
Integrating tools to reason about Reo circuits
Mariana Ferreira1, Bruno Lopes1

1Instituto de Computação
Universidade Federal Fluminense (UFF)

Niterói-RJ -– Brazil

ferreira mariana@id.uff.br, bruno@ic.uff.br

Abstract. Critical systems are present in many applications and require high
reliability. However, there are still challenges for the verification and certifi-
cation of these systems. The graphical language Reo is based on coordination
and model the communication of software components. A set of existing tools
offers compilers and reasoners based on proof assistants and model checkers for
Reo-specified systems. This paper proposes the integration of these compilers
through an interface that allows building Reo circuits, converting the model to
the compilers’ input language, simplifying the use of logic tools and allowing
the creation of new channels in addition to the canonical ones. The theory used,
integrated tools, features of interface and some examples are presented.

1. Introduction
Many software was developed for better reuse and componentization, synchronization and
coordination such that these components became important. Regarding critical systems,
automated tests only are not enough to guarantee their reliability and safety. Therefore,
there is a need for methods to formalize and validate these systems, because they need a
high level of reliability.

The Reo coordination language allows the construction of circuits that model these
distributed systems. For graphical editing of a Reo circuit, there is a set of plugins called
The Eclipse Coordination Tools [Arbab et al. 2008]. Although it allows the graphical
representation of the circuit, it does not generate formal models, its focus is on the rep-
resentation and analysis of the circuit. [Grilo et al. 2022] developed a tool to create Reo
circuits and generate code to serve as input for the logical tooling and generate formal
models. However, there are also limitations in [Grilo et al. 2022]: (a) the space for cre-
ating a model is fixed; (b) the interface on smaller screens is compromised; (c) names
of existing nodes are sometimes changed when creating new ones, making it difficult to
read; (d) there is no simple way to add new channels; and (e) to view the result generated
by the logical tools, it is necessary to download a file, which makes it slower to use.

As an alternative to these tools, this project proposes the construction of an in-
terface that integrates logical tools to formalize the circuit. This work consists of the
construction of ReoXplore2, an interface capable of (a) creating Reo models through a
graphical editor; (b) translating the visual model into the corresponding textual code and
vice versa; (c) integrating the logical tooling, using Treo as input, to certify the built
model; (d) allowing the addition of new channels just by importing and reusing the al-
ready created functions; in addition to (e) allowing the download of generated codes for
future use and (f) ensuring the responsiveness of the interface and the canvas to allow the
creation of larger and more complex circuits.

2. Reo
Reo [Arbab 2004] is a graphical language based on coordination with channels for the
modeling and verification of systems. Each channel specifies a coordination pattern on
the components connected by it. The emphasis is on the composition and behavior of
channels, not the entities that communicate and cooperate through them. Without know-
ing the connected software components, the behavior of each Reo channel imposes a
specific coordination pattern on the entities that read and scatter data across channels. So
channels model the protocol between components and, therefore, Reo plays an important
role in the integration of software components.

A Reo model can be defined as a graph of labeled edges, where edges are chan-
nels and nodes are components. Channels in Reo have two endpoints: the source point
that disperses data to the connector and the destination point that accepts data from the
connector’s output. Each connector has a predefined behavior. Some examples are:

• A B Sync: accepts data at the source point if and only if it can disperse
the data at the target point.

• A B LossySync: In essence a Sync that always accepts data at the source
point. If it cannot disperse the data at the target point, then the data is lost.

• A B FIFO: accepts data at the source point and, if it cannot disperse it,
the data is stored in the buffer until it can go to the target point.

• A B Filter: filters the data coming from the source point and only dis-
perses it to the target point if the data passes the filter (a logical condition on the
data); if not, the data is lost.

• A B Transform: transforms the data coming from the source point ac-
cording to a function and disperse its result at the target point.

• A B SyncDrain: has two source points. When data is accepted at one
source point, it is blocked until data arrives at the other source point, then both
data are lost. If the data arrives at the same time, it is lost simultaneously.

• A B AsyncDrain: similar to SyncDrain, but when data is accepted at
one source point, it is lost in the connector immediately, without being blocked.
If data is accepted in the other source point, it’s also lost. If the data arrives at the
same time, it is lost simultaneously.

To express more complex behaviors, it is possible to compose channels. In Fig-
ure 1, there is a circuit that represents a network of security cameras that send data to a
central. Nodes 1, 3 and 4 represent the cameras, node 2 receives the data (the recordings),
and node 5 is the central.

Nodes 1, 3 and 4 send the data to node 2 through the LossySync channel. This
channel indicates that data can be lost along the way, which can occur due to a failure
in internet connection, for example. Then, data successfully received by node 2 is sent
to node 5 via the FIFO channel. The FIFO channel indicates that the data will wait in a
queue and be sent one at a time to node 5.

In addition to the graphical language, there is also a textual syntax for Reo:
Treo [Dokter and Arbab 2018]. Treo allows describing a Reo circuit in written form, in-

Figure 1. Reo circuit of a network of security cameras that send data to a central

dicating each connector and its respective nodes. This textual representation of the circuit
is used to formalize the model afterward.

3. Constraint Automata
Constraint Automata [Baier et al. 2006] is the operating model for Reo proposed by the
creators of Reo. The Reo language by itself does not allow the formalization of models,
only their creation. So, using Constraint Automata as formal semantics for Reo enables
proof assistants and model checkers to understand the Reo model to validate properties
and certify the circuit.

Formally, Constraint Automata is defined as
Definition 1 (Constraint Automata). A Constraint Automaton (CA) is a tuple A =
(Q,Names,→, Q0) where
Q is a finite set of states,
Names is a finite set of port names,
→ : Q× 2Names ×DC × 2Q is the transition relation that from a state Q, a set of ports

and a data constraint (in propositional logic) leads to a set of states, and
Q0 ⊆ Q is a set of initial states.

The circuit of Figure 1 is represented in Constraint Automata as follows: for the
LossySync channel, there is a state with two transitions, the first transition in which the
data passes from node A to node B, its condition is dA = dB, that is, the data from A must
be equal to the data from B. The second transition is when the data is lost.

For the FIFO channel, there are three states and four transitions. The initial state
is q0, if data 0 arrives from A in the buffer, the automaton performs transition to state
p0, if data 0 arrives at node B, the automaton performs the transition back to state q0. If
data 1 arrives from A in the buffer, the automaton performs transition to state p1, if data
1 arrives at node B, the automaton performs the transition back to state q0. This is for a
binary alphabet, bigger alphabets need more states.

Table 1 presents the equivalences between the LossySync and FIFO channels of
Reo and their respective Constraint Automatons.

4. Tools to reason about Reo
In this section, we present the logic tools integrated into this project, the CACoq and
Reo2nuXmv compilers, and also describe the concepts of proof assistants and model
checkers that are necessary to understand the purpose of the compilers.

Table 1. Equivalences between the LossySync and FIFO channels of Reo and
their respective CA

Channel Reo Constraint Automata

LossySync A B
q0 {A,B}

dA = dB
{A}

FIFO A B

q0p1 p0

{A}
dA = 1

{A}
dA = 0

{B}
dB = 1

{B}
dB = 0

4.1. CACoq

CACoq [Grilo et al. 2022] is a compiler responsible for generating Coq1 code from the
Reo circuit written in Treo. Coq is a proof assistant, which is a kind of software to
assist in the development of formal proofs. They provide a formal language for writ-
ing mathematical definitions, algorithms, theorems and also automate routine aspects of
proof construction [Pierce et al. 2018], however, it depends on human interaction for the
non-automatic parts. Thus the demonstration becomes a joint task between humans and
computers.

CACoq allows the formalization of Constraint Automata in Coq in order to ob-
tain an environment for formal verification of a Reo circuit through the corresponding
Constraint Automata. With the Coq certified model, it is possible to reason and proves
properties about the Reo circuit. In addition, CACoq also allows you to extract the cer-
tified code to Haskell, a functional programming language. In this way, it is possible to
guarantee the reliability of the built model and the behavior of the coordinated systems,
thus obtaining the safety that the system behaves as specified.

4.2. Reo2nuXmv

Reo2nuXmv [Grilo et al. 2022] is a compiler responsible for generating nuXmv2 code
from the circuit on Treo. nuXmv is a model checker [Baier and Katoen 2008], which
is a kind of software responsible for automatically checking the correctness of a formal
system. It analyzes all possible states of the given model and verifies whether certain
property is true or not.

As with CACoq, Reo2nuXmv also aims to formalize the Reo circuit through Con-
straint Automata. Reo2nuXmv models each canonical Reo channel for a Constraint Au-
tomata and, represented in a nuXmv MODULE, with its states and transitions. The final
automaton, representing the entire circuit, is then built into a MODULE that uses these
other created MODULEs, and each property check of the Reo model is done by executing
this automaton and checking its states.

1https://coq.inria.fr/
2https://nuxmv.fbk.eu/

https://coq.inria.fr/
https://nuxmv.fbk.eu/

To show a part of the code generated by Reo2nuXmv, here is the formalization
of the first LossySync channel from the Reo circuit of Figure 1. It’s a MODULE whose
value can vary between NULL, 0, or 1. Its current state begins with q0. The automaton
transition happens when the current state is q0, and all ports are NULL, except port 1, then
it goes to the next state that in LossySync is also q0.

1 −−Channel from l i n e 1 on t h e i n p u t f i l e
2 MODULE l o s s y S y n c 1 (t ime , p o r t s)
3 VAR
4 v a r : r e a l ;
5 d a t a : {NULL, 0 , 1} ;
6 c s : {q0 } ;
7 TRANS
8 ((c s = q0 & p o r t s . 2 [t ime] = NULL & p o r t s . 3 [t ime] = NULL & p o r t s . 4 [t ime] = NULL & p o r t s

. 1 [t ime] != NULL) <−> n e x t (c s) = q0) ;

There are two options for generating nuXmv code with Reo2nuXmv. In compact
mode, performance tends to be better in terms of state-space and time to perform the
verification, since the automaton undergoes an operation that minimizes it (to a certain
extent). In components mode, the automaton does not go through any process other than
the translation for each corresponding CA and its interactions, however, if an error occurs
during the verification, it is possible to identify which component is causing the error,
which facilitates and simplifies the correction process.

5. ReoXplore2

This work consists of the integration of these tools through an interface capable of: easily
representing Reo models through a graphical editor; translating the visual model into the
corresponding Treo code and vice versa; integrating the logical tools, using Treo as input,
to certify the built model.

For the development, we used the Javascript programming language, the React.js 3

library to build the interface and the p5.js 4, a library for graphical programming, for the
visual construction of the model. The source code is available at https://github.
com/frame-lab/ReoXplore2. A lightweight version with reduced functionality,
the creation of the graphical model and the translation to Treo, is also available at https:
//frame-lab.github.io/ReoXplore2/.

A flowchart of the functionalities of this work can be found in Figure 2. To model
a Reo circuit, the user has the option of making a graphical input, building the circuit on
the canvas, choosing the desired channels, and clicking on the canvas to create the nodes
with these channels. Another option is for the user to perform the input by writing the
Treo code in the textual area. In this case, the corresponding graphical model of the circuit
is generated from the Treo code and displayed on the canvas. If the input is made through
the graphical interface, then the circuit is modeled and the corresponding Treo code is
automatically generated, being displayed in the textual area, where there is a button to
download the file treo.txt.

After creating the Reo model, it is possible to change the positions of the nodes by
pressing the ‘d’ key on the keyboard, this enables design mode, and the user can drag the

3https://reactjs.org/
4https://p5js.org/

https://github.com/frame-lab/ReoXplore2
https://github.com/frame-lab/ReoXplore2
https://frame-lab.github.io/ReoXplore2/
https://frame-lab.github.io/ReoXplore2/
https://reactjs.org/
https://p5js.org/

Figure 2. Flowchart of the functionalities

nodes with the mouse to change their position. Then, the key ‘s’ saves the new positions
and exits the design mode. Another important feature of graphic modeling is the resizing
of the canvas, as it allows you to create circuits of larger sizes. The user can do it by
dragging the mouse in the lower right corner of the canvas, which resizes the canvas both
horizontally and vertically. And in order not to compromise usability, a scrollbar is added
when the canvas’ size becomes too big. Furthermore, the graphical construction of Reo
channels was developed in a modularized way to allow the addition of new channels just
by importing and reusing the already created functions: line, triangle and center.

Figure 3 shows a visual model of a Reo circuit on the left and the Treo auto-
matically generated on the right. The first lines of the Treo are comments that indi-
cate the positions of the nodes. The other lines are the code that demonstrates each
channel that connects each pair of nodes. The visual model parser for Treo works as
follows: With each update in the graph construction by the canvas, the parser goes
through the list of objects of the created channels, and for each connector, it cre-
ates a string with the name of that channel followed by parentheses with the nodes
that are being connected, like this: channel.channelMode(startNode.label,
endNode.label) and concatenates with the result of the next channel. For each node
of a channel, the parser creates a string to save the position of the nodes, like this: #
node.label (node.x, node.y). In the end, everything is concatenated into a
single string and, thus, the visual model is transformed into Treo language text. This code
is sent as input to the integrated compilers.

Once finished with the modeling, there are four options for formalizing the cir-
cuit: generating the model in Coq, generating the Haskell code, generating the nuXmv
code in components mode or compact mode. When the user clicks one of these buttons,
the interface makes a call and sends the Treo code to the local server. The server identifies
the option selected by the user, writes the content of the Treo in a file called input.txt
located in the corresponding compiler folder (previously installed) and runs the compiler.

Figure 3. Treo generated from the visual model

The compiler, CACoq or Reo2nuXmv, reads the Treo and compiles it to the desired lan-
guage, Coq, Haskell, nuXmv components or nuXmv compact, and then writes the result
to an output file. The server reads that output file and responds the result back to the
interface that displays it on the screen.

Figure 4 shows the interface, on the left are the options that the user can choose
to compile the created Reo circuit, and on the right, the result code of CACoq compiler
applied to the circuit of Figure 3. As with the Treo code, the user can download this code,
which allows the later verification of properties or formal demonstrations of the model
using proof assistants or model checkers.

Figure 4. Coq model generated from the Treo code using CACoq compiler

6. Conclusion and further work
In this work, we developed ReoXplore2, a tool to create Reo circuits and their integration
with two others, CACoq and Reo2nuXmv. By using ReoXplore2, the user can create
Reo circuits in a simple way, drawing a diagram that represents the circuit graph and
translating to the corresponding Treo code automatically. The user can also make changes
to the Treo code, which update the graph diagram instantly. Furthermore, the graphical
construction of Reo channels was developed in a modularized way to allow the addition
of new channels just by importing and reusing the already created functions. Finally, as
ReoXplore2 integrates CACoq and Reo2nuXmv, it also works as an interface for using
these two tools which allow the user to get the compiled code in Coq, nuXmv, or Haskell
languages.

As further work, we can develop it in the following directions: (a) creation of
a new functionality to integrate tdsReplLanguage [Torres and Lopes 2020], a high-level
language used to represent timed data streams for Reo channels; (b) inclusion of the
function of removing a node from the graph and its respective channels in the circuit
construction visual module; and (c) extension of the lightweight version of the interface to
provide all the functionality, for this it will be necessary to deploy the backend application
and adapt the frontend, this will greatly facilitate its use, as no installation would be
necessary, just a browser with internet to use the interface.

References
Arbab, F. (2004). Reo: a channel-based coordination model for component composition.

Mathematical structures in computer science, 14(3):329–366.

Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.-J., and Proença, J. (2008). Modeling,
testing and executing reo connectors with the eclipse coordination tools. Tool demo
session at FACS, 8.

Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT press.

Baier, C., Sirjani, M., Arbab, F., and Rutten, J. (2006). Modeling component connectors
in reo by constraint automata. Science of computer programming, 61(2):75–113.

Dokter, K. and Arbab, F. (2018). Treo: Textual syntax for Reo connectors. arXiv preprint
arXiv:1806.09852.

Grilo, E., Toledo, D., and Lopes, B. (2022). A logical framework to reason about Reo
circuits. Journal of Applied Logics - IFColog Journal of Logic and Their Applications,
9:199–254.

Pierce, B., de Amorim, A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C.,
Sjöberg, V., and Yorgey, B. (2018). Software Foundations volume 1: Logical founda-
tions.

Torres, M. A. and Lopes, B. (2020). Verificação de modelos com streams de dados sobre
conectores reo. In Anais do I Workshop Brasileiro de Lógica, pages 9–16.

	Introduction
	Reo
	Constraint Automata
	Tools to reason about Reo
	CACoq
	Reo2nuXmv

	ReoXplore2
	Conclusion and further work

