
Automatic program verification in Dynamic Logic with
applications to smart contracts

Allan Patrick1 , Igor Machado Coelho1 , Bruno Lopes1

1Instituto de Computação
Universidade Federal Fluminense

Niterói-RJ – Brazil

allanpatrick@id.uff.br, imcoelho@ic.uff.br, bruno@ic.uff.br

Abstract. In critical systems, failures or errors can cause catastrophes, such
as deaths or considerably losses of money. Model checking provides an auto-
mated way to prove the correctness of programs’ requirements. It is a conve-
nient technique to use in systems that need reliability. Propositional Dynamic
Logic (PDL) is a formal system designed to reason about programs. This work
presents a compiler implementation from a subset of the C language and also
for the Smacco model, both to the PDL language, and after that to the language
of the nuXmv model checker. This implementation is linked with a Blockchain
model generation system to model and reason about smart contracts.

1. Introduction

Critical systems do not accept failures or errors, as they can cause major losses, such as
deaths or major financial losses [11]. These systems require a high degree of confidence
and are present in many areas such as medicine and aviation.

Blockchain [14] is a disruptive technology that may be used to store data and ac-
tions (denoted by programs), as an immutable global ledger. But incidents have happened
in the past1, indicating that critical failures can be exploited, thus affecting its integrity.

Formal systems are mathematical models for reasoning about programs, leading to
a mathematical proof that these programs are correct. Line 1 of the Paris metro, for exam-
ple, used formal methods to certify its automated system without human interaction [8].
In the context of the work presented here, the mathematical model used in the formal
system of this project was Propositional Dynamic Logic with the nuXmv [4] checker.

In this paper, a formalization of programs was implemented in nuXmv, from the
Mini-C [12] and Smacco (JSON) [6, 13] languages. It is compiled to the PDL language
and then used to create nuXmv models. Finally, these models can be joined as smart
contracts in Blockchain models. This paper is organized as follows. Section 2 describes
the notion of the Propositional dynamic logic, Section 3 presents the nuXmv, Section 4
shows how a blockchain works, Section 5 presents the concept of Smart contracts and how
it is used in this work, Section 6 show how this work generate the models and Section 7
presents the conclusions of this work.

1https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

2. Propositional Dynamic Logic

Propositional Dynamic Logic [10] (PDL) is a multi-modal logic tailored to reason about
regular programs. A formula has the form 〈π〉ϕ that can be read as “after some execution
of program π, ϕ holds, supposing that π halts.”

PDL provides a natural abstraction for programs, where many fundamental rela-
tionships between programs and propositions can be studied. PDL has been used for the
verification of software requirements, including in companies as IBM [15].

Definition 1 (Propositional Dynamic Logic) The propositional dynamic logic [9] lan-
guage is described below

• Atomic propositions denoted by p, q, r, . . . , where Φ is an enumerable set of all
atomic propositions.

• Atomic programs denoted by α, β, . . . , where Π is an enumerable set of all atomic
programs.

• A PDL formula can be written according to the following BNF.

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ,

• PDL programs can be described according to the following BNF.

π ::= α | π; π | π ∪ π | π? | ϕ?

We use the standard abbreviations ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ → ψ = ¬(ϕ ∧ ¬ψ) and
[π]ϕ = ¬〈π〉¬ϕ.

Definition 2 (Frame) A PDL frame is a tuple F = (W , Rπ) such that

W is a non-empty set of states
Rπ is a binary relation over W inductively defined as below

Rπ1;π2 = Rπ1 ·Rπ2

Rπ1∪π2 = Rπ1 ∪Rπ2

Rπ? = R?
π

Rϕ? = {(w,w) | w ∈ W andM, w |= ϕ}

Definition 3 (Model) A PDL model is a tuple M = (F ,V), where F is a PDL frame
and V : W × Φ→ {True, False} is a valuation function.

Definition 4 (Semantic interpretation) The notion of satisfaction of a ϕ formula in a
M = (F ,V) model in the w state is given by

M, w |= p iff V(w, p) = True

M, w |= > always
M, w |= ¬ϕ iffM, w 6|= ϕ

M, w |= ϕ1 ∧ ϕ2 iffM, w |= ϕ1 andM, w |= ϕ2

M, w |= 〈π〉ϕ iff exists w′ ∈ W such that wRπw
′ andM, w′ |= ϕ

3. The nuXmv checker
nuXmv [4] is a symbolic model checker that extends the functionality of NuSMV, a sym-
bolic model checker originated from SMV [5]. NuXmv uses techniques based on BDD [2]
(Binary Decision Diagrams) and SAT-solvers.

A nuXmv program is composed by MODULES, the main one being module main,
where the execution starts. Within a MODULE we can have some structures like VAR
which is a list of variables from the current module and ASSIGN which is a list of assign-
ments. These structures can be seen below:

The variables in nuXmv are defined in VAR, each variable within this list can be
described as an identifier: type, where the identifier is the identification of the variable in
the list and type, is the type declaration of the variable, also we can declare and instantiate
a MODULE as a variable.

The assignments in nuXmv are defined in ASSIGN, each assignment within the
list can be described as an identifier := expression, init (identifier) := expression or next
(identifier) := next expression, where the identifier is the identification of the variable
that will be assigned, the expression is the value that will be passed to the variable and
next expression is the value that the variable will have in the next state. Expressions inside
curly brackets denote non-deterministic assignments.

4. Blockchain
Blockchain is a database of transactions, stored in chained blocks and distributed across
all nodes in a peer-to-peer network. This protocol was created by Satoshi Nakamoto in
2008 in the article Bitcoin: A peer-to-peer electronic cash [14]. Blockchains are com-
monly used by cryptocurrencies as their technological base; and some of these cryptocur-
rencies are Ripple2, Neo3, Bitcoin Cash4, Litecoin5, and Binance Coin6.

This work incorporates a formal verification of Blockchains model, using a for-
malization of Blockchains with the use of nuxmv to carry out the formal verification [7].
The Blockchain model can be seen in Figure 1.The formalization of Blockchains has been
modified to accept Blockchains with financial transactions and smart contracts.

5. Smart contracts
Smart contracts are computer codes that execute after some condition. These conditions
can be a program that executes a transaction after a certain number of likes on a social
network or after a transaction is carried out. This type of program guarantees that the
purpose will be fulfilled only when the requirements are met [1].

This work implements smart contracts modeled from computer programs in the
Mini-C language and for the smart contract model Smacco [13]. These models can be
defined respectively as a subset of the C without structures such as pointers and composite
data types and Smacco as a JSON model.

2https://ripple.com/
3https://neo.org/
4https://bitcoincash.org/
5https://litecoin.org/pt/
6https://www.binance.com/en

Figure 1. Blockchain Model according to [7]

An Smacco model is defined by a list of parameters that define the properties of
the contract such as the version of Smacco, the version of the contract, the rules of the
contract that will define whether the contract will fail or be accepted. A simple example
of a contract modeled on Smacco can be found at Listing 1.

1 ” s t a n d a r d ” : ” smacco − 1 . 0 ” ,
2 ” i n p u t t y p e ” : ” s i n g l e ” ,
3 ” p u b k e y l i s t ” : [”036245 f426b4522e8a2901be6ccc1f71e37dc376726cc65d ”] ,
4 ” r u l e ” : {
5 ” r u l e t y p e ” : ”ALLOW IF” ,
6 ” c o n d i t i o n ” : { ” c o n d i t i o n t y p e ” : ”CHECKSIG” } }

Listing 1. Smacco example

6. Automatic model generation

The implementation of this project was done in the Python language and can be found on
the following Github:
https://github.com/frame-lab/Verificador-de-Smart-Contracts.
The project is structured in 4 stages: Compilation, transformation to PDL, transformation
to nuXmv, and linking to a smart contract.

6.1. Build

The user can choose to generate a Blockchain with smart contracts in Smacco or Mini-C,
after the decision the program generates the list of tokens and the syntactic tree.

Tokens are generated looking at the list of tokens and reserved words of the language that
appear in the program from the execution of the LEX of the PLY library [3].

The generation of the syntactic bottom-up tree is made from the execution of the YACC
from the Ply library on the user input based on the defined language rules list.

6.2. Imperative programs to PDL
The translation of imperative programs to PDL is described below:

• if ϕ then α ::= (ϕ?;α) ∪ ¬ϕ?
• if ϕ then α else β ::= (ϕ?;α) ∪ (¬ϕ?; β)
• while ϕ do α ::= (ϕ?;α)?;¬ϕ?
• do α while ϕ ::= α; (ϕ?;α)?;¬ϕ?
• for (π;ϕ;ω) do α ::= π; (ϕ?;α;ω)?;¬ϕ?

The translation of the tree structure received is divided into 4 parts: scope, ex-
pression, conditional, and repetition. Scope translations are denoted by the entire scope
content being present within parentheses. Expression translations are performed by treat-
ing each expression as an atomic program.

Conditional translations are performed by creating a verification from the condi-
tion and in the case it is true the execution of its scope occurs, finally, the verification of
the condition contradiction is added non-deterministically so that the program does not
end with an error. If the operation is an if-else we have after the contradiction an exe-
cution of the else scope and if the operation has an if-else-if structure we add the else-if
scope after the contradiction.

The translations of repetitions are carried out by creating a PDL verification for
the condition and if it is true the execution of its scope occurs, finally we create an iter-
ation and a verification of the condition contradiction is added so that the program does
not abort with an error. If the operation is a do-while, before the condition we have an
execution of the scope.

6.3. PDL to nuXmv
The translation from PDL to nuXmv occurs in the following steps. For each function of
the PDL program, a module of the same name is created.

VAR is added to MODULE and the program variable is created. The program
variable will be filled with all the atomic programs presents in the current PDL program
and for each atomic program assigned in this way we will concatenate the atomic program
with their position in the PDL program.

For each unique atomic program, a new variable in VAR is created, and it is de-
fined as a set of all of the values that the variable can have during the execution of the
program.

ASSIGN is added to MODULE and for each variable in VAR its init is added to
ASSIGN. The value of init will be the first value assigned to the variable in the order of
execution of the algorithm if the value to be added is a verification we will have non-
determinism between verification and its contradiction.

For each variable declared in VAR its next is added to ASSIGN with all possible
states of the variable during the execution of the program, if the state leads to a verifica-
tion, we will have the non-determinism between the verification and its contradiction.

6.4. Smart contracts in nuXmv
The transformation of a model in nuXmv to a smart contract occurs, changing all modules
identifiers concatenating the file name with the identifier. This change was necessary to

ensure that all modules were unique, in addition to this change it was necessary to change
the Blockchain model in the transaction module so that it could accept both monetary
transactions and smart contracts.

6.5. Execution of the algorithm
Now we will approach the step-by-step execution of the algorithm, given the initial entry,
contained in the Listing 2.

1 i n t main () {
2 i n t i ; i n t j ; i n t z ;
3 i = 1 ; j = 2 ; z = 3 ;
4 i f (i < 5) {
5 z = 4 ;
6 } e l s e {
7 z = 5 ;
8 } }

Listing 2. Input Mini-C

From the input, respectively we got that the file is read and the list of program
tokens is generated, the syntactic tree will be generated and then the PDL program are
created, which can be seen below in our example:

(int i; int j; int z; i = 1; j = 2; z = 3; (i < 5?; z = 4) ∪ (¬i < 5?; z = 5))

Then the PDL program is read and the nuXmv program is generated, which can
be seen in the Listing 3.

1 MODULE main
2 VAR
3 program : { i n t i 0 , i n t j 1 , i n t z 2 , i = 1 3 , j = 2 4 , z = 3 5 , i < 5 ? 6 ,

z = 4 7 , ˜ i < 5 ? 8 , z = 5 9 } ;
4 i : 1 . . . 1 ;
5 j : 2 . . . 2 ;
6 z : 3 . . . 5 ;
7 ASSIGN
8 i n i t (program) := i n t i 0 ;
9 i n i t (i) := 1 ;

10 i n i t (j) := 2 ;
11 i n i t (z) := 3 ;
12 next (program) := case
13 program = i n t i 0 : i n t j 1 ;
14 program = i n t j 1 : i n t z 2 ;
15 program = i n t z 2 : i = 1 3 ;
16 program = i = 1 3 : j = 2 4 ;
17 program = j = 2 4 : z = 3 5 ;
18 program = z = 3 5 : { i < 5 ? 6 , ˜ i < 5 ? 8 } ;
19 program = i < 5 ? 6 : z = 4 7 ;
20 program = ˜ i < 5 ? 8 : z = 5 9 ; e sac ;
21 next (i) := case
22 program = i = 1 3 : 1 ;
23 TRUE = i ; e sac ;
24 next (j) := case
25 program = j = 2 4 : 2 ;
26 TRUE = j ; e sac ;
27 next (z) := case
28 program = z = 3 5 : 3 ;
29 program = z = 4 7 : 4 ;
30 program = z = 5 9 : 5 ;
31 TRUE = z ; e sac ;

Listing 3. Example nuXmv Mini-C

Finally, the program created is linked as a smart contrat with the generated
Blockchain model.

Now we present a step-by-step execution of the algorithm, given another initial
input in the Smacco model, contained in the Listing 4.

1 ” s t a n d a r d ” : ” smacco ” ,
2 ” i n p u t t y p e ” : ” s i n g l e ” ,

Listing 4. Input in Smacco

From the input, respectively we got that the file is read and the list of program
tokens is generated, the syntactic tree will be generated and then the PDL program are
created, which can be seen below in our example:

(standard : smacco; input type : single;Accept : ALLOW)

Then the PDL program is read and the nuXmv program is generated, which can
be seen in the Listing 5.

1 Module main
2 VAR
3 program : { s t a n d a r d : smacco 0 , i n p u t t y p e : s i n g l e 1 , Accept : ALLOW 2} ;
4
5 ASSIGN
6 i n i t (program) := s t a n d a r d : smacco 0 ;
7 n e x t (program) := c a s e
8 program = s t a n d a r d : smacco 0 : i n p u t t y p e : s i n g l e 1 ;
9 program = i n p u t t y p e : s i n g l e 1 : Accept : ALLOW 2 ; e s a c ;

Listing 5. Example Smacco nuXmv

Finally, the program created is linked as a smart contrat with the generated
Blockchain model.

After the generated programs are ready we can use the nuXmv to make formal
verification of the programs properties like test if there is a case that the program will fail,
test what is the value of a variable in some context, text if the blockchain is valid and
more.

7. Conclusions and future work

With the growing need for increasingly secure systems, the use of a model checker is
becoming more and more in demand. PDL unified with nuXmv demonstrated to be an
intuitive choice for simple programs.

This work presented an automated process with a compiler to generate models
for formal verification of programs. The inputs can be in the Mini-C or Smacco (JSON)
languages and are converted to a nuXmv model checker, which can be linked with a
Blockchain verificaction model to make formal verifications about smart contracts relying
on a compiler provided by the work [7]. The tool can be used to easily provide formal
models for programs, from the command line or generate Blockchain verification models
with smart contracts.

The focus of future works is the expansion of the Mini-C language to get closer
and closer to the standard C language, support for a subset of the Solidity language, and
the development of an online platform to run the proposed system.

References
[1] Tesnim Abdellatif and Kei-Léo Brousmiche. Formal verification of smart contracts based

on users and blockchain behaviors models. 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), Feb 2018, pp. 1–5.

[2] H. R. Andersen. An introduction to binary decision diagrams. Lecture notes, available
online, IT University of Copenhagen, p. 5, 1997.

[3] David M. Beazley. PLY (Python Lex-Yacc). https://www.dabeaz.com/ply/ply.html.

[4] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuxmv symbolic model checker. CAV, ser. Lecture
Notes in Computer Science, A. Biere and R. Bloem, Eds., vol. 8559, Springer, 2014,
pp. 334–342.

[5] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pi-
store, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. Computer Aided Verification, E.
Brinksma and K. G. Larsen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 359–364.

[6] Vitor N. Coelho, Thays A. Oliveira, Wellington Tavares, and Igor M. Coelho. Smart
accounts for decentralized governance on smart cities (to appear). Smart Cities,
2021.

[7] Bruno Olı́mpio Costa. Verificação formal de modelos de blockchain. Master’s thesis,
Universidade Federal Fluminense, 2019.

[8] S. Gerhart, D. Craigen, and T. Ralston. Case study: Paris metro signaling system. IEEE
Software, vol. 11, no. 1, pp. 32–28, 1994.

[9] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.

[10] Michael J.Fischer and Richard E.Ladner. Propositional dynamic logic of regular pro-
grams. Journal of Computer and System Sciences, 1979.

[11] J. C. Knight. Safety critical systems: challenges and directions. Proceedings of the 24th
International Conference on Software Engineering, ACM, 2002, pp. 547–550.

[12] Yubi Lee. flex-bison. https://github.com/eubnara/flex-bison.

[13] Igor Machado. Smacco. https://neo-smacco.readthedocs.io/en/latest/intro.html.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf, 2009.

[15] C. Sinz, W. Kuchlin, and T. Lumpp. Towards a verification of the rule-based expert system
of the ibm sa for os/390 automation manager. In Proceedings Second Asia-Pacific
Conference on Quality Software, pages 367–374, 2001.

