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Abstract. The variety of quasi-N4-lattices (QN4) was recently introduced as a
non-involutive generalization of N4-lattices (algebraic models of Nelson’s para-
consistent logic). While research on these algebras is still at a preliminary stage,
we know that QN4 is an arithmetical variety which possesses a ternary as well
as a quaternary deductive term, enjoys equationally definable principal con-
gruences and the strong congruence extension property. We furthermore have
recently introduced an algebraizable logic having QN4 as its equivalent seman-
tics. In this contribution we report on the results obtained so far on this class of
algebras and on its logical counterpart.

1. Introduction

Nelson’s constructive logic with strong negation [Nelson 1949] and its non-explosive
counterpart, Nelson’s paraconsistent logic [Almukdad and Nelson 1984] are two promi-
nent non-classical logics whose algebraic models (resp. Nelson algebras and N4-lattices)
have been extensively investigated [Sendlewski 1990, Odintsov 2003, Odintsov 2004,
Spinks and Veroff 2018]. A recent series of papers introduced and investigated the class
of quasi-Nelson algebras (a subvariety of commutative integral bounded residuated lat-
tices) as a non-involutive generalization of Nelson algebras [Rivieccio and Spinks 2021];
the corresponding logic was axiomatized in [Liang and Nascimento 2019]. A simi-
lar abstraction was applied to the class of N4-lattices in [Rivieccio 2022], intro-
ducing the class of quasi-N4-lattices (i.e. non-involutive N4-lattices, or non-integral
quasi-Nelson algebras); the corresponding logic is defined and shown to be algebrai-
zable in [Lima Neto et al. 2022]. While the papers [Rivieccio 2020, Rivieccio 2021,
Rivieccio and Spinks 2021, Rivieccio and Jansana 2021] already constitute, in our opi-
nion, sufficient evidence for motivating the intrinsic interest in quasi-Nelson algebras, it
remains to be seen to which extent the structure theory of the latter can be extended to
the setting of quasi-N4-lattices. In this contribution we report on our current knowledge
about these algebras and indicate some topics that appear to deserve further investigation.

2. Quasi-N4-lattices

As mentioned earlier, the models of Nelson’s paraconsistent logic (N4-lattices, N4) are a
class of lattices that further possess an “intuitionistic-like” implication (—) and a “strong”
negation (~) satisfying the De Morgan laws and the double negation identity (~ ~ = ~ ).
Among N4-lattices, the models of Nelson’s (explosive) logic (Nelson algebras, N) are
precisely those that satisfy the identity + — x ~ y — y. A class of non-necessarily



involutive Nelson algebras has been recently introduced under the name of quasi-Nelson
algebras (QN), and Nelson algebras are precisely the quasi-Nelson algebras that satisfy
the double negation identity. By applying a similar abstraction process to N4-lattices, one
obtains non-necessarily involutive N4-lattices or quasi-N4-lattices (QN4): among them,
the quasi-Nelson algebras are precisely those that satisfy the identity x — = ~ y — v,
and the N4-lattices are precisely those that satisfy the double negation identity. We thus
have the following inclusions (all proper): N C N4 C QN4, N C QN C QN4. It is clear
that N = QNN N4, and an argument can be made to show that the variety generated by the
class QN U N4 is properly contained in QN4 (see [Rivieccio and Jansana 2021, Sect. 3.1]
and [Rivieccio 2022, Example 2.6]); we do not currently have an equational presentation
for this variety.

In this section we present two equivalent presentations for quasi-N4-lattices; a
corresponding (algebraizable) logic Lgns will be introduced in Section 3.

A Brouwerian algebra is an algebra B = (B; A, V,—) such that (B; A, V) is a
lattice with order < and — is the residuum of A, thatis, a A b < ciff a < b — ¢, for
all a, b, c € B. Brouwerian algebras are precisely the bottom-free subreducts of Heyting
algebras, the algebraic counterpart of intuitionistic logic. Given a Brouwerian algebra
B = (B;A,V,—), we say that a unary operator (] : B — B is a nucleus if, for all
a,b € B, we have (i) O(a A b) = Oa A 0b and (ii) a < Oa = OOa. We shall refer
to an algebra B = (B;A,V,—,0) as a nuclear Brouwerian algebra [Rivieccio 2022,
Def. 2.1].

Definition 1 ([Rivieccio 2022], Def. 2.2). Let B = (B; A, V, —, J) be a nuclear Brouwe-
rian algebra. The algebra B™ = (B x B;A,V,—,~) is defined as follows. For all
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A quasi-N4 twist-structure A over B is a subalgebra of B™ satisfying the following pro-

perties: m1[A] = B and Oay = ay for all (ay, as) € A, where m; denote the first projection
function.

The preceding definition provides a ‘“concrete” way of producing examples of
quasi-N4-lattices (see e.g. [Rivieccio 2022, Example 2.6]). In fact, as we shall see (Theo-
rem 1), all quasi-N4-lattices may be obtained in this way.

Given an algebra A having an operation — and elements a,b € A, we abbre-
viate |a| := @ — a, and define the relations = and < as follows. We let a < b iff
a— b= |a — b|,and =:==< N(=X)~. Thus one has a = biff (¢ < band b < a).

Definition 2 ([Rivieccio 2022], Def. 3.2). A quasi-N4-lattice (QN4-lattice) is an algebra
A = (AN, V,—, ~) of type (2,2,2, 1) satisfying the following properties:

(QN4a) The reduct (A; A, V) is a distributive lattice with lattice order <.



(QN4b) The relation = is a congruence on the reduct (A; A,V,—) and the quotient
B(A) = (A;A,V,—)/= is a Brouwerian algebra. Moreover, the operator []
given by [a] := ~~a/=forall a € A is a nucleus, so the algebra (B(A), ) is
a nuclear Brouwerian algebra.

(QN4c) Forall a,b € A, itholdsthata < biffa <band ~b <X ~a.

(QN4d) For all a,b € A, it holds that ~(a — b) = ~~(a A ~D).

(QN4e) Forall a,b € A,

(QN4e.1) a < ~~a.

(QN4e.2) ~a = ~~~a.

(QN4e.3) ~(aVb) =~a A ~b.

(QNded) ~~aN~~b=r~~(aAD).

The preceding definition is a straightforward generalization of Odintsov’s defini-
tion of N4-lattices [Odintsov 2003]; indeed, a quasi-N4-lattice A is an N4-lattice if and

only if A is involutive, that is, ~ ~a < a for all a € A [Rivieccio 2022, Prop. 3.8].

Theorem 1 ([Rivieccio 2022], Thm. 3.3). Every quasi-N4-lattice A is isomorphic to a
twist-structure over (B(A),0) by themap ¢ : A — A/= x A/= given, for all a € A, by
ta):={a/=,~a/=).

The non-equational presentation of QN4-lattices given in Definition 2 can be
replaced with an equational one, entailing that QN4-lattices form a variety of algebras.

Proposition 1 ([Rivieccio 2022], Prop. 3.7). Items (QN4b) and (QN4c) in Definition 2
can be equivalently replaced by the following identities:

p—
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3. The logic of Quasi-N4-lattices

In this section we look at the logical counterpart of Quasi-N4-lattices, which is the logic
Lqna introduced via a Hilbert-style calculus in [Lima Neto et al. 2022].

Fix a denumerable set P of propositional variables, and let p € P. The language
of Lqny is defined recursively as follows:

az=p| ~a|(aha)|(aVa)|(a—a)

To simplify the notation, we shall henceforth omit the outmost parenthesis. We
use Fp to denote the set of all formulas. A logic is defined as a finitary and substitution-
invariant consequence relation FC o(Fp) x Fp determined by a Hilbert-style calculus in
the usual way. The calculus for Lqna consists of the following axiom schemes together
with the single inference rule of modus ponens (MP): p,p — q F q.



Ax1l  p— (¢ —p)
Ax2 (

Ax3  (pAq)—p
Ax4 (

Ax5 (

Ax6  p—(pVyq)

AT  q—(pVa)

Ax8 (p—=r)—=((g—=r)—=((pVe —1))
Ax9  ~(pVq) & (~pA~q)

Ax10  ~(p—q) < ~~(pA~q)

Ax11  ~(pA(gA7r)) < ~((pAq)AT)
Ax12  ~(pA(qgVr)) < ~((pAg)V(pAT))
Ax13  ~(pV(gAT)) < ~((pVa A(pVr))

Ax14  ~~(pAg) < (~~pA~rg)

Ax15 p—>~~p

Ax16  p— (~p— ~(p—p))

Ax17  (p—q) = (~~p— ~~q)

Ax18 ~p—~(pAq)

Ax19  ~(pAq) = ~(qAD)

Ax20  (~p—~q) = (~(pAg) = ~q)

Ax21  (~p—~q) = ((vr— ~s) = (~(pAT) = ~(gAs)))
Ax22 ~~~p—~p.

Recall that Ax1-Ax8 (together with modus ponens) constitute an axiomatization
of the negation-free fragment of intuitionistic logic. In consequence, Lqna enjoys the
classical Deduction Theorem: I', o = (5 is equivalent to I' - o« — £.

For an algebraizable logic L [Font 2016, Def. 3.11], we say that L is finitely
algebraizable when the set of equivalence formulas is finite, and we say that L is BP-
algebraizable when L is finitely algebraizable and the set of defining identities is finite.
Let us abbreviate t = y := (x — y) A (~y = ~z)andz < y := (v = y) A (y = ).
The following result is an easy rephrasing of [Lima Neto et al. 2022, Thm. 4].

Theorem 2. L, is BP-algebraizable with defining identity F(«) := a ~ || and
equivalence formula A(«, ) = o < (.

By Theorem 2, we can obtain an axiomatization of the equivalent quasi-variety
semantics Alg"(Lqn4) of Lgng as follows.

Definition 3. An Alg*(Lqn4)-algebra is a structure A = (A4; A, V, —, ~) which satisfies
the following identities and quasi-identities:

1. o =~ |a| for each axiom o of Lqns.
2. rerr|re x|
3. 2 &y~ |r < y|implies z ~ y.
4. r =~ |z|and x — y ~ |z — y| implies y ~ |y|.
As showed in [Lima Neto et al. 2022, Cor. 1], the class of algebras introduced

in Definition 3 coincides with the variety of QN4-lattices (Definition 2), that is,
Alg*<LQN4) = QN4



4. Filters and congruence properties

In this section we look at filters of QN4-lattices and state a number of congruence-
theoretic properties of this class of algebras; some of them are immediate conse-
quences of the above-mentioned algebraizability result, but all are also proven directly
in [Rivieccio 2022].

Recall that a filter of a Brouwerian algebra B is a (non-empty) lattice filter of
the underlying lattice or, equivalently, a set /' C B that is non-empty and closed under
modus ponens, meaning that a,a — b € F'entail b € F' for all a,b € B. The (po)set
of all filters of a Brouwerian algebra B will be denoted by F'i(B). Similarly, given a
quasi-N4-lattice A and F' C A, we shall say that F is an (implicative) filter if (i) |a| € F
for all @ € A, and (ii) F is closed under modus ponens (if a,a — b € A, then b € F', for
all a,b € A). The (po)set of all filters of a quasi-N4-lattice A is denoted by F'i(A).

Theorem 3 ([Rivieccio 2022], Thm. 4.2). For every QN4-lattice A < B™, the first-
coordinate projection map 7; is a complete order isomorphism between F'i(A) and
Fi(B).

Given a QN4-lattice A and a congruence § € Con(A), we define Iy :={a € A:
(a,|a|) € 6}. Conversely, for each F' € Fi(A), we let:

Op :={{a,b) e Ax A:a<be F}.

Theorem 4 ([Rivieccio 2022], Thm. 4.4). The maps given by § — Fp and F' — Op
establish a complete order isomorphism between F'i(A) and Con(A).

It is well known that the nucleus does not alter the congruences of a Brouwerian
algebra [Rivieccio 2022, Lemma 4.6]; thus we have the following result.

Corollary 1 ([Rivieccio 2022], Cor. 4.6). Let A < B™ be a quasi-N4-lattice, where
B = (B,A,V,—,0). Then Con(A) = Con(B) = Con({B,\,V,—)).

For the unexplained wuniversal algebraic terms employed Dbelow,
see [Burris and Sankappanavar 2012].

Corollary 2 ([Rivieccio 2022], Cor. 4.13). Let A < B™ be a quasi-N4-lattice, where
B = (B, A, V,—,0). The following are equivalent:

1. A is directly indecomposable (resp., subdirectly irreducible, simple).
2. (B, A\, V,—) is a directly indecomposable (resp., subdirectly irreducible, simple)
Brouwerian algebra.

The variety of QN4-lattices possesses a ternary deduction term and a quaternary
deductive term in the sense of [Blok and Pigozzi 1994], as well as a Maltsev term wit-
nessing congruence-permutability. This entails that quasi-N4-lattices enjoy equationally
definable principal congruences and the strong version of the congruence extension
property considered in [Blok and Pigozzi 1994, Def. 2.10].

Theorem 5 ([Rivieccio 2022], Thm. 4.9). ¢(z,y, 2) := (v < y) — z is a commutative
ternary deduction term for QN4 in the sense of [Blok and Pigozzi 1994].



Applying Theorem 5, we note that, for every quasi-N4-lattice A, the principal
congruence generated by elements a, b € A is given by:

0(a,b) = {{c,d) : (a & b) = c=(a < b) — d}.

Theorem 6 ([Rivieccio 2022], Thm. 4.10). QN4 is congruence-permutable with Maltsev
term:
p(@,y,2) = (((z = y) Alz]) = 2) A((z = y) Alz]) = ).

As a variety of enriched lattices, quasi-N4-lattices are obviously congruence-
distributive. Thus, the preceding theorem extends the result of [Spinks and Veroff 2018,
Cor. 4.25] to our non-involutive setting.

Corollary 3 ([Rivieccio 2022], Cor. 4.11). QN4 is arithmetical.
Corollary 4 ([Rivieccio 2022], Cor. 4.12). QN4 has a quaternary deductive term:

t(x,y, z,w) = plq(z,y,2), ¢(z,y,w),w),

where p(z,y,2) = (((z = y) Alz]) = 2) A((z = y) Alz]) = 2) and ¢(z,y, 2) =
(x & y) — =

5. Ongoing and future research

As mentioned earlier, research on quasi-N4-lattices is necessarily at a preliminary stage,
and only time will tell to what extent further investigations on this and related classes
of algebras will prove fruitful. We mention below a few directions that appear to be of
obvious interest.

Refining the twist construction. By Theorem 1, we know that we can identify
an arbitrary quasi-N4-lattice A with a subalgebra of B™ for some nuclear Brouwerian
algebra B. This establishes a correspondence (which may be rephrased as an adjunction
between suitably defined categories) between each nuclear Brouwerian algebra B and the
family of quasi-N4-lattices that canonically embed into B.

As shown in [Rivieccio 2022, Prop. 2.5], two further parameters V and A (respec-
tively, a lattice filter and an ideal of B) are sufficient to uniquely determine a twist-algebra
having the following set as underlying universe:

Tw(B,V,A) :={{a1,a3) € BX B:ay=0as, a1 Vas €V, a; ANay € A}.

We thus have a one-to-one correspondence between triples (B, V,A) and quasi-N4-
lattices, but we do not currently know whether every quasi-N4-lattice arises in this way.
If the latter was true, then the correspondence would yield an equivalence between the al-
gebraic category of quasi-N4-lattices and a category having as objects triples (B, V, A);
this is indeed known to hold for N4-lattices [Rivieccio and Jansana 2021].

Ongoing research on the non-involutive twist construction suggests that the ques-
tion may be settled at least for every quasi-N4-lattice B that possesses a residuated lattice
structure, that is, further algebraic operations 1 and * such that (B, *, 1) is a (commuta-
tive) monoid and the pair (%, =) is residuated. The resulting class of algebras, which we



may dub residuated quasi-N4-lattices, is also relevant to the research direction discussed
below.

Quasi-N4-lattices as residuated structures. As observed in [Rivieccio 2022,
Rem. 3.5], the so-called weak implication — is definable in quasi-N4-lattices using the
so-called strong one = and the conjunction A. Recalling that the strong implication
is the ‘substructural implication’ of (quasi-)N4-lattices, this suggests that it is possi-
ble to axiomatize the class of quasi-N4-lattices and the corresponding logic in the lan-
guage {A,V,=,~}, which in turn may allow us to establish a more direct compari-
son with (algebras of) relevance logics. However, given the defining term employed
in [Rivieccio 2022, Rem. 3.5], we may expect the axiomatizations thus obtained to be
rather unwieldy.

The picture may become more clear if we are willing to further expand the lan-
guage of QN4 by introducing connectives corresponding to the above-mentioned monoid
conjunction * (and maybe the identity 1 as well); the resulting algebraic models will be
a class of residuated structures, which one may hope study within the theory of paracon-
sistent Nelson RW-algebras developed in [Spinks and Veroff 2018].

Quasi-N4-lattices and relevant algebras. The paper [Galatos and Raftery 2015]
introduced the variety of generalized Sugihara monoids as a non-involutive generalization
of algebraic models of the relevant logic R-mingle, a class of algebras known as Sugihara
monoids. One of the main results of Galatos and Raftery is that generalized Sugihara
monoids are representable through a twist construction which has striking similarities
with the one for quasi-N4-lattices. The factor algebras employed in their twist construc-
tion are in fact nuclear Brouwerian algebras that are also prelinear (i.e. representable as
subdirect products of linearly ordered ones).

While the equational properties of the two above-mentioned classes of algebras
suggest that a direct comparison between (generalized) Sugihara monoids and (quasi-)
N4-lattices is not likely to prove fruitful, we speculate that the twist construction may be
used to establish a meaningful connection. Indeed, since the twist representation is used
in [Galatos and Raftery 2015] to establish a categorical equivalence between generalized
Sugihara monoids and prelinear nuclear Brouwerian algebras, it may be possible to apply
a similar strategy to quasi-N4-lattices, namely, single out a subcategory of (perhaps en-
riched) quasi-N4-lattices that may be proved to be equivalent as a category to the prelinear
nuclear Brouwerian algebras considered in [Galatos and Raftery 2015]. An equivalence
with generalized Sugihara monoids would then be obtained as an immediate corollary.
We leave this as a final suggestion for further research.
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