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Abstract. This work introduces the variety of perfect paradefinite algebras (PP-
algebras), consisting of De Morgan algebras enriched with a perfect operator
◦, which turns out to be equivalent to the variety of involutive Stone algebras
(IS-algebras). The corresponding order-preserving logic PP≤ is a Logic of
Formal Inconsistency, a Logic of Formal Undeterminedness, a C-system and a
D-system, some of these features being evident in the proposed axiomatization
of PP-algebras. After proving the mentioned algebraic equivalence, we show
how to axiomatize, by means of Hilbert-style calculi, certain extensions of De
Morgan algebras with a perfect operator and, in particular, the logic PP≤.

1. Introduction
The variety of De Morgan algebras comprises all the bounded distributive lattices
equipped with a De Morgan negation, that is, an involutive unary primitive operation ∼
satisfying the well-known De Morgan laws. Involutive Stone algebras (hereby called IS-
algebras) are De Morgan algebras endowed with a primitive unary operation∇ that makes
it possible to define a pseudo-complement ¬ satisfying the Stone identity ¬x∨¬¬x ≈ >.

While the order-preserving logic canonically induced by De Morgan algebras,
namely Belnap-Dunn’s four-valued logic [Belnap 1977], has been extensively studied
over the last decades, the logic so induced by IS-algebras, which we call IS≤, has at-
tracted attention only recently [Cantú 2019, Cantú and Figallo 2018]. Some of the most
prominent features of such logic are the facts that it is paradefinite (paraconsistent and
paracomplete, characteristics actually inherited from Belnap-Dunn logic), ∼-gently ex-
plosive and ∼-gently implosive; in other words, it is a Logic of Formal Inconsistency
(LFI) and a Logic of Formal Undeterminedness (LFU). More than that, IS≤ belongs to
the classes of C-systems and D-systems. (See [Marcos 2005a] for detailed explanations
about all these concepts.)

All these philosophically rich characteristics are hidden in the presentation of IS-
algebras in terms of∇, an operation whose interpretability and philosophical motivations
are at best unclear. On the other hand, perfect operators (in the sense of [Marcos 2005b])
allow for the internalization of the very notion of consistency and determinedness at
the object-language level, and have been extensively studied [Barrio and Carnielli 2019].
Given these observations, we propose, in this work, an alternative presentation of IS-
algebras, which we will call perfect paradefinite algebras or simply PP-algebras, ob-
tained by replacing ∇ with a primitive perfect operation ◦. The proposed axiomatization
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for these algebras will not only guarantee that the corresponding variety is term equiv-
alent to the variety of IS-algebras, but it will also reflect the character of its induced
order-preserving logic PP≤ as a C-system and a D-system. Furthermore, we will pro-
vide a Hilbert-style deduction system for logical matrices based on De Morgan algebras
enriched with ◦, and, consequently, for the logic PP≤ itself.

2. Algebraic and Logical Preliminaries

A propositional signature is a family Σ = {Σk}k∈ω, where each Σk is a collection of
k-ary connectives. A Σ-algebra is a structure A = 〈A, ·A〉, where A is a non-empty set
called the carrier of A and, for each © ∈ Σk, ©A : Ak → A is the interpretation of
© in A. Given a denumerable set P ⊇ {p, q, r, x, y}, the absolutely free algebra over Σ
freely generated by P , or simply the language over Σ (generated by P ), is denoted by
LΣ(P ), and their elements are dubbed formulas, denoted here by Greek letters, like ϕ, ψ
and φ. Given Σ′ ⊆ Σ (that is, Σ′k ⊆ Σk for all k ∈ ω), the Σ′-reduct of a Σ-algebra A is
the Σ′-algebra over the same carrier of A that agrees with A on the interpretation of the
connectives in Σ′. The collection of homomorphisms between two Σ-algebras A and B is
denoted by Hom(A,B), and the collection of mappings that are structure-preserving only
in Σ′ ⊆ Σ is denoted by HomΣ′(A,B). Furthermore, the set of endomorphisms on A is
denoted by End(A) and each σ ∈ End(LΣ(P )) is called a substitution. Let ϕ ∈ LΣ(P )
having p1, . . . , pn as propositional variables. We say that ϕ is n-ary and denote by ϕA the
n-ary operation onA such that, for all a1, . . . , an ∈ A, ϕA(a1, . . . , an) = h(ϕ), for an h ∈
Hom(LΣ(P ),A) with h(pi) = ai for each 1 ≤ i ≤ n. Also, if ψ1, . . . , ψn ∈ LΣ(P ), we
let ϕ(ψ1, . . . , ψn) denote the formula ϕLΣ(P )(ψ1, . . . , ψn). An equation is a pair (ϕ, ψ) of
formulas that we will denote ϕ ≈ ψ, and a Σ-algebra A satisfies ϕ ≈ ψ iff h(ϕ) = h(ψ)
for every h ∈ Hom(LΣ(P ),A). A Σ-variety is a class of Σ-algebras that satisfies the
same collection of equations. The variety generated by a class K of Σ-algebras, denoted
by V(K), is the closure of K under homomorphic images, subalgebras and direct products.

We denote by ΣL the signature containing but two binary connectives, ∧ and ∨,
and two nullary connectives> and⊥, and by ΣDM the extension of the latter with a unary
connective ∼. Moreover, we let ΣIS and ΣPP be the signatures obtained from ΣDM by
adding unary connectives ∇ and ◦, respectively. We provide below the definitions of De
Morgan and involutive Stone algebras.

Definition 2.1. A De Morgan algebra is a ΣDM-algebra whose ΣL-reduct is a bounded
distributive lattice, and satisfies the equations:

(DM1) ∼∼x ≈ x (DM2) ∼(x ∧ y) ≈ ∼x ∨ ∼y

Definition 2.2. An involutive Stone algebra (IS-algebra) is a ΣIS-algebra whose ΣDM-
reduct is a De Morgan algebra, and satisfies the identities:

(IS1)∇⊥ ≈ ⊥ (IS2) x ∧∇x ≈ x (IS3)∇(x ∧ y) ≈ ∇x ∧∇y (IS4) ∼∇x ∧∇x ≈ ⊥

In this work, we denote by IS the variety of IS-algebras. The next result presents
some equations satisfied by IS-algebras, which will be useful for proving the results of
the next section.



Lemma 2.3. The following equations are satisfied by IS-algebras:

x ∨∇∼x ≈ >1. ∼∇(x ∧ ∼x) ∧ ∼x ≈ ∼∇x2.
x ∧ ∼∇x ≈ ⊥3. ∇∇x ≈ ∇x4.
∇∼∇x ≈ ∼∇x5. ∼∇∼(x ∧ y) ≈ ∼∇∼x ∧ ∼∇∼y6.

A (logical) Σ-matrix M is a structure 〈A, D〉 such that A is a Σ-algebra and
D ⊆ A. The mappings in Hom(LΣ(P ),A) are dubbed M-valuations. In this work,
a SET-FMLA logic is a consequence relation `⊆ ℘LΣ(P ) × LΣ(P ) and a SET-SET
logic is a generalized consequence relation B ⊆ ℘LΣ(P ) × ℘LΣ(P ). The complement
of a given SET-SET logic B will be denoted by I . Every Σ-matrix induces a SET-
SET logic BM such that Γ B M ∆ iff, for all h ∈ Hom(LΣ(P ),A), h(Γ) ∩ D 6= ∅
or h(∆) ∩ D 6= ∅ as well as a SET-FMLA logic `M with Γ `M ϕ iff Γ BM {ϕ}.
Whenever BM = B (resp. `M =`), we say that M characterizes B (resp. `). Based
on [Shoesmith and Smiley 1978, Caleiro and Marcelino 2019], we define a symmetrical
(Hilbert-style) calculus R as a collection of pairs Γ

∆
= (Γ,∆) ∈ ℘LΣ(P ) × ℘LΣ(P ),

called (symmetrical) rules of inference, where Γ is the antecedent and ∆ is the succedent
of the rule. We then say that Γ BR ϕ whenever there is a rooted tree whose root is labelled
with Γ, every non-leaf node results from an expansion of its parent by means of a substi-
tution instance of an inference rule of R and each leaf is either discontinued by effect of
an inference rule with empty succedent or intersects ∆. The relation BR so defined is a
SET-SET logic and, when BR = BM, we say that R axiomatizes M. A rule Γ

∆
is sound in

M when Γ BM ∆. It is easy to notice that this deductive formalism generalizes Hilbert
calculi in the usual sense, these being those symmetrical calculi whose rules have finite
antecedents and only singletons as succedents. Finally, every Σ-variety K such that each
A ∈ K has a meet-semilattice reduct with top element > induces a SET-FMLA order-
preserving logic `≤K according to which ϕ follows from Γ iff Γ = ∅ and > ≈ ϕ or there
are γ1, . . . , γn ⊆ Γ (n ≥ 1) such that the identity

∧
i γi ≈

∧
i γi ∧ ϕ is valid in K.

3. Perfect Paradefinite Algebras
We propose in this section to extend De Morgan algebras with a perfect operator ◦. In
the sequel, we will prove that the variety of such algebras is equivalent to the variety of
IS-algebras.
Definition 3.1. A perfect paradefinite algebra (PP-algebra) is a ΣPP-algebra whose ΣDM-
reduct is a De Morgan algebra, and satisfies the following equations:

(PP1) ◦◦x ≈ > (PP2) ◦x ≈ ◦∼x (PP3) ◦> ≈ > (PP4) ◦x ∧ (∼x ∧ x) ≈ ⊥
(PP5) ◦(x ∧ y) ≈ (◦x ∨ ◦y) ∧ (◦x ∨ ∼y) ∧ (◦y ∨ ∼x)

We denote by PP the variety of PP-algebras. The following result presents some
useful equations and inequalities satisfied by the members of PP.
Lemma 3.2. Every PP-algebra satisfies:

∼◦x ∨ (x ∨ ∼x) ≈ >1. ◦x ∧ ∼◦x ≈ ⊥2. ◦x ≤ x ∨ ∼x3.
If ϕ ∈ LΣIS(P ) (resp. ϕ ∈ LΣPP(P )), let ϕ◦ ∈ LΣPP(P ) (resp. ϕ∇ ∈ LΣIS(P ))

be the result of applying the definition of ◦ (resp. of ∇) given below, in Theorem 3.3
(Theorem 3.4), over ϕ. Extend this notion to sets of formulas in the usual way. The fol-
lowing results show that the varieties of involutive Stone algebras and perfect paradefinite
algebras are equivalent.



Theorem 3.3. Let A ∈ IS. Then the ΣPP-algebra A◦, with ◦x = ∼∇(x ∧ ∼x), is a
PP-algebra.
Proof. We will show that A◦ satisfies all the characteristic equations of PP-algebras.
(PP1) ◦◦x ≈def ∼∇((∼∇(x ∧ ∼x)) ∧ ∼(∼∇(x ∧ ∼x))) ≈(IS3) ∼∇∼∇(x ∧ ∼x) ∨

∼∇∼∼∇(x ∧ ∼x) ≈2.3.5 ∼∼∇(x ∧ ∼x) ∨ ∼∇∼∼∇(x ∧ ∼x) ≈(DM1) ∇(x ∧
∼x) ∨ ∼∇∇(x ∧ ∼x) ≈2.3.4 ∇(x ∧ ∼x) ∨ ∼∇(x ∧ ∼x) ≈(IS4) >.

(PP2) ◦x ≈def ∼∇(x ∧ ∼x) ≈(DM1) ∼∇(∼∼x ∧ ∼x) ≈def ◦∼x .
(PP3) ◦> ≈def ∼∇(> ∧∼>) ≈ ∼∇(> ∧⊥) ≈ ∼∇⊥ ≈(IS1) ∼⊥ ≈ >.
(PP4) ◦x ∧ (∼x ∧ x) ≈def ∼∇(x ∧∼x) ∧ (∼x ∧ x) ≈ (∼∇(x ∧∼x) ∧∼x) ∧ x ≈2.3.2

∼∇x ∧ x ≈2.3.3 ⊥.
(PP5) ◦(x ∧ y) ≈def ∼∇((x ∧ y) ∧ ∼(x ∧ y)) ≈(IS3) ∼∇(x ∧ y) ∨ ∼∇∼(x ∧ y) ≈(IS3)

(∼∇x ∨ ∼∇y) ∨ ∼∇∼(x ∧ y) ≈2.3.6 (∼∇x ∨ ∼∇y) ∨ (∼∇∼x ∧ ∼∇∼y) ≈
(∼∇x ∨ ∼∇y ∨ ∼∇∼x) ∧ (∼∇x ∨ ∼∇y ∨ ∼∇∼y) ≈2.3.2 (∼∇x ∨ (∼∇(y ∧
∼y)∧∼y)∨∼∇∼x)∧ (∼∇y ∨ (∼∇(x∧∼x)∧∼x)∨∼∇∼y) ≈(IS3) (∼∇(x∧
∼x) ∨ (∼∇(y ∧ ∼y) ∧ ∼y)) ∧ (∼∇(y ∧ ∼y) ∨ (∼∇(x ∧ ∼x) ∧ ∼x)) ≈def

(◦x ∨ (◦y ∧ ¬y)) ∧ (◦y ∨ (◦x ∧ ¬x)) ≈ (◦x ∨ ◦y) ∧ (◦x ∨ ∼y) ∧ (◦y ∨ ∼x).

Theorem 3.4. Let A ∈ PP. Then the ΣIS-algebra A∇ , with ∇x = ∼◦x ∨ x, is an
IS-algebra.
Proof. We will show that A∇ satisfies all the characteristic equations of IS-algebras.
(IS1) ∇⊥ ≈def ∼◦⊥ ∨ ⊥ ≈ ∼◦⊥ ≈ ∼◦∼> ≈(PP2) ∼◦> ≈(PP3) ∼> ≈ ⊥.
(IS2) By absorption and commutativity of ∨, we have x ∧∇x ≈def x ∧ (∼◦x ∨ x) ≈ x.
(IS3) ∇(x ∧ y) ≈def ∼◦(x ∧ y) ∨ (x ∧ y) ≈(PP5) (∼ ◦ x ∧ ∼ ◦ y) ∨ (∼ ◦ x ∧ y) ∨ (∼ ◦

y ∧ x) ∨ (x ∧ y) ≈ (∼◦x ∨ x) ∧ (∼◦y ∨ y) ≈def ∇x ∧∇y.
(IS4) ∼∇x ∧ ∇x ≈def ∼(∼◦x ∨ x) ∧ (∼◦x ∨ x) ≈(DM2) (◦x ∧ ∼x) ∧ (∼◦x ∨ x) ≈

(◦x∧∼x∧∼◦x)∨(◦x∧∼x∧x) ≈(PP4) (◦x∧∼x∧∼◦x)∨⊥ ≈ ◦x∧∼x∧∼◦x ≈
◦x ∧ ∼x ∧ ∼◦x ∧ > ≈(PP1) ◦x ∧ ∼x ∧ ∼◦x ∧ ◦◦x ≈(PP4) ⊥ ∧∼x ≈ ⊥.

Theorem 3.5. Given A ∈ IS and B ∈ PP, we have (A◦)∇ = A and (B∇)◦ = B.
Proof. In order to prove that (A◦)∇ = A, it is enough to show that∼(∼∇(x∧∼x))∨x ≈
∇x holds in A, that is, the operation induced by the term ((∇x)◦)∇ is the same as∇. By
the fact that ∇x ∨ x ≈ ∇x, we have ∼(∼∇(x ∧ ∼x)) ∨ x ≈(DM1) ∇(x ∧ ∼x) ∨ x ≈(IS3)
(∇x∧∇∼x)∨x ≈ (∇x∨x)∧(∇∼x∨x) ≈2.3.1 (∇x∨x)∧> ≈ ∇x∨x ≈ ∇x. Similarly,
for proving

(
B∇
)◦

= B, it is enough to show that
(
(◦x)∇

)◦ induces an operation equal
to ◦, which amounts to proving that ∼(∼◦(x ∧∼x) ∨ (x ∧∼x)) ≈ ◦x holds in B. Then,
we have ∼(∼◦(x∧∼x)∨ (x∧∼x)) ≈(DM2) ◦(x∧∼x)∧ (∼x∨ x) ≈(PP5) (◦x∨ ◦∼x)∧
(◦x∨x)∧ (◦∼x∨∼x)∧ (∼x∨x) ≈(PP2) (◦x∨◦x)∧ (◦x∨x)∧ (◦x∨∼x)∧ (∼x∨x) ≈
◦x ∧ (∼x ∨ x) ≈3.2.3 ◦x.

We denote by IS6 the subdirectly irreducible six-element IS-
algebra [Cantú and Figallo 2018] and by PP6 the algebra IS6

◦ (defined according
to Theorem 3.3). As a corollary of the equivalence just presented and of a similar result
for IS-algebras [Marcelino and Rivieccio 2021], we have that the variety of PP-algebras
is generated by PP6. Let PP≤ be the order-preserving logic induced by PP. We will use
the following technical results to prove that this logic is characterized by a single logical
matrix.



Lemma 3.6. Given A ∈ IS and B ∈ PP,

1. if h ∈ Hom(LΣIS(P ),A), then h
(

(ϕ◦)∇
)

= h(ϕ) for all ϕ ∈ LΣIS(P );

2. if h ∈ Hom(LΣPP(P ),B), then h
((
ϕ∇
)◦)

= h(ϕ) for all ϕ ∈ LΣPP(P );
3. if h ∈ Hom(LΣIS(P ),A), then the mapping h◦ ∈ Hom(LΣPP(P ),A◦) such that
h◦(p) = h(p) for all p ∈ P satisfies h◦(ϕ◦) = h(ϕ) for all ϕ ∈ LΣIS(P );

4. if h ∈ Hom(LΣPP(P ),B), then the mapping h∇ ∈ Hom(LΣIS(P ),B∇) such that
h∇(p) = h(p) for all p ∈ P satisfies h∇(ϕ∇) = h(ϕ) for all ϕ ∈ LΣPP(P ).

Proof. By induction on the structure of formulas and Theorem 3.5.

Proposition 3.7. In what follows, let A ∈ PP. Then,

1. Γ `〈A,D〉 ϕ iff Γ∇ `〈A∇,D〉 ϕ∇

2. Γ `PP≤ ϕ iff Γ∇ `IS≤ ϕ∇

Proof. Follows by Lemma 3.6.

Theorem 3.8. PP≤ =`〈PP6,↑a〉.

Proof. By Proposition 3.7 and the fact that `IS≤ is characterized by the matrix 〈IS6, ↑ a〉,
we have Γ `〈PP6,↑a〉 ϕ iff Γ∇ `〈IS6,↑a〉 ϕ

∇ iff Γ∇ `IS6 ϕ
∇ iff Γ `PP≤ ϕ.

Finally, following [Marcelino and Rivieccio 2021], we present a recipe to produce
a PP-algebra by extending a given De Morgan algebra. We will see then how to axiomatize
logics induced by the former having a calculus for logics induced by the latter.

Definition 3.9. Let A be a ΣDM-algebra. Given 0̂, 1̂ /∈ A, we define the ΣPP-algebra
A◦ = 〈A ∪ {0̂, 1̂}, ·A◦〉 by letting

◦A◦a =

{
1̂ if a = 0̂ or a = 1̂

0̂ otherwise
a ∧A◦ b =


a ∧A b if a, b ∈ A
1̂ if a = b = 1̂

0̂ if a = 0̂ or b = 0̂

c if {a, b} = {1̂, c} with c ∈ A

∼A◦a =


∼Aa if a ∈ A
0̂ if a = 1̂

1̂ if a = 0̂

a ∨A◦ b =


a ∨A b if a, b ∈ A
0̂ if a = b = 0̂

1̂ if a = 1̂ or b = 1̂

c if {a, b} = {0̂, c} with c ∈ A
⊥A◦ = 0̂ >A◦ = 1̂

Proposition 3.10. Whenever A is a De Morgan algebra, A◦ is a PP-algebra.

4. Axiomatizing Logics of De Morgan Algebras Enriched with a Perfect
Operator

Given a ΣDM-matrix M = 〈A, D〉, let M◦ = 〈A◦, D ∪ {1̂}〉 be the ΣPP-matrix with the
underlying (by Proposition 3.10, perfect paradefinite) algebra A◦ given by Definition 3.9.
We denote by M̂ the ΣDM-reduct of M◦. Given a class of ΣDM-matricesM, we letM◦ :=

{M◦ : M ∈ M} and M̂ := {M̂ : M ∈ M}. In what follows, if B1 and B2 are SET-
SET logics over Σ, we let B1 ' B2 iff B1 ∪ {(LΣ(P ),∅)} = B2 ∪ {(LΣ(P ),∅)}. The



following result gives a generic recipe for axiomatizing the SET-SET logic determined
by the class M◦, assuming we have a calculus R that axiomatizes the SET-SET logic
determined by M̂.

Theorem 4.1. LetM be a class of ΣDM-matrices. If BM̂ ' BR , then BM◦ = BR∪R◦ ,
where R◦ consists of the following rules of inference:

◦⊥
r1 ◦>

r2 ◦◦p
r3

◦p
◦∼p

r4
◦∼p
◦p

r5
◦p

p,∼p
r6

◦p, p,∼p
r7

◦p
◦(p ∧ q), p

r8
◦q

◦(p ∧ q), q
r9

◦(p ∧ q), q

◦p
r10

◦(p ∧ q), p

◦q
r11

◦p, ◦q
◦(p ∧ q)

r12
◦(p ∧ q)

◦p, ◦q
r13

◦p, ◦q
◦(p ∨ q)

r14
◦(p ∨ q)

◦p, ◦q
r15

◦p, p
◦(p ∨ q)

r16
◦q, q
◦(p ∨ q)

r17
◦(p ∨ q)

◦p, q
r18

◦(p ∨ q)

◦q, p
r19

Proof. Checking the soundness of those rules is routine; we give only a couple of ex-
amples. Let v be a valuation over a matrix M◦. The rule r3 is sound in M◦, given that,
if v(◦ϕ) ∈ {0̂, 1̂}, then we have that v(◦◦ϕ) = 1̂. Regarding rule r4, we have that, if
v(◦ϕ) = 1̂, then v(ϕ) ∈ {0̂, 1̂}. So v(∼ϕ) ∈ {0̂, 1̂}, thus v(◦∼ϕ) = 1̂. For completeness,
assume ΓIR◦ ∆. Then, by cut of sets, there is a partition 〈T, F 〉 of LΣPP(P ) such that
Γ ⊆ T and ∆ ⊆ F and T IR◦ F . Note that (by r3, r6 and r7) for each ϕ, we have either
◦ϕ ∈ T or∼◦ϕ ∈ T , but never both. In particular, F is never empty. Also, by r6 and r7, if
we have ◦ϕ ∈ T , we have either ϕ ∈ T or ∼ϕ ∈ T , but never both. Hence, each ϕ must
be exactly in one of three cases: (a) ∼◦ϕ ∈ T , (b) ◦ϕ, ϕ ∈ T or (c) ◦ϕ,∼ϕ ∈ T . Since
R ⊆ R ∪ R◦, we also have T IR F . From the fact that BR ' BM̂ and F 6= ∅ we know
that T IM̂ F . We can therefore pick v ∈ HomΣDM(LΣPP(P ), M̂), for some M ∈M, such
that v(T ) ⊆ D and v(F ) ∩D = ∅. Consider v′ : LΣPP(P )→M◦ defined by:

v′(ϕ) :=



v(ϕi) if ϕ = ϕ1 ∧ ϕ2 and ∼◦ϕ, ◦ϕ3−i ∈ T
v(ϕi) if ϕ = ϕ1 ∨ ϕ2 and ∼◦ϕ, ◦ϕi ∈ T
v(ϕ) if ∼◦ϕ ∈ T
1̂ if ◦ϕ, ϕ ∈ T
0̂ if ◦ϕ,∼ϕ ∈ T

We will show that v′ ∈ Hom(LΣPP(P ),M◦).

1. v′(◦ϕ) = ◦v′(ϕ)
If (i)∼◦ϕ ∈ T then by r3, ◦◦ϕ ∈ T (so v′(◦ϕ) = 0̂). Thus v′(◦ϕ) = 0̂ = ◦(v′(ϕ)).
If (ii) ◦ϕ, ϕ ∈ T , then by r3, ◦◦ϕ ∈ T (so v′(◦ϕ) = 1̂). So v′(◦ϕ) = 1̂ = ◦(v′(ϕ)).
If (iii) ◦ϕ,∼ϕ ∈ T , so by r3, ◦◦ϕ ∈ T (so v′(◦ϕ) = 1̂). So v′(◦ϕ) = 1̂ = ◦(v′(ϕ)).

2. v′(∼ϕ) = ∼v′(ϕ)
If (i) ∼◦∼ϕ ∈ T , then by r3 and r7, ◦∼ϕ /∈ T . Then, by r4, ◦ϕ /∈ T . Thus, by
r3 and r6, ∼◦ϕ ∈ T (so v′(ϕ) = v(ϕ)). So v′(∼ϕ) = v(∼ϕ) = ∼M(v(ϕ)) =
∼(v′(ϕ)).
If (ii) ◦∼ϕ,∼ϕ ∈ T , by r5, ◦ϕ ∈ T (so v′(ϕ) = 0̂)). Then v′(∼ϕ) = 1̂ =
∼(v′(ϕ)).
If (iii) ◦∼ϕ,∼∼ϕ ∈ T , then by r5, ◦ϕ ∈ T (since ϕ ∈ T , so v′(ϕ) = 1̂). Therefore
v′(◦ϕ) = 0̂ = ∼(v′(ϕ)).



3. v′(ϕ ∧ ψ) = v′(ϕ) ∧ v′(ψ)
If (i) ∼◦(ϕ ∧ ψ) ∈ T , then by r3 and r7, we have that ◦(ϕ ∧ ψ) /∈ T . By r12, we
have that (a) ◦ϕ, ◦ψ /∈ T , (b) ◦ϕ ∈ T and ◦ψ /∈ T or (c) ◦ϕ /∈ T and ◦ψ ∈ T .

(a) If ◦ϕ, ◦ψ /∈ T then, by r3 and r6, ∼◦ϕ,∼◦ψ ∈ T (so v′(ϕ) = v(ϕ) and
v′(ψ) = v(ψ)). So v′(ϕ∧ψ) = v(ϕ∧ψ) = v(ϕ)∧Mv(ψ) = v′(ϕ)∧v′(ψ).

(b) If ◦ϕ ∈ T and ◦ψ /∈ T then, by r3 and r6, ¬◦ψ ∈ T (so v′(ψ) = v(ψ)).
By r8, ϕ ∈ T (so v′(ϕ) = 1̂). Therefore v′(ϕ ∧ ψ) = v(ψ) = v′(ψ) =
1̂ ∧ v′(ψ) = v′(ϕ) ∧ v′(ψ).

(c) If ◦ϕ /∈ T and ◦ψ ∈ T then the case is analogous to the previous using r9.
If (ii) ◦(ϕ ∧ ψ), ϕ ∧ ψ ∈ T then ϕ, ψ ∈ T . By r10 and r11, ◦ϕ, ◦ψ ∈ T . (so
v′(ϕ) = v′(ψ) = 1̂) hence v′(ϕ ∧ ψ) = 1̂ = v′(ϕ) ∧ v′(ψ).
If (iii) ◦(ϕ ∧ ψ),∼(ϕ ∧ ψ) ∈ T then either ∼ϕ ∈ T or ∼ψ ∈ T . By r13, we have
that (a) ◦ϕ, ◦ψ ∈ T , (b) ◦ϕ ∈ T and ◦ψ /∈ T or (c) ◦ϕ /∈ T and ◦ψ ∈ T .

(a) If ◦ϕ, ◦ψ ∈ T so v′(ϕ) = 0̂ or v′(ψ) = 0̂. So v′(ϕ ∧ ψ) = 0̂ = v′(ϕ) ∧
v′(ψ).

(b) If ◦ϕ ∈ T and ◦ψ /∈ T then, by r11 ϕ /∈ T . By r6 ∼ϕ ∈ T (so v′(ϕ) = 0̂).
So v′(ϕ ∧ ψ) = 0̂ = v′(ϕ) ∧ v′(ψ)

(c) If ◦ϕ /∈ T and ◦ψ ∈ T then the case is analogous to the previous using r10.
4. v′(ϕ ∨ ψ) = v′(ϕ) ∨ v′(ψ)

This case is analogous to the case of ∧, using the corresponding ∨ rules.

We may extend the recipe given in the previous result to provide Hilbert-style ax-
iomatizations (that is, with only inference rules with singleton succedents) to the class
M◦ when M is axiomatized by a Hilbert-style calculus. Before showing how, we will
define a set of such traditional Hilbert-style inference rules induced by a set of sym-
metrical rules. In what follows, when Φ = {ϕ1, . . . , ϕn} ⊆ LΣ(P ) (n ≥ 1), let∨

Φ = (. . . (φ1 ∨ φ2) ∨ . . .) ∨ φn. Also, let Φ ∨ ϕ = {φ ∨ ϕ | φ ∈ Φ}.
Definition 4.2. Let R be a set of symmetrical rules of inferences. Define the set R∨ =
{ p
p∨q ,

p∨q
q∨p ,

p∨(q∨r)
(p∨q)∨r} ∪ {r

∨ | r ∈ R} such that r∨ is
ϕ

if r =
ϕ

, Γ∨p0

(
∨

∆)∨p0
if r = Γ

∆
, and Γ∨p0

p0
if

r = Γ , where p0 is a propositional variable not occurring in the rules in R.

The next result states that, when R is the calculus given by Theorem 4.1, R∨ is the
Hilbert-style axiomatization we are looking for.

Theorem 4.3. LetM be a class of ΣDM-matrices and let R be a set of single-succedent
rules. If `R =`M=`M̂, then `(R∪R◦)∨ =`M◦ .
Proof. Analogous to the proof presented in [Marcelino and Rivieccio 2021], but with ◦
instead of∇.

Example 4.4. Let DM4 be the four-element subdirectly irreducible De Morgan algebra
as given in [Marcelino and Rivieccio 2021], M4 = 〈DM4, ↑a〉 be the ΣDM-matrix that
defines the Belnap-Dunn logic B, and let RB be the Hilbert calculus used in [Font 1997]
to axiomatize `B. Since B =`M4 =`M̂4

[Marcelino and Rivieccio 2021], we obtain a
Hilbert axiomatization for PP≤ =`M◦4 =`〈PP6,↑a〉 by adding to RB the following rules:

◦⊥
r∨1 ◦>

r∨2 ◦◦p
r∨3

◦p ∨ r

◦∼p ∨ r
r∨4

◦∼p ∨ r

◦p ∨ r
r∨5



◦p ∨ r

(p ∨ ∼p) ∨ r
r∨6

◦p ∨ r, p ∨ r,∼p ∨ r

r
r∨7

◦p ∨ r

(◦(p ∧ q) ∨ p) ∨ r
r∨8

◦q ∨ r

(◦(p ∧ q) ∨ q) ∨ r
r∨9

◦(p ∧ q) ∨ r, q ∨ r

◦p ∨ r
r∨10

◦(p ∧ q) ∨ r, p ∨ r

◦q ∨ r
r∨11

◦p ∨ r, ◦q ∨ r

◦(p ∧ q) ∨ r
r∨12

◦(p ∧ q) ∨ r

(◦p ∨ ◦q) ∨ r
r∨13

◦p ∨ r, ◦q ∨ r

◦(p ∨ q) ∨ r
r∨14

◦(p ∨ q) ∨ r

(◦p ∨ ◦q) ∨ r
r∨15

◦p ∨ r, p ∨ r

◦(p ∨ q) ∨ r
r∨16

◦q ∨ r, q ∨ r

◦(p ∨ q) ∨ r
r∨17

◦(p ∨ q) ∨ r

(◦p ∨ q) ∨ r
r∨18

◦(p ∨ q) ∨ r

(◦q ∨ p) ∨ r
r∨19

5. Conclusions and Future Work
The logic IS≤ of involutive Stone algebras, well presented and studied in
[Cantú and Figallo 2018], makes use of the operator ∇, which, despite its useful alge-
braic behaviour, lacks a clear logical and philosophical motivation. By exploring the
fact that a perfect operator ◦ can be defined in those logics, we investigated an equiv-
alent presentation of the involutive Stone algebras in terms of the so-called perfect pa-
radefinite algebras, highlighting the character of its logic as being a C-system and a
D-system. We have also presented Hilbert-style deductive systems (in SET-FMLA and
in SET-SET) to extensions of the logics of De Morgan algebras with a perfect operator.
Another perspective, which has not been considered in the present paper, comes from
[Marcelino and Rivieccio 2021], in which the lattice of super-Belnap logics is shown to
be embeddable in the lattice of extensions of IS≤. We envisage using the connection
between IS≤ and PP≤, as we have shown, to study the extensions of PP≤.
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