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Abstract. We present a proper natural deduction system for a logic of binary
relations based on the algebraic tradition. Our system is an evolution from 1975
W.W. Wadge’s formalism. We point out some aspects where Wadge’s system fails
to fit nowadays standards of natural deduction system and we fix it.

1. Introduction

Roughly speaking, a relational calculus is a formal system in which “information” is ex-
pressed in terms of properties of relations and “reasoning” is performed through reasoning
on relations. Several relational calculi have been introduced for many purposes and with
different approaches. One of the most prominent is the De Morgan-Peirce-Schröder Cal-
culus of Binary Relations (CBR) [De Morgan 1860, Peirce 1883, Schröder 1895]. This
calculus deals, basically, with equalities between terms built, as usual, by iterated apli-
cations of the binary operators union ( + ) and composition ( ; ), and the unary operators
complementation ( − ) and reversion ( ^ ) on the variables x1, x2, . . . , xn, . . . and the con-
stant identity ( 1′ ). The names of the operators suggests their intuitive meaning. For
the purposes of this investigation, CBR can be defined as the set of all equalities which
are true when—for every universe of discourse U—the variables range on all the binary
relations on U , and the operators are interpreted as usual, according to their names.

A central problem—which motivated much of the development and interest in the
relational calculus—was to present an equational axiomatization for CBR. This problem
was raised by A. Tarski in [Tarski 1941]. Later on, B. Jonsson and A. Tarski introduced
an algebraic theory called relation algebra (RA) [Jónsson and Tarski 1948] whose set of
axioms was proposed as a solution for it and, even though not explicitly, it is very close
to the axiomatization presented below. An algebraic structure A = 〈A, + , ; , −,^, 1′ 〉,
where A is a non-empty set, + and ; are binary operations on A, − and ^ are unary
operations on A, and 1′ is a distinguished element of A, is a relation algebra iff the

*We thank the anonymous reviewers for their valuable comments and suggestions which contributed to
the improvement of this paper.



following axioms hold, for all a, b, c ∈ A:

(RA1) a + (b + c) = (a + b) + c (RA6) a^^ = a
(RA2) a + b = b + a (RA7) (a ; b)^ = b^ ; a^

(RA3) (a− + b)
−

+ (a− + b−)
−

= a (RA8) (a + b) ; c = a ; c + b ; c
(RA4) a ; (b ; c) = (a ; b) ; c (RA9) (a + b)^ = a^ + b^

(RA5) a ; 1′ = a (RA10) (a^ ; (a ; b)−) + b− = b−

The standard models for these axioms are structures where the domain (A) is a set of (bi-
nary) sub-relations of an equivalence relation, closed under the operations of union ( + ),
composition ( ; ), complementation (−), reversion (^), and having the identity relation
( 1′ ) as a distinguished element of the domain. These models are usually called the al-
gebras of binary relations. A relation algebra is representable if it is isomorphic to an
algebra of binary relations. R. Lyndon constructed a relation algebra which is not repre-
sentable [Lyndon 1950], showing that the above set of axioms is incomplete for the class
of the algebras of binary relations, meaning that there are some equations which hold for
every algebra of binary relations but cannot be proved from these axioms by means of
‘algebraic methods’. Tarski proved that the class of representable relation algebras is, in-
deed, axiomatizable by a set of equations [Tarski 1955], but his work does not exhibit such
a set. It was Lyndon who presented a set of axioms which is complete [Lyndon 1956],
but this set is infinite and hugely complex to be here described. More generally, R. D.
Monk proved that the set of equations true in all algebras of binary relations is not finitely
axiomatizable [Monk 1964], B. Jonsson proved that this set cannot be axiomatized by a
set of equations using finitely many variables [Jónsson 1991], and H. Andréka proved that
in any equational axiomatization of these equations, for any k ∈ N, there are infinitely
many equations containing more than k variables, and containing at the same time ; , −,
and one of +, · (wich is definable) [Andréka 1997]. It follows from these results that the
tentatives of providing CBR with an equational set of axioms take us to either an incom-
plete set of axioms or a very complex one. An immediate route for avoiding this problem
would be taking CBR as the set of equations provable in a first-order logic with equality
extended with axioms defining the CBR-operators, as it had been already noticed by both
Peirce and Schröder. However, this “radical” turn would make us loose all the algebraic
flavor and insights that comes with it over binary relations. In other words, we would be
throwing the baby out with the bath water if we just gave up of the relational calculus
as it was originally conceived. Thus, some effort has been made in order to keep the
operations on binary relations as they were algebraically introduced and still searching
for alternatives to have a complete and “friendly” framework to manipulate them. In this
direction, some “wider ” logical formalism have been proposed. Usually, this is done by
extending the language through the inclusion of variables for individuals and extending
the inference mechanism by adapting the usual logical machinery which takes advantage
of this second type of variable. This has been done for natural deduction [Wadge 1975],
(dual) semantical tableaux [Orlowska 1991], and sequent calculus [Maddux 1983].

In this paper we present a natural deduction system for CBR which is an improve-
ment of the above mentioned Wadge’s system. We have chosen this system due to some
formal aspects of its presentation which fail to fit nowadays standards of natural deduction
systems. In Section 2, we revisited Wadge’s original system to show how our system W,
introduced in Section 3, improves it. In Section 4 we make some considerantions.



2. Wadge’s Original System
Despite not having a precise definition of natural deduction system (ND-system), it has
been accepted that such systems have many distinguishing features which split them
apart from other kind of logical formalisms (cf. [Indrzejczak 2010] and the bibliography
therein). We will show that Wadge’s system fails to fulfill such features and, therefore,
needs to be fixed in order to be presented as a proper ND-system. We recognize that our
criticisms of Wadge’s formalism may be somewhat anachronistic, since our analysis is
based on some formal refinements which were developed much later than Wadge’s work
came out. But still this should not be a reason to not make the system better, specially
considering modern developments of ND-systems with respect to formal aspects of it.

In Wadge’s system, formulas are expressions of the form xRy, where x and y
are point variables and R is a term defined recursively, as usual, from the constants Ω,
U and E—to denote, respectively, the binary relations empty, universal and identity,
respectively—by applying the syntactical operators ∪ , ∩ , ; , ¯ and ˘ —to denote,
respectively, the operations of union, intersection, composition, complementation, and re-
version on relations. The proof system is defined by the following inference rules, where
F and G are arbitrary formulas; x, y and v are arbitrary variables; R and S are arbitrary
terms; Γ is an arbitrary set of formulas; in (;E), v is a new variable; and in (⊆I), x and y
do not occur in any formula in Γ:

Γ ` F (AI)
Γ, G ` F

Γ ` G Γ, G ` F
(AE)

Γ ` F
xRy

xR ∪ Sy
xSy

(∪I)
xR ∪ Sy

Γ, xRy ` F Γ, xSy ` F Γ ` xR ∪ Sy
(∪E)

Γ ` F
xRy xSy

(∩I)
xR ∩ Sy

xR ∩ Sy
xRy

xR ∩ Sy
(∩E)

xSy

Γ, xRy ` aΩa
(̄ I)

Γ ` xRy
Γ, xRy ` F Γ, xRy ` F

(̄ E)
Γ ` F

xRy xRy
(ΩI)

aΩa
aΩa (ΩE)
F

(U I)
xUy

Γ, xUy ` F
(UE)

Γ ` F

Γ ` xRy
(̆ I)

Γ ` yR̆x
Γ ` xR̆y

(̆ E)
Γ ` yRx

xRv vSy
(;I)

xR ; Sy
Γ, xRv, vSy ` F Γ ` xR ; Sy

(;E)
Γ ` F

Γ, xRy ` xSy
(⊆I)

Γ ` R ⊆ S

R ⊆ S xRy
(⊆E)

xSy



(EI)
xEx

xRv vEy
(EE)

xRy

According to A. Indrzejczak, an ND-system may be categorized according to its
“basic items (data structure) on which inference rule are defined”, which can be formulas,
sets of formulas, ordered pairs of formulas, formulas with labels, sequents etc. Taking
Indrzejczak’s viewpoint into consideration, the first aspect of this system that we have
fixed is that Wadge has introduces rules which are applied, at least, on two different kind
of data structures. In fact, some rules as (∪I) are applicable on formulas (xRy, xSy),
whereas other as (∪E) are applicable on derivations (xRy ` F, xRy ` F ). All our
rules apply on sequents (Γ ` xRy). Moreover, it seems agreedable in the literature that
inference rules in a ND-system is about introducing and eliminating logical operators.
However, rules (∪E) and (̄ I) do not follow this “criteria”. Actually, these rules would be
expected to be a structural property of proofs and not inference rules of the system.

Now let us have a look on rule (̄ E). At first sight it seems to be a proper infer-
ence rule since it eliminates an operator (̄ ). Nonetheless, this rule brings up a different
data structure for the system. If we assume formulas as the data structures (based, for
instance, on rules (∪I) and (∩I)), then (̄ E) cannot be an inference rule since the objects
of this rule are not formulas. On the other hand, if we assume that rule (̄ E) is applied on
sequents (or derivations) as data structures, then the notion of proof in this system should
be revisited since it is defined as a linear sequence of formulas (cf.[Wadge 1975], p. 4,
6-8). Moreover, Indrzejczak pertinently points out that an inference rule over a sequent
in a ND-system should introduce or eliminate operators only in the consequent (second
term) of the sequents. So from this point of view, even if we consider sequents as data
structures of this system, the rule (̄ E) is not properly presented as an inference rule of a
ND-system. Lastly, in ND-systems, it is not typical to have elimination and introduction
rules for operators which do not belong to the object language as Wadge’s does in rules
(⊆I) and (⊆E) since the symbol ⊆ is an abbreviation for a formula and not an operator of
the language itself.

3. The System W

In this section, we introduce the ND-system W (in honor of Wadge’s pioneering system).
The main difference between W and Wadge’s original system is in the mechanism of
inference, where we substitute and adapt some of the original rules in order to organize the
formalism as a proper ND-system. Regarding the language, we just change the symbols
for a more up to date notation, keeping the same semantics. We presented our rules
following the style of presentation for natural deduction adopted in [Sundholm 1991].

3.1. Syntax

In this section we define the language—vocabulary, terms, and formulas—of the sys-
tem W.

The W-vocabulary consists of an enumerable sequence of symbols for
individuals 〈x1, x2, . . . , xi, . . .〉.; an enumerable sequence symbols for relations
〈R1, R2, . . . , Ri, . . .〉.; a set of symbols for operations with three binary operators
〈 + , · , ; 〉, two unary operators 〈− , ^〉 and two zero-ary operators 〈 0 , 1 , 1′ 〉;



and parentheses as auxiliary symbols. The set of symbols for individuals and symbols
for relations are denoted by SymI and SymR, respectivelly, and their elements are de-
noted generically by the letters x, y, z, u, v, w and R, S, Q (indexed or not). The
terms of W, W-terms, are defined inductively by the following rules of term construction:
T ::= R | 0 | 1 | 1′ | T− | T^ | T1 + T2 | T1 · T2 | T1 ; T2, where R ∈ SymR. The
set of W-term is denoted by TerW and its elements are denoted generically by the letters
T , U , V (indexed or not). The formulas of W, W-formulas, are expression of the form:
xTy, where x, y ∈ SymI and T ∈ TrmW. The set of W-formulas is denoted by FrmW
and its elements are denoted generically by the letters ϕ, ψ, θ (indexed or not).

3.2. Semantics

In this section we define a semantics—structures of interpretation; denotation of terms;
satisfaction, truth and validity of formulas; and semantical consequence of a formula from
a set of formulas—for the language of W.

A structure for W, W-structure, is an ordered pair S = 〈U, I〉, where U is a non
empty set, called the universe of discourse of S; I is a function, I : SymR → ℘(U × U),
mapping symbols for relations to binary relations on U called the interpretation function
of S. The denotation of a W-term T in a W-structure S is the binary relation [[T ]]S on U,
defined recursively by the following rules of formulas denotation:

[[R]]S ::= I(R), for all R ∈ SymR
[[ 0 ]]S ::= ∅ (empty)
[[ 1 ]]S ::= U × U (universal)
[[ 1′ ]]S ::= {(a, a) : a ∈ U} (identity)
[[T−]]S ::= [[T ]]S

c (complementation)
[[T^]]S ::= [[T ]]S

−1 (reversion)
[[T + U ]]S ::= [[T ]]S ∪ [[U ]]S (union)
[[T · U ]]S ::= [[T ]]S ∩ [[U ]]S (intersection)
[[T ; U ]]S ::= [[T ]]S ◦ [[U ]]S (composition)

An assignment in a W-structure S, S-assignment, is a function a : SymI→ U , mapping
symbols for individuals to elements of U . Given a W-formula xTy, a W-structure S, and
a S-assignment a, we say that: denoted by S � xTy, when S, a � xTy, for every S-
assignment a; S and a satisfy xTy, denoted by S, a � xTy, when (ax, ay) ∈ [[T ]]A; xTy
is true in S (alternatively, S is a model of xTy), denoted by S � xTy, when S, a � xTy,
for every S-assignment a; xTy is valid, denoted by � xTy, when S � xTy, for every
W-structure S. Given a set of W-formulas Γ, we write S, a � Γ when S, a �W γ, for
every γ ∈ Γ. And we say that a W-formula ϕ is a (local) semantical consequence of Γ in
W (ϕ is a semantical consequence of Γ), denoted by Γ � ϕ, when, for all W-structure S
and S-assignment a, if S, a � Γ then S, a � ϕ.

3.3. Mechanism of inference

In this section we define a natural deduction system—introduction and elimination rules
for the symbols for operations of the language of W—for the system W. We showed that
this system W overcomes all the problems pointed out in Wadge’s system and it stands up
as a proper ND-system, according to all criteria considered in the mentioned literature.



The data structures of W are sequents. A sequent of W, W-sequent, is a pair
〈Γ, ϕ〉, denoted as Γ  ϕ, where Γ is a finite set of formulas and ϕ is a formula. The tree
labels, denoted generically by L, L1, L2, are (Ax), (Hp), (0I), (0E), (1I), (1E), (1′I), (1′E),
(−I), (−E), (^I), (^E), (+IR), (+IL), (+E), (·I), (·ER), (·EL), (;I), and (;E). The proof trees
of W, W-proof trees, are trees whose nodes are W-sequents and whose edges are labelled
with tree labels, defined inductively by the following rules of proof tree construction,
where x, y, u, v, w are symbols for individuals, T, U, V are W-terms, ϕ is a W-formula,
and Π, Π1, Π2 are W-proof trees:

1. (Ax) The empty tree is a W-proof tree.
2. (Hp) If Π is a W-proof tree and ϕ ∈ Γ, then Π (Hp)

Γ  ϕ
is a W-proof tree.

3. (0I) Whenever Π1 (L1)
Γ  xTy

and Π2 (L2)
Γ  xT−y

are W-proof trees, then

Π1 (L1)Γ  xTy

Π2 (L2)
Γ  xT−y

(0I)
Γ  x 0 y

is a W-proof tree.

4. (0E) If Π (L)
Γ  x 0 y

is a W-proof tree, then
Π (L)

Γ  x 0 y
(0E)

Γ  ϕ
is a W-proof tree.

5. (1I) If Π is a W-proof tree, then Π (1I)
Γ  x 1 y

is a W-proof tree.

6. (1E) Whenever Π1 (L1)Γ  x 1 y
and Π2 (L2)Γ  uTv

are W-proof trees, then

Π1 Π2 (1E)
Γ  uTv

is a W-proof tree.

7. (1′I) If Π is a W-proof tree, then Π (1′I)
Γ  x 1′ x

is a W-proof tree.

8. (1′E) Whenever Π1 (L1)Γ  xTy
and Π2 (L2)

Γ  u 1′ y
are W-proof trees, then

Π1 (L1)Γ  xTy
Π2 (L2)

Γ  u 1′ y
(1′E)

Γ  xTu

is a W-proof tree.

9. (−I) If Π (L)
Γ, xTy  u 0 v

is a W-proof tree, then
Π (L)

Γ, xTy  u 0 v
(−I)

Γ  xT−y

is a W-

proof tree.

10. (−E) If Π (L)
Γ  xT−

−
y

is a W-proof tree, then
Π

Γ  xT−
−
y

(−E)
Γ  xTy

is a W-proof

tree.

11. (^I) If Π (L)
Γ  xTy

is a W-proof tree from Γ, then
Π (L)

Γ  xTy
(^I)

Γ  yT^x
is a W-

proof tree.

12. (^E) If Π (L)
Γ  xT^y

is a W-proof, then
Π (L)

Γ  xT^y
(^E)

Γ  yTx
is a W-proof tree.

13. (+IR) If Π (L)
Γ  xTy

is W-proof tree, then
Π (L)

Γ  xTy
(+IR)

Γ  xT + Uy
is a W-proof

tree.



14. (+IL) If Π (L)
Γ  xUy

is a W-proof tree, then
Π (L)

Γ  xUy
(+IL)

Γ  xT + Uy
is a W-

proof tree.
15. (+E) If Π1 (L1)Γ  xT + Uy

, Π2 (L2)Γ, xTy  ϕ
, and Π3 (L3)Γ, xUy  ϕ

are W-

proof trees, then

Π1 (L1)Γ  xT + Uy
Π2 (L2)Γ, xTy  ϕ

Π3 (L3)Γ, xUy  ϕ
(+E)

Γ  ϕ

is a W-proof tree.
16. (·I) Whenever Π1 (L1)Γ  xTy

and Π2 (L2)Γ  xUy
are W-proof trees, then

Π1 (L1)Γ  xTy
Π2 (L2)Γ  xUy

(·I)
Γ  xT · Uy

is a W-proof tree.

17. (·ER) If Π (L)
Γ  xT · Uy is a W-proof, then

Π (L)
Γ  xT · Uy

(·ER)
Γ  xTy

is a W-proof

tree.

18. (·EL) If Π (L)
Γ  xT · Uy is a W-proof, then

Π (L)
Γ  xT · Uy

(·EL)
Γ  xUy

is a W-proof

tree.
19. (;I) Whenever Π1 (L1)Γ  xTv

and Π2 (L2)Γ  vUy
are W-proof trees, then

Π1 (L1)
Γ  xTv

Π2 (L2)Γ  vUy
(;I)

Γ  xT ; Uy

is a W-proof tree.

20. (;E) If Π1 (L1)Γ  xT ; Uy
and Π2 (L2)Γ, xTu, uUy  ϕ

are W-proof trees and u

does not occur in the formulas of Γ, then

Π1 (L1)
Γ  xT ; Uy

Π2 (L2)
Γ, xTu, uUy  ϕ

(;E)
Γ  ϕ

is a W-proof tree.

A proof of a W-sequent Γ  ϕ in W (W-proof of Γ  ϕ), is a W-proof tree Π, such that
Γ  ϕ is the root of Π. We say that a W-formula ϕ is syntactical consequence of a set of
formulas Γ in W (ϕ is a W-syntactical consequence of Γ), denoted by Γ `W ϕ, if there
exists a finite Γ′ ⊆ Γ and a W-proof of Γ′  ϕ. We say that a W-formula ϕ is a theorem of
W (ϕ is a W-theorem) denoted by `W ϕ, if ϕ is W-syntactical consequence of the empty
set.

The soundness and completeness of a previous version of W was presented in
[Suguitani 2013].

4. Final comments
The system W has been successful to frame the Calculus of Binary Relations in a proper
ND-system which preserves the behaviour of the algebraic operations on binary relations.



On the other hand, it misses the algebraic frame of an equational calculus and introduces
individual variables in the formulas. As it is well known, the use of individual variables
might be highly problematic when considering termination. Besides, this fact can be seen
as a disadvantage in relation to Relation Algebra which is developed entirely within the
equational environment. Nonetheless, as it was mentioned in Section 1, since Relation
Algebra has intrinsic limitations to reach completeness for the standard models of the
algebra of binary relations, any alternative for a complete system has to carry the can.
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Schröder, F. W. K. E. (1895). Vorlesungen über die algebra der logik, volume 3, “Algebra
und logik de relative”, part I. B. G. Teubner, Leipzig.

Suguitani, L. (2013). Sobre a lógica e a aritmética das relações. PhD thesis, UNICAMP.
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