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Abstract. We plan to study the problem of finding conservative extensions
of first order logics. In this project we intend to establish a systematic
procedure for adding geometric theories in both intuitionistic and classical
logics, as well as to extend this procedure to bipolar axioms, a generalization
of the set of geometric axioms. This way, we obtain proof systems for several
mathematical theories, such as lattices, algebra and projective geometry,
being able to reason about such theories using automated deduction.

Resumo. Neste projeto de pesquisa, pretendemos estudar o problema de
estender, conservativamente, lógicas de primeira-ordem. Pretendemos esta-
belecer um procedimento sistemático para adicionar teorias geométricas e
extensões em lógicas clássica e intuicionista. Dessa forma, obtemos sistemas
de provas para diversas teorias matemáticas, tais como reticulados, álgebra
e geometria projetiva, provendo sistemas automáticos de dedução para tais
teorias.

1. Introduction
One of the advantages of using sequent systems as a frameworks for logical

reasoning is that the resulting calculi are often simple, have good proof theoretical
properties (like cut-elimination, consistency, etc) and can be easily implemented, e.g.,
using rewriting.

Hence it would be heaven if we could add axioms in mathematical theories to
first order logics and reason about them using all the machinery already built for
the sequent framework. Indeed, the general problem of extending standard proof-
theoretical results obtained for pure logic to certain class of non-logical axioms has
been focus of attention for quite some time now.

The main obstacle for this agenda is that adding non-logical axioms to
systems while still maintaining the good proof theoretical properties it is not an
easy task. In fact, as described in [Negri and von Plato 1998], if A, B are atoms and
the axioms ` A ⊃ B and ` A are added to the sequent system LJ for intuitionistic
logic [Gentzen 1935a], then the sequent ` B can be derived using cut:

` A

` A ⊃ B
A ` A

init
B ⊃ B

init

A, A ⊃ B ` B
⊃ L

A ` B
cut

` B
cut

But it is easy to see that there is no proof of this sequent without cut. That is, the
resulting system is not cut-free: applications of the rule cut can not be eliminated.



One way of circumventing this problem is by treating axioms as theories,
added to the sequent context. This is already in Gentzen’s consistency proof of
elementary arithmetic in [Gentzen 1935b]. Now the derivations have only logical
axioms as premisses, and cut elimination applies. In the example above, we can
derive B from A, A ⊃ B without a problem

A ` A
init

A, B ` B
init

A, A ⊃ B ` B
⊃ L

But we can do better by transforming the axioms above into inference rules. In fact,
if A, B are atomic formulas and C an arbitrary formula then, in the presence of
A ⊃ B, if B proves C then A also proves C. On the other hand, in the presence of
A, if A proves C, then C is provable (the A is irrelevant since it is already there).
This induces the inference rules

Γ, B ` C

Γ, A ` C
A ⊃ B

Γ, A ` C

Γ ` C
A

The sequent ` B now has the (cut-fre) proof

B ` B
init

A ` B
A ⊃ B

` B
A

In this project, we intend to propose a systematic way of adding inference rules to
sequent systems. The proposal will be based on the notions of focusing and polarities,
illustrated next.

2. A gentle introduction to polarities and focusing
We will start by generalizing the example above. Let B be a formula and

Γ be a multiset of formulas. Consider attempting to build a proof of the following
two-sided sequent

Γ, A1 ⊃ · · · ⊃ An ⊃ A0 ` B,

in which the distinguished implication is such that n ≥ 1 and A0, . . . , An are atomic
formulas. In general, there are many ways to proceed with attempting to build a
cut-free proof of this sequent and we characterize them as one of the following four
possibilities. This sequent can be the conclusion of

1. a structural rule (weakening or contraction) or the initial rule;
2. a right introduction rule, if B is not an atomic formula;
3. a left-introduction rule that introduces a formula in Γ; or
4. the implication-introduction rule that introduces the distinguished implication.

The number of possible choices here could be large, particularly if Γ contains a large
number of formulas. If we chose the fourth of these possibilities, the proof would
look as follows (at least in the intuitionistic setting):

Γ ` A1 Γ, A2 ⊃ · · · ⊃ An ⊃ A0 ` B

Γ, A1 ⊃ · · · ⊃ An ⊃ A0 ` B
L⊃



Note that we again have a large number of possible ways to proceed in attempting
to prove the right premise: indeed, if n ≥ 2, we have all the same choices as before.
Clearly, those choices—and their multiplicative effects as we search for a sequence of
inference steps that terminates in a proof—are in desperate need of being structured
somehow. Focused proof systems provide such structure using the following two
devices.

Focused rule application If you chose to apply the implication-left introduc-
tion on the distinguished implication, then you also commit to repeat the
implication-left rule on the right premise until the atomic formula A0 results.
That is, the left-introduction applied to the distinguished implication results
in the following derived inference rule

Γ ` A1 . . . Γ ` An Γ, A0 ` B

Γ, A1 ⊃ · · · ⊃ An ⊃ A0 ` B
L⊃ n times.

Polarization Although the focused application of inference rules provides structure
to attempts to build proofs, there are still so many remaining choices, that it
is possible to impose two different “protocols” for restricting choices further.
The Q-protocol insists that the first n premises above are trivial, meaning that
they are proved by the initial rule. Following that protocol, we have Ai ∈ Γ
for 1 ≤ i ≤ n. Thus, if we set Γ′ to be the result of removing all occurrences
of A1, . . . , An from Γ, then the derived inference rule above becomes

Γ′, A1, . . . , An, A0 ` B

Γ′, A1, . . . , An, A1 ⊃ · · · ⊃ An ⊃ A0 ` B
.

The second protocol, the T -protocol insists that the right-most premise is
trivial: that is, A0 and B are the same atomic formula. Thus, the derived
inference rule above becomes

Γ ` A1 . . . Γ ` An

Γ, A1 ⊃ · · · ⊃ An ⊃ A0 ` A0
.

Using the Q-protocol, the proof-search semantics of the implication A1 ⊃
· · · ⊃ An ⊃ A0 is given by forward-chaining: if you have assumptions A1, . . . , An then
you can add the assumption A0. Using the T -protocol, the proof-search semantics of
the same implication is given by back-chaining: in order to prove the conclusion A0,
attempt instead to prove each of A1, . . . , An. The names for the Q and T protocols
comes from Danos, Joinet, and Schellinx [Danos et al. 1995]: in the Q protocol, the
tail (“queue”) of an implication yields a trivial premise while in the T protocol, the
head (“tête”) of an implication yields a trivial premise.

A more modern and flexible presentation of the Q and T protocols speaks,
instead, of the polarity of formulas: for this example, the polarity given to atomic
formulas is the most relevant. In particular, if all atomic formulas have a positive
polarity, the Q-protocol is enforced, while if all atomic formulas have a negative
polarity, the T -protocol is enforced.

The base systems we will consider in this project are the focused proof systems
for classical and intuitionistic logics, LKF and LJF, respectively [Liang and Miller 2007,



Liang and Miller 2009]. Those systems extend both the notion of focusing and po-
larity to all formulas, moving beyond the example above involving only implications
and atomic formulas. In particular, focused rule applications imply that focus is
transferred from conclusion to premises in derivations. This process goes on until
either the focused phase ends (depending on the polarity of the focused formula), or
the derivation ends. Once the focus is released, the formula is eagerly decomposed
into subformulas, which are ultimately stored in the context.

Reading derivations from the root upwards, this forces a sequent derivation
to be organized into focused phases, each of them corresponding to an application of
a synthetic inference rule [Chaudhuri 2008], where the focused formula is rewritten
into (some of) its subformulas.

There is a class of formulas corresponding to particularly interesting synthetic
rules: the bipolars. Bipolars are formulas in which polarity can change at most
once among its subformulas. This means that focusing on a bipolar A gives rise to
(possibly many) synthetic inference rules having simple shape, with leaves involving
only atomic subformulas of A. We call a synthetic inference rule corresponding to
the bipolar A a bipole for A.

In this project, we will present a careful study of bipoles, giving a fresh view
to an old problem: how to incorporate inference rules encoding axioms into proof
systems for classical and intuitionistic logics.

A key step in transforming a formula into synthetic inference rules involves
attaching a polarity to atomic formulas and to some logical connectives. Since
there are different choices for assigning polarities, it is possible to produce different
synthetic inference rules for the same (unpolarized) formula. In the example above,
there are (at most) 2n+1 different possible polarizations for the atomic formulas in
A1 ⊃ · · · ⊃ An ⊃ A0, each of them corresponding to a different bipole.

We show that this flexibility allows for the generalization of different ap-
proaches for transforming axioms into sequent rules present in the literature (more
notably the series of works [Negri 2003, Negri and von Plato 2011, Negri 2016] and
[Viganò 2000]).

3. A case study: geometric axioms
The main challenge in this effort is to determine a general procedure that

guarantees that such extensions preserve good proof-theoretical properties.
A remarkable step in that direction was the careful investigation of geometric

axioms. Geometric axioms are first-order formulas that can be converted into (natural
deduction/sequent) inference rules having “a certain simple form in which only atomic
formulas play a critical part”, as described by Simpson [Simpson 1994]. And this “sim-
ple rules for atomic formulas” motto seems to be the core of success in this endurance
in the approaches/extensions present in the literature [Dyckhoff and Negri 2015]. In
this work, we come back to the inception of the axioms-as-rules problem, showing
that the combination of bipolars and focusing is the real essence of “simple rules for
atomic formulas”.

There are many examples of geometric theories in different areas of logic and



mathematics, such as geometry, algebra, topology and category theory (see some
examples in Section 5).

We will illustrate next how to translate this class of axioms into synthetic
inference rules.

Definition 1 A geometric implication is a first-order formula having the form

∀z(P1 ∧ . . . ∧ Pm ⊃ ∃x1M1 ∨ . . . ∨ ∃xnMn),

where each Pi is an atomic formula, each Mj is a conjunction of atomic formulas
Qj1 , . . . , Qjkj

, and none of the variables in the lists x1, . . . , xn are free in Pi. A
geometric theory is a finite set of geometric implications. We shall also assume that
if the list of variables x̄i is empty then Mi is just an atom: otherwise, this formula
can be written as a conjunction of geometric implications.

An example of a geometric implication is the transitivity axiom, stating that, for a
binary relation R, if x is related to y and y is related to z then x is related to z

4 = ∀x, y, z.(R(x, y) ∧R(y, z)) ⊃ R(x, z)

Now, for polarizing this formula in LKF or LJF, we can give to the atomic formula R
and the conjunction a positive or a negative polarity (the quantifiers and implication
are neutral in LKF/LJF). We then obtain the following four poralized formulas
(bipolars)

∀x, y, z.(R(x, y)± ∧± R(y, z)±) ⊃ R(x, z)±

As one can expect, different polarizations can give rise to different bipoles (inference
rules). For this example, focusing on each and all these formulas in LJF (it holds
also for LKF) will produce the following two inference rules (bipoles)1

R(x, z), Γ ` C

R(x, y), R(y, z), Γ ` C
4GRS

Γ ` R(x, y) Γ ` R(y, z)
Γ ` R(x, z) 4RR

The rule 4GRS appears in [Negri 2005] and corresponds to backward-chaining, while
the rule 4RR is the transitivity rule studied in [Viganò 2000], corresponding to
forward-chaining. This implies that these works are different faces of the same coin,
the latter being minted from focusing and polarization.

Moreover, we address these issues with a uniform presentation in both classical
and intuitionistic first-order logics.

4. Beyond geometric axioms
It turns out that the set of bipolar formulas is strictly greater than the set of

geometric formulas. As an example, in set theory, the following implication relates
the subset and membership predicates

∀yz.(∀x(x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z).
1For details about the systems LKF and LJF, as well as the process of transforming axioms to

synthetic rules using focusing, please refer to [Marin et al. 2020].



This formula yields a bipolar (but not geometric) formula in both LKF and LJF
under any polarization of the binary atomic predicates ∈ and ⊆. Assuming that these
predicates are given positive polarity, the corresponding LJF-synthetic inference rule
is

x ∈ y, Γ ` x ∈ z y ⊆ z, Γ ` E

Γ ` E
.

Assuming that these predicates are given negative polarity, the corresponding LJF-
synthetic inference rule is

x ∈ y, Γ ` x ∈ z

Γ ` y ⊆ z
.

In both of these synthetic inference rules, x is an eigenvariable for that rule.
This means that our bipoles/focusing method generalizes and goes beyond

the ones present in the literature. In fact, it classifies all and only axioms that can
be transformed to sequent rules.

The sole responsible for this is the fact that, in bipolars, the polarity can
change at most once among its subformulas. This means that focusing on a bipolar
will completely decompose such formula until getting to atoms, which will be either
stored in the context (in this case it appears in premises), or will be principal in the
initial axiom (in which case it appears in the conclusion). In this sense, the rules
corresponding to the bipolars – the bipoles – can be seen as introduction rules for
atoms.

5. Examples in Mathematics
We finish this study proposal by enumerating some examples of axioms in

mathematics that can be analyzed within this project. Some of them appear in the
book [Negri and von Plato 2011], some are unpublished.

1. Partial order. Assuming the domain D = {a, b, c . . .} and a binary relation ≤
in D, we say that ≤ is a partial order over D if:

PO1 ∀a.a ≤ a (reflexivity).
PO2 ∀a, b.(a ≤ b) ∧ (b ≤ a) ⊃ a = b (anti-simety).
PO3 ∀a, b.(a ≤ b) ∧ (b ≤ c) ⊃ a ≤ c (transitivity).

2. Strict partial order. Assuming the domain D = {a, b, c . . .} and a binary
relation < in D, we say that < is a strict partial order over D if it satisfies
transitivity and:

PO4 ∀a.¬(a < a) (irreflexivity).
It is easy to see that, if a relation < satisfies [PO3] and [PO4], then it also
satisfies:

PO5 ∀a, b.(a < b) ⊃ ¬(b < a).
3. Projective geometry. An axiomatization of projective geometry starts by

defining the basic domain and relations. Denoting points by a, b, c, . . . and
lines by l, m, n, . . ., we have that the basic relations are a = b, l = m and
a ∈ l. We will consider then the reflexivity and transitivity described before
together with:

ER1 ∀a, b.(a = b) ⊃ (b = a) (simmetry).



4. Normal modal logic. Extensions of modal logic K are determined by adding
relational axioms to the original system. We describe some bellow.

E ∀w, o, r.(wRo ∧ wRr) ⊃ oRr (euclideanity)
D ∀w.∃o.wRo (seriality)

5. Torsion abelian groups. The main axiom of torsion abelian groups, that says
that all objects has finite order, can be described as

∀x.> ⊃
∞∨

n=1
nx = 0

6. Local rings. The main axiom of torsion abelian groups, that says that there
exists exactly one maximal ideal, can be described as

∀x.> ⊃ (∃y.(xy = 1)) ∨ (∃y.(1− x)y = 1))

7. Set theory. There are many axioms in set theory falling into the bipolar setting.
As an example, the following implication relates the subset and membership
predicates:

∀yz.(∀x(x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z).

6. Conclusion
We have illustrated how the notion of synthetic inference rule that is provided

by sequent calculus notions of polarization and focusing can be used to provide
inference rules that capture certain classes of axioms.

In particular, focused proof systems naturally lead to the notion of bipolar
formulas and these result in synthetic inference rules that only need to mention
atomic formulas.

We show that geometric formulas are examples of such bipolar formulas
and that polarized versions of such formulas yield known inference systems derived
from geometric formulas. Certain subsets of geometric formulas admit more than
one polarization and these variations explain the forward-chaining and backward-
chaining variants of their synthetic inference rules. Additionally, all of these results
work equally well in both classical and intuitionistic logics using the corresponding
LKF and LJF focused proof systems.

With this project, we plan to develop the application of such a framework of
focusing and bipoles to mathematical theories.

This project will be in collaboration with:
• Dale Miller (École Polytechnique, France)
• Sonia Marin (University College London, UK)
• Carlos Olarte (UFRN, Brazil)
• Luiz Carlos Pereira (PUC-Rio, Brazil)
• Emerson Sales (UFRN, Brazil)
• Brunna Karla de Morais Souza Assunção (UFRN, Brazil)
• Warlike Richard da Silva Soares (UFRN, Brazil)
• Luana Mayara Lucas Leite (UFRN, Brazil)
• Francisco Jonatã Chaves de Lima (UFRN, Brazil)
• Cristiano Victor Medeiros da Silva (UFRN, Brazil)
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