

A is a complete Heyting algebra. We denote by ”0” this element. Finally, it is worth
mentioning that for every closed formula φ of L〈A,N〉, we have ||φ|| ∈ A. Then, the
following lemma has the same proof that the case of intuitionistic set theory.

Lemma 2.3 For a given completed Cω-structure 〈A, N〉. Then, ||u ≈ u|| = 1, u(x) ≤
||x ∈ u|| for every x ∈ dom(u), and ||u = v|| = ||v = u||, for every u, v ∈ V〈A,N〉.

In the classical and intuitionistic set theory, we have that the manes represent
objects and if we have equivalent objects they would have to have the same properties.
This is known as indiscernibility of identicals and it could be considered as Leibniz’s law
by the following axiom:

u ≈ v ∧ ϕ(u)→ ϕ(v)

In the next, we are going to consider complete Cω-structures which verify the Leibniz’s
law. It is important to note that we have Cω-structures that verify this law, it is enough to
require 1 ∈ Nx for all x ∈ A for every x 6= 1 and 0 ∈ N1.

We will adopt the following notation, for every formula ϕ(x) and every u ∈
V〈A,N〉:

∃x ∈ uϕ(x) = ∃x(x ∈ u ∧ ϕ(x))

and

∀x ∈ uϕ(x) = ∀x(x ∈ u→ ϕ(x)).

Thus, we have the following

Lemma 2.4 Let 〈A, N〉 be a complete Leibniz Cω-structure, for every formula ϕ(x) and
every u ∈ V〈A,N〉 we have

||∃x ∈ uϕ(x)|| =
∨

x∈dom(u)

(u(x) ∧ ||ϕ(x)||),

||∀x ∈ uϕ(x)|| =
∧

x∈dom(u)

(u(x)→ ||ϕ(x)||).



2.1. Paraconsistent Set Theory

The basic system of paraconsistent set theory here is called ZFCω and consists of first
order version QCω of Cω over the first-order signature Θω which contains an equality
predicate = and a binary predicate ∈.

Definition 2.5 The system ZFCω is the first order theory with equality obtained from the
logic QCω over Θω by adding the following set-theoretic axiom schemas:

(Extensionality) ∀x∀y[∀z(z ∈ x↔ z ∈ y)→ (z ≈ y)]

(Separation) ∀x∃w∀z[z ∈ w ↔ (z ∈ x ∧ φ(z))]

(Pairing) ∀x∀y∃w∀z[z ∈ w ↔ (z ≈ x ∨ z ≈ y)]

(Powerset) ∀x∃w∀z[z ∈ w ↔ ∀y ∈ z(y ∈ x)]

(Colletion) ∀x[(∀y ∈ x∃zφ(y, z))→ ∃w∀y ∈ x∃z ∈ wφ(y, z)]

(Empty set) ∃x∀z[z ∈ x↔ ¬(z ≈ z)]

The set satisfying this axiom is, by extensionality, unique and we refer to it with ∅.

(Union) ∀x∃w∀z[z ∈ w ↔ ∃y ∈ x(z ∈ y)]

(Infinity) ∃x[∅ ∈ x ∧ ∀y ∈ x(y+ ∈ x)]

From union and pairing and extensionality, we can note by y+ the unique set y ∪ {y}.

(Induction) ∀x[(∀y ∈ xφ(y))→ φ(x)]→ ∀xφ(x).

The last nine axioms are usually used to define Intuitionistic Zermelo-Fraenkel set theory
(IZF); see for instance, [Bell 2014]. Now, we are going to prove that LeibnizCω-structure-
valued models are models for a paraconsistent set theory. Indeed,

Definition 2.6 Let 〈A, N〉 be a complete Cω-substructure. Given collection of sets {ui :

i ∈ I} ⊆ V〈A,N〉 and {ai : i ∈ I} ⊆ A, the mixture Σi∈Iai · ui is the fucntion u with
dom(u) =

⋃
i∈I
dom(ui) and u(x) =

∨
i∈I
ai ∧ ||x ∈ ui||.

Lemma 2.7 (Mixing Lemma) Let u be the mixture Σi∈Iai · ui. If ai ∧ aj ≤ ||ui = uj||
for all i, j ∈ I , then ai ≤ ||ui = u||.

A set B refines a set A if for all b ∈ B there is some a ∈ A such that b ≤ a. A
Heyting algebra H is refinable if every subset A ⊆ H there exists some anti-chaim B in
H that refines A and verifies

∨
A =

∨
B.



Theorem 2.8 Let 〈A, N〉 be a complete Cω-substructure such that A is refinable. If
V〈A,N〉 � ∃xψ(x), then there is u ∈ V〈A,N〉 such that V〈A,N〉 � ψ(u).

Now, given a complete Cω-substructure 〈A′, N ′〉 of 〈A, N〉, we have the associ-
ated models V〈A′,N ′〉 and V〈A,N〉. Then, it is easy to see that V〈A′,N ′〉 ⊆ V〈A,N〉.

On the other hand, we say that a formula ψ is restricted if all quantifiers are of the
form ∃y ∈ x or ∀y ∈ x, then we have

Lemma 2.9 For any complete Cω-substructure 〈A′, N ′〉 of 〈A, N〉 and any restricted
formula ψ(x1, · · · , xn) with variables in V〈A′,N ′〉 the equality ||ψ(x1, · · · , xn)||〈A′,N ′〉 =

||ψ(x1, · · · , xn)||〈A,N〉.

Next, we are going to consider the Boolean algebra 2 = ({0, 1},∧,∨,¬, 0, 1)

and the natural mapping ·̂ : V〈A,N〉 → V〈2,N2〉 where N2 = {(0, 1), (1, 0)} defined by
û = {〈v̂, 1〉 : v ∈ u}. This is well defined by recursion on v ∈ dom(u). It is clear that
〈2, N2〉 is Cω-substructure of any 〈A, N〉, then we have the following lemma holds:

Lemma 2.10 (i) ||u ∈ v̂|| =
∨
x∈v
||u = x̂|| for all v ∈ V and u ∈ V〈A,N〉,

(ii) u ∈ v ↔ V〈A,N〉 � û ∈ v̂ and u = v ↔ V〈A,N〉 � û = v̂,
(iii) for all x ∈ V〈2,N2〉 there exists a unique v ∈ V such that V〈2,N2〉 � x = v̂,
(iv) for any formula negation-free formula ψ(x1, · · · , xn) and any x1, · · · , xn ∈ V,

we have ψ(x1, · · · , xn)↔ V〈2,N2〉 � ψ(x̂1, · · · , x̂n). Moreover for any restricted
negation-free formula φ, we have φ(x1, · · · , xn)↔ V〈A,N〉 � φ(x̂1, · · · , x̂n).

The proof of the last theorem is the same for intuitionistic case because we con-
sider restricted negation-free formulas and it will be used to prove the validity of axiom
Infinity.

2.2. Validating axioms

New, we are going to prove the validity of axioms of Set Theory and let us consider a fix
model V〈A,N〉. Then

Extensionality Given x, y ∈ V〈A,N〉, then

||∀z(z ∈ x↔ z ∈ y)|| = ||∀z((z ∈ x→ z ∈ y) ∧ (z ∈ y → z ∈ x)|| =
∧

z∈V〈A,N〉
(||z ∈

x|| → ||z ∈ y||) ∧
∧

z∈V〈A,N〉
(||z ∈ y|| → ||z ∈ x||) ≤

∧
z∈dom(x)

(||z ∈ x|| → ||z ∈ y||) ∧∧
z∈dom(y)

(||z ∈ y|| → ||z ∈ x||) ≤
∧

z∈dom(x)

(x(z) → ||z ∈ y||) ∧
∧

z∈dom(y)

(y(z) → ||z ∈ x||) =

||x = y||.

Thus, we have ||∀x∀y∀z((z ∈ x↔ z ∈ y)→ (x = y))||. On the other hand, for any z ∈
V〈A,N〉 we infer that ||x = y|| ∧ ||z ∈ x|| ≤ ||z ∈ y|| and so, ||x = y|| ≤ ||z ∈ x|| → ||z ∈ y||.
Therefore, ||∀x∀y((x = y)→ ∀z(z ∈ x↔ z ∈ y))||.



Pairing Let u, v ∈ V〈A,N〉 and consider the function w = {〈u, 1〉, 〈v, 1〉}. Thus, we have that

||z ∈ w|| = (w(u) ∧ ||z = u||) ∨ (w(v) ∧ ||z = v||) = ||z = u|| ∨ ||z = v|| = ||z = u ∨ z = v||.

Powerset Assume u ∈ V〈A,N〉 and suppose w a function such that dom(w) = {f : dom(u) →
A : f function} and w(x) = ||∀y ∈ x(y ∈ u)||. Therefore,

||v ∈ w|| =
∨

x∈dom(w)

(||∀y ∈ x(y ∈ u)|| ∧ ||x = v||) ≤ ||∀y ∈ v(y ∈ u)||.

On the other hand, given v ∈ V〈A,N〉 and consider the function a such that dom(a) = dom(u)

and a(z) = ||z ∈ u|| ∧ ||z ∈ v||. So, it is clear that a(z) → ||z ∈ v|| = 1 for every z ∈ dom(a),

therefore

||∀y ∈ v(y ∈ u)|| =
∧

y∈dom(v)

(v(y) → ||y ∈ u||) =
∧

y∈dom(v)

(v(y) → (||y ∈ u|| ∧

v(y))) ≤
∧

y∈dom(v)

(v(y)→ a(y)) ≤
∧

y∈dom(v)

(v(y)→ ||y ∈ a||) ∧
∧

z∈dom(a)

(a(z)→ ||z ∈ v||) =

||v = a||

Since a(y) ≤ ||y ∈ u|| for every y ∈ dom(a) then we have ||∀y ∈ a(y ∈ u)|| = 1. Now

by construction we have that a ∈ dom(w) and so, ||∀y ∈ v(y ∈ u)|| ≤ ||∀y ∈ a(y ∈ u)|| ∧ ||v =

a|| = w(a) ∧ ||v = a|| ≤ ||v ∈ w||.

Union Given u ∈ V〈A,N〉 and consider tha function w with dom(w) =
⋃

v∈dom(u)

dom(v) and

w(x) =
∨

v∈Ax
v(x) where Ax = {v ∈ dom(u) : x ∈ dom(v)}. Then, ||y ∈ w|| =

∨
x∈dom(w)

(||x =

y|| ∧
∨

v∈Ax
v(x)) =

∨
x∈dom(w)

∨
v∈Ax

(||x = y|| ∧ v(x)) =
∨

v∈dom(u)

∨
x∈dom(v)

(||x = y|| ∧ v(x)) =

||∃v ∈ u(y ∈ v)||.

Separation Given u ∈ V〈A,N〉 and suppose dom(w) = dom(u) and w(x) = ||x ∈ u|| ∧ ||φ(x)||
then ||z ∈ w|| =

∨
x∈dom(w)

(||y ∈ w|| ∧ ||φ(y)|| ∧ ||y = z||) ≤
∨

x∈dom(w)

(||φ(z)|| ∧ ||y = z||).

Besides, ||φ(z)|| ∧ ||y = z|| =
∨

y∈dom(u)

(u(y) ∧ ||z = y|| ∧ ||φ(z)||)

≤
∨

y∈dom(u)

(||y ∈ u|| ∧ ||z = y|| ∧ ||φ(y)||) =
∨

y∈dom(u)

(w(y) ∧ ||z = y||) = ||z ∈ w||.

Empty set Note that ||u = u|| = 1 for all u ∈ V〈A,N〉 and then, ||¬(u = u)|| ∈ N1. Therefore,

let us consider a function w ∈ V〈A,N〉 such that u ∈ dom(w) and ran(w) ⊆ {||¬(u = u)||},
then it is clear that ||u ∈ w|| =

∨
x∈dom(w)

(w(x) ∧ ||u = x||) = ||¬(u = u)||.

Infinity Assume the formula ψ(x) is ∅ ∈ x ∧ ∀y ∈ x(y+ ∈ x). Then, the axiom in question is

the sentence ∃xψ(x). Now, it is clear that the negation-free formula ∅ ∈ x ∧ ∀y ∈ x(y+ ∈ x) is

restricted and certainly ψ(ω) is true. Hence, by Lemma 2.10 (iv), we get ||ψ(ω̂)|| = 1, and so,

||∃xψ(x)|| = 1.

Collection Given u ∈ V〈A,N〉 and x ∈ dom(u) there exists by Axiom of Choice some ordinal

αx such that
∨

y∈V〈A,N〉
||φ(x, y)|| =

∨
y∈V〈A,N〉

αx

||φ(x, y)||. For α = {αx : x ∈ dom(u)} and v the

function with domain V〈A,N〉 and range {1}, we have



||∀x ∈ u∃yφ(x, y)|| =
∧

x∈dom(u)

(u(x) →
∨

y∈V〈A,N〉
||φ(x, y)||) =

∧
x∈dom(u)

(u(x) →∨
y∈V〈A,N〉

α

||φ(x, y)||) =
∧

x∈dom(u)

(u(x) → ||∃y ∈ vφ(x, y)||) = ||∀x ∈ u∃y ∈ vφ(x, y)|| ≤

||∃w∀x ∈ u∃y ∈ wφ(x, y)||.

Induction Let us suppose x ∈ V〈A,N〉, we are going to prove by induction on the well-founded

relation y ∈ dom(x) and assume that a = ||∀x[(∀y ∈ xψ(y)) → ψ(x)]||. On the other hand,

assume that a ≤ ||ψ(y)|| for every y ∈ dom(x). So, it is clear that a ≤
∧

y∈dom(x)

||ψ(y)|| ≤∧
y∈dom(x)

(x(y) ∧ ||ψ(y)||) = ||∀y ∈ xψ(y)||. But a ≤ ||(∀y ∈ xψ(y))|| → ||ψ(x)||. Therefore,

a ≤ [||(∀y ∈ xψ(y))|| → ||ψ(x)||] ∧ ||∀y ∈ xψ(y)|| ≤ ||ψ(x)|| as required.

Now, from the above proofs, we have proved the following theorem

Theorem 2.11 Let 〈A, N〉 be complete Cω-structure such that V〈A,N〉 satisfies Leibniz’s
Law, then the all set-theoretic axioms of ZFCω axioms are valid in V〈A,N〉.

In this note, we present non-algebraic-valued models for a paraconsistent set the-
ory showing Leibniz’ Law is the only obstacle to getting full set theory. As a by product,
we exhibit models for a full paraconsistent Set Theory theory rather than negation-free
fragment improving the main result of Corollary 5.2 of [L-T 2015].

On the other hand, we have that this paraconsistent set theory the axiom of scheme
Comprehension is not valid in our models; that is to say, it is enough to see that
||∃x∀y(y ∈ x)|| = 0. In this setting, this paraconsistent set theory behaves similar to
Löwe and Tarafder’s paraconsistent set theory, see Theorem 6.3 of [L-T 2015].
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