
Coq Formalization of a Tableau for the Classical-Intuitionistic
Propositional Fragment of Ecumenical Logic

Renato R. Leme1, Giorgio Venturi1, Bruno Lopes2

1Instituto de Filosofia e Ciências Humanas
Universidade Estadual de Campinas (UNICAMP)

Campinas, SP – Brazil

2Instituto de Computação
Universidade Federal Fluminense (UFF)

Niterói, RJ – Brazil

{rntreisleme,gio.venturi}@gmail.com, bruno@ic.uff.br

Abstract. In this paper, we describe a tableau system for reasoning about ec-
umenical propositional logic, and introduce the central definitions of its imple-
mentation in the Coq proof assistant.

1. Introduction
Ecumenical logic studies the notion of logical consequence from the perspective of a
neutral observer. From this point of view, one can argue about logical relations be-
tween propositions of two (or more) different logic systems. The idea of such a sys-
tem goes back to the nineties, with the work of Krauss [Krauss 1992], but only re-
cently its proof theory has been reviewed and received new advances. Notably, after
Prawitz, in [Pereira and Rodriguez 2017], the semantics for ecumenical logic was for-
mulated in terms of Kripke models, and the normalization of the correspondent natu-
ral deduction system was proved. Following Pereira’s work, sequent calculi were pro-
posed [Pimentel et al. 2021].

To illustrate how one could reason about ecumenical propositions, consider, for a
moment, the following symbols: p→ q. If two logicians (one classical and the other intu-
itionistic) intend to read that as a proposition, they should first agree with the meaning of
→ (or, at least, agree to disagree!), as it means different things if they read the implication
as a classical logician or as an intuitionistic. However, if they assume that the implication
is intuitionistic, then both could be confident (either as an intuitionistic or as a classical
logician) that the very same implication holds classically.

This fact could be symbolized in ecumenical logic as theorems (1) and (2):

(p→i q) →i (p→c q) (1)
(p→i q) →c (p→c q) (2)

To make it possible to reason about derivability interaction between such different
systems, classical and intuitionistic logicians agree to share the semantics of the con-
junction, negation, and bottom in the ecumenical environment. Those are called neutral

operators. With that setup, classical operators are then recovered in semantic level, creat-
ing an environment in which peace would finally reign. Based on [Pimentel et al. 2021],
we formulate a tableau system for the propositional fragment of ecumenical logic and
implemented it on Coq. The overall structure of the paper goes as follows: in Section 2,
we review the notation and central definitions of ecumenical environment, in Section 3
we define the system TEpci and introduce the rules of the tableau, and in Section 4 we
present the central definitions of its implementation on Coq.

2. The language

2.1. Syntax

The language of ecumenical propositional logic comprehends a set Z of atomic formulas
in addition with the logical symbols ¬,∧,∨i,∨c,→i,→c,⊥ and the non-logical symbols
(,). The grammar goes inductively as follows

1. Every atomic formula is an ecumenical formula;
2. If φ and ψ are ecumenical formulas, then ¬φ, φ∧ ψ, φ∨i ψ, φ∨c ψ, φ→i ψ and
φ→c ψ are ecumenical formulas.

2.2. Semantics

The semantic for ecumenical logic, proposed by Prawitz and followed
by [Pereira and Rodriguez 2017], is intuitionistic. In terms of Kripke semantics, it
is like in each possible world one could make use of classical axioms, even though the
universe (understood as the set of worlds with its relations) would remain intuitionistic.
On one hand, one could think about that as a systematic way to provide an intuitionistic
framework where classical logicians could work without giving up their principles. On
the other hand, on the intuitionistic side, one could think of ecumenism as a way to use
classical inferences without sacrificing constructability.

A Kripke frame is a partially ordered set (poset) ⟨M,≤⟩ equipped with a
valuation function V : Z → P(M). A valuation is intuitionistic if it respects persistency:
if ω ∈ V (p) and ω ≤ ω′ then ω′ ∈ V (p). A poset equipped with an intuitionistic
valuation and whose ≤ is reflexive and transitive is an intuitionistic Kripke frame.

Definition 1. Ecumenical Kripke Model. An Ecumenical Kripke Model EKM is a pair
⟨W , V ⟩ such that W = ⟨M,≤⟩ is an intuitionistic Kripke frame where V is its corre-
sponding intuitionistic valuation.

Finally, ecumenical entailment ⊩ is defined as follows.

M, ω ⊮ ⊥
M, ω ⊩ p ⇔ ω ∈ V (p)
M, ω ⊩ ¬ψ ⇔ ∀v ∈ M such that ω ≤ v : v ⊮ ψ
M, ω ⊩ φ ∧ ψ ⇔ ω ⊩ φ and ω ⊩ ψ
M, ω ⊩ φ ∨i ψ ⇔ ω ⊩ φ or ω ⊩ ψ
M, ω ⊩ φ ∨c ψ ⇔ ω ⊩ ¬(¬φ ∧ ¬ψ)
M, ω ⊩ φ→i ψ ⇔ ∀v ∈ M such that ω ≤ v : v ⊩ φ implies v ⊩ ψ
M, ω ⊩ φ→c ψ ⇔ ω ⊩ ¬(φ ∧ ¬ψ)

If M, ω ⊩ φ is the case, then we will say that ω satisfies φ in M, or simply
that φ is satisfiable, or ω ⊩ φ whenever the context is clear enough. As an important
consequence of persistency, the entailment relation is monotonic, i.e, if ω ⊩ p and ω ≤ ω′

then ω′ ⊩ p.
Definition 2. A formula φ is an ecumenical consequence of a set of formulas Γ if, and
only if, there is no ecumenical Kripke model K which entails every formula of Γ and does
not entail φ. We will represent this relation as Γ ⊩ φ and use ⊩ φ when Γ = ∅.

To illustrate model construction, let’s show that this simple one-dot model

ω ∈ V (p)

ω

satisfies the arbitrary atomic instance of tertium non datur: p ∨c ¬p.

First, notice that, if ω ⊩ p ∨c ¬p, then ω ⊩ ¬(¬p ∧ ¬(¬p)). But, if that is the
case, then, for every ν such that ω ≤ ν, ν ⊮ ¬p ∧ ¬(¬p). Well, the only ν in our model
is ω itself. Then, we have to show that ω ⊮ ¬p ∧ ¬(¬p), which means that ω ⊮ ¬p or
ω ⊮ ¬(¬p). Conveniently, let’s choose the left side. Thus, we have to show that

ω ⊮ ¬p

i.e, exists a ν such that ω ≤ ν and ν ⊩ p. It is sufficient to observe that ω ∈ V (p)
and then, by definition, ω ⊩ p.

3. The deductive system

The Ecumenical tableau system TEpci is based on the ecumenical sequent system
LEci [Pimentel et al. 2021]. The rule for intuitionistic implication is the same as pro-
posed by Fitting [Fitting 2013], according to which, if one finds a node Fφ →i ψ, one
can add both Tφ and Fψ, but first, they have to delete every F signed formula on that
branch.

3.1. Basic definitions

1. A signed formula is an ecumenical proposition prefixed with T or F ;
2. A node w is a signed formula;
3. The root of a chain C is a node w of C such that, for every w1 of C, if w1 ≤ w

then w1 = w;
4. A branch B is a chain of nodes with a root;
5. If S is a branch, then ST is a subset of S with only T -signed formulas.

Definition 3. A tree τ is a set of branches such that for every Bn, Bm ∈ τ , if r1 is the root
of Bn and r2 is the root of Bm, then r1 = r2.
Definition 4. A branch S is closed if, and only if, for an atomic p, both Tp ∈ S and
Fp ∈ S or ⊥ ∈ S.

In our definitions, α ∥ β denotes a choice between α and β. This choice is con-
current, but not exclusive: one can choose between α and β and then come back, later, to
choose the other side, if necessary.

Now, it will be necessary to turn back and review our decision only if we fail to
close the tree, which means that our choice has produced at least one open branch. In
this case, we know that we made the wrong choice. In this situation, the tableau system
allows the computer to come back to the point that it made that decision, review it, and
attempt to close the tree again via a different road. In this process, we will say that a
“bad” choice, which produces at least one open branch, is obliterated concerning closure.
With that in mind, we define a version of closure that does not consider obliterated
branches to decide if the tree is closed or not. According to the definition below, to know
that one of the two branches is not obliterated is a sufficient and necessary condition to
conclude that the sub-tree below α ∥ β is closed.

Definition 5. A tree τ is closed if, and only if, every non-obliterated branch is closed.

For this definition, we consider that all rules (except for the special β) produces
only non-obliterated branches. In what follows, we introduce the rules for the system. We
have chosen to keep, as much as possible, Fitting style for defining tableaux.

3.2. The system TEpci

Regular α rules

S, T (¬ψ)
S, Fψ

S, T (φ ∧ ψ)
S, Tφ, Tψ

S, F (φ→c ψ)

S, Tφ, T (¬ψ)
S, F (φ ∨c ψ)

S, T (¬φ), T (¬ψ)

Regular β rules

S, F (φ ∧ ψ)
S, Fφ | S, Fψ

S, T (φ→i ψ)

S, Fφ | S, Tψ
S, T (φ ∨i ψ)

S, Tφ | S, Tψ

S, T (φ→c ψ)

S, Fφ | S, F (¬ψ)
S, T (φ ∨c ψ)

S, F (¬φ) | S, F (¬ψ)

Special rules

Special α

S, F (¬ψ)
ST , Tψ

Special α

S, F (φ→i ψ)

ST , Tφ, Fψ

Special β

S, F (φ ∨i ψ)

S, Fφ ∥ S, Fψ

3.3. Examples
Let’s take a look at an example. The first tree below is the complete tableau for F (P ∨c

¬P). The labels were added to make it easier to understand the behavior of the tree. They
are generated automatically by our implementation and represents a relation between two
nodes: (m,n) means that the node m is an expansion of node n. One can check that the
first tree closes because of nodes 7 and 47, whereas the last two exemplify the application
of the special β rule in an attempt to close F (P ∨i ¬P), which, as one can expect, fails
for both possibilities.

(0, 0)
F (P ∨c ¬ P)

(1, 0)
T ¬ P

(2, 0)
T ¬ ¬ P

(7, 1)
F P

(18, 2)
F ¬ P

(47, 18)
T P

END

(0, 0)
F (P ∨i ¬ P)

(1, 0)
F P

END

(0, 0)
F (P ∨i ¬ P)

(1, 0)
F ¬ P

(3, 1)
T P

END

4. Coq implementation
From now on, we present the central definitions of our implementation of TEpci on Coq.
The structure of the tree is a bit complex in virtue of the need to keep track of the history
of node expansion. A checkpoint is created after each expansion of a special β rule, and a
metabranch store information about the expansion of special α ones.

Inductive logicalFormula : Set :=
| Atom : string → logicalFormula
| Neg : logicalFormula → logicalFormula
| And : (logicalFormula × logicalFormula) → logicalFormula
| iOr : (logicalFormula × logicalFormula) → logicalFormula
| cOr : (logicalFormula × logicalFormula) → logicalFormula
| iImp : (logicalFormula × logicalFormula) → logicalFormula
| cImp : (logicalFormula × logicalFormula) → logicalFormula.

Inductive node : Type :=
| Empty : node
| Node : bool → logicalFormula → node.

Inductive tree : Type :=
| Root : tree
| Leaf : tree
| Unary : tree → tree → (bool × (Z×Z) × bool × node) → tree → tree
| Alpha : tree → tree → ((bool × (Z×Z) × bool × node) × (bool × (Z×Z) × bool ×
node)) → tree → tree
| Beta : (tree × tree × (bool × (Z×Z) × bool × node) × tree) → (tree × tree × (bool ×
(Z×Z) × bool × node) × tree) → tree.

Inductive checkpoint : Type := Checkpoint : Z → tree → checkpoint.

Inductive state : Type := State : tree → list checkpoint → bool → state.

Inductive pair : Type := ZZ : (Z × Z) → pair.

Inductive metabranch : Type := Metabranch : tree → Z → metabranch.

4.1. Notational conventions

Notation “[A]” := (Atom A) (at level 50).
Notation “∼ A” := (Neg A).
Notation “A ∧ B” := (And (A, B)).
Notation “A ∨i B” := (iOr (A, B)) (at level 100).
Notation “A ∨c B” := (cOr (A, B)) (at level 100).
Notation “A →i B” := (iImp (A, B)) (at level 90).
Notation “A →c B” := (cImp (A, B)) (at level 90).

We omit function definitions of tree expanding rules1.

4.2. Closure

In order to make closure function cleaner, the tableau tree is previously converted into
a list of branches. The following functions presupposes that this procedure was already
done.

Open Scope string scope.

Definition neg := “∼”.

Definition contradiction (P Q : string) :=
if eqb P (append neg Q) then true
else if eqb Q (append neg P) then true

else false.

Definition nodeToString (n : node) :=
match n with

Empty ⇒ EmptyString
| Node t op ⇒

match op with
[P] ⇒ if t then P else (append neg P)

| ⇒ EmptyString

1The complete implementation can be found on GitHub: https://github.com/renatoleme/
TEpci_Coq .

https://github.com/renatoleme/TEpci_Coq
https://github.com/renatoleme/TEpci_Coq

end
end.

Special α rules demand that the closure algorithm ignores F signed formulas
above them. We use the notion of meta branch to store the information that such a branch
occurs in the tree. When a special α formula in a node x is expanded, we store the infor-
mation according to which that branch has a special formula at node x in a meta branch.
Here, this information is used to decide if a tree with such branches is closed or not, i.e,
if it is closed modulo deleted F signed formulas. If a tree is meta closed, then it is closed
in the sense of Definition 5.

Fixpoint meta cmp (n : node) (branch : tree) (tag : Z) :=
match branch with
| (Root | Leaf | Alpha | Beta) ⇒ false
| Unary hT pT (, (ptag, ctag), t, r) nT ⇒

if andb (Z.gtb tag ctag) (negb t) then
orb (meta cmp n pT tag) (meta cmp n nT tag)

else
orb (orb (contradiction (nodeToString n) (nodeToString r)) (meta cmp n pT

tag)) (meta cmp n nT tag)
end.

Fixpoint isBranchMetaClosed (branch : tree) (tag : Z) :=
match branch with
| (Root | Leaf | Alpha | Beta) ⇒ false
| Unary hT pT (, (ptag, ctag), t, r) nT ⇒

orb (meta cmp r nT tag) (orb (orb (meta cmp r pT tag) (isBranchMetaClosed pT
tag)) (isBranchMetaClosed nT tag))
end.

Fixpoint isMetaClosed (l : list metabranch) :=
match l with
| nil ⇒ true
| h::tl ⇒

let branch := getBranchFromMeta h in
let tag := getInfoFromMeta h in
andb (isBranchMetaClosed branch tag) (isMetaClosed tl)

end.

4.3. Usage example

First of all, we define our atomic propositions as strings. Then, we use some auxiliary
functions to setup the initial tree. Finally, we construct the tree for F ((P →c Q) →c

P) →c P and F ((P →i Q) →i P) →i P and prove via reflexivity that isMetaClosed
evaluates to true in the first case but, as one would expect, evaluates to false in the second.

Definition P := “P”.
Definition Q := “Q”.

Definition peirce c :=
makeInitialTree

Root ((Node false ((([P] →c [Q]) →c [P]) →c [P]))::nil).
Definition peirce i :=

makeInitialTree
Root ((Node false ((([P] →i [Q]) →i [P]) →i [P]))::nil).

Definition paths peirce c :=
genPaths (upto 100) (pop (computeTableau peirce c)).

Definition paths peirce i :=
genPaths (upto 100) (pop (computeTableau peirce i)).

Example peirce c theorem :
isMetaClosed (postCheck paths peirce c) = true.

Proof.
reflexivity.

Qed.

Example peirce i not theorem :
isMetaClosed (postCheck paths peirce i) = false.

Proof.
reflexivity.

Qed.

5. Conclusion
In this paper, we have presented the tableau for ecumenical propositional logic, as well
central aspects of our implementation of it. In future works, we intend to present the cor-
respondent soundness and completeness proofs of the system, extend our rules to include
predicate calculus, and expand the system to embrace further developments of ecumenical
logic, such as ecumenical modalities.

6. Acknowledgments
The first author thanks the generous support of FAPESP, via grant 21/01025-3, São Paulo
Research Foundation (FAPESP), through which this work is being possible. We would
also like to thank the reviewers for their thoughtful comments and efforts towards improv-
ing our manuscript.

References
Fitting, M. (2013). Proof methods for modal and intuitionistic logics, volume 169.

Springer Science & Business Media.

Krauss, P. (1992). A constructive refinement of classical logic.

Pereira, L. C. and Rodriguez, R. O. (2017). Normalization, soundness and completeness
for the propositional fragment of prawitz’ecumenical system. Revista Portuguesa de
Filosofia, 73(3):1153–1168. Publisher: JSTOR.

Pimentel, E., Pereira, L. C., and de Paiva, V. (2021). An ecumenical notion of entailment.
Synthese, 198(22):5391–5413.

	Introduction
	The language
	Syntax
	Semantics

	The deductive system
	Basic definitions
	The system TEpci
	Examples

	Coq implementation
	Notational conventions
	Closure
	Usage example

	Conclusion
	Acknowledgments

