
On the Coverage Property of a Derivation Compression
Algorithm

Robinson C. de M.B. Filho1, Jefferson de B. Santos2, Edward Hermann Haeusler1

1 Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)
Rio de Janeiro, RJ – Brazil

2Fundação Getúlio Vargas (FGV)
Rio de Janeiro, RJ – Brazil

{rfilho,hermann}@inf.puc-rio.br, jefferson.santos@fgv.br

Abstract. We further elaborate, with a short example, on the set of compression
rules and the derivation compression algorithm presented in [Haeusler et al. 2023].
We also argue a proof, done with the Lean theorem prover, that this algorithm
obtains a dag-like compressed derivation from any tree-like Natural Deduction
derivation in Minimal Purely Implicational Logic.

1. Introduction
In [Haeusler et al. 2023], the authors provide an algorithm, named HC, for obtaining a
compressed dag-like proof, meaning a proof represented by a Directed Acyclic Graph,
of any purely implicational minimal tautology. This dag-like proof has more decora-
tion elements and labels than regular proofs in purely implicational minimal logic (M⊃)
and, using these elements, a verification that the dag-like proof is valid can be done in
polynomial time [Haeusler et al. 2023]. The authors named this type of dag-like proof a
Dag-Like Derivability Structure (DLDS), which is defined in [Haeusler et al. 2023] and
also in accordance to the following definitions below, which we write down here in order
to have a more self-contained document.
In any M⊃ Natural Deduction (ND) derivation, any application of an ⊃-Intro rule has
a way to indicate which formula occurrences are discharged by the application of this
⊃-Intro application. One way to formalize this indication is to add edges (discharging
edges) linking the conclusion of the rule applies to each discharged formula occurrence
in the derivation tree that represents the ND derivation1. This may be a convenient rep-
resentation in many formulations of ND. However, to not crowd our dag-like derivations
with unnecessary edges, we drop out the discharging edges by assigning to each deduc-
tion edge the string of bits that represents the set of assumptions from which the formula
that labels the target of this deduction edge depends on. This is formalized in the sequel.
∠Definition 1. Let α be an implicational formula, Sub(α) the set of subformulas of α,
and O(α) = {β0, β1, . . . , βk} a linear ordering on Sub(α). A bit-string on O(α) is any
string b0b1 . . . bk, such that bi ∈ {0, 1}, for each i = 0, 1, . . . , k.

There is a bijective correspondence between bit-strings on O(α) and sets of subformulas
of α, given by Set(b0b1 . . . bk) = {βi/bi = 1}. The bit-string on O(α) will drop out the

1It can be noted that assigning unique marks (numbers, for example) to each formula occurrence in a
derivation and attach to each ⊃-Intro application the set of marks associated to the set of its discharged
formula occurrences is equivalent to add edges indicating these discharges.

discharging edges and explicitly explain the formula dependencies in a derivation. The
set of bit-strings on O(α) is denoted by Bits(α,O(α)). The inverse function of Set is
well-defined for a fixed ordering on Sub(α) and is denoted by Set−1. The set of all bit-
strings on a set S, under ordering OS is denoted by B(OS).
The following definition argues that the set of theorems is unchanged even when con-
sidering a restricted form of ⊃-Intro rules (greedy). This restricted form of an ⊃-Intro
provides a sound way to remove all the discharging edges from tree-like proofs.
∠Definition 2. Consider a derivation Π of β having ∆ as assumptions. Let α ∈ ∆ be
an (open) formula assumption in Π. Applying an ⊃-Intro in Π is greedy, iff it produces
α ⊃ β as conclusion and discharges in Π every open occurrence of α from which its
premise β depends on.
Applying an ⊃-Intro to a tree-like derivation is greedy iff its corresponding application
in a ND derivation is also greedy. We reaffirm the terminology used in [Prawitz 1965]
that proofs are derivations with no open assumption. In a proof, every hypothesis is
discharged by some ⊃-intro rule application, and hence any branch is a complete sub-
derivation (sub-tree). The function G below converts a given proof in M⊃ into a greedy
proof in M⊃, where ⊃-greedy denotes a greedy application of ⊃-intro rule, i.e,, all open
assumptions β1, if any, in Π′ are discharged by the ⊃-greedy. The reader should observe
that if there is no open assumption to discharge, then this discharge is vacuous.

G(Π) =



α if Π = α

G(Π′)
⊃-greedy

β1 ⊃ β2
if Π=

Π′
⊃-intro

β1 ⊃ β2
G(Π1) G(Π2)

⊃-Elim
β

if Π=
Π1 Π2 ⊃-Elim

β

In [Haeusler et al. 2023], the authors demonstrate the following lemma about the preser-
vation of the completeness of greedy proofs:
∠Lemma 1 (Greedy ⊃-Intro is Complete). Let Π be a proof of a M⊃ formula α. If
Π′ = G(Π), then Π′ is also a valid proof of α in M⊃.

In [Haeusler et al. 2023] (sections 3 and 5), in a series of hand-proven results, the authors
show that any ND greedy proof of an M⊃ formula α can be mapped to a DLDS having its
root labelled with α. This DLDS represents the underlying tree of the ND greedy proof,
but instanced with all the decorations that a DLDS needs. The tree-like dependency of
the ND greedy proof is also mapped into this DLDS proof.
In [Haeusler et al. 2023], the authors also argues that HC, when applied to any DLDS
proof, preserves the logical information provided by the decorations used in the DLDS,
resulting in the preservation of soundness of the proof. This demonstration is lengthy,
however, and must go through multiple cases and the numerous rules of HC. A computer-
assisted proof seems to be the most appropriate way of proving the soundness of these
rules. Thus, this article has two focuses: to elaborate and exemplify on the working of
HC; and to present the beginnings of a proof of the soundness preservation of HC done
with the Lean interactive theorem prover [de Moura et al. 2023].
For our purposes, HC takes as input an arbitrary DLDS, defined as follows:
∠Definition 3 (Dag-Like Derivability Structures). Let Γ be a set of M⊃ formulas, OΓ an
arbitrary linear ordering on Γ, such that n > 0, for n ∈ OΓ, and O0

Γ = OΓ ∪ {0, λ}. A
Dag-Like Derivability Structure, is a tuple ⟨V, (Ei

D)i∈O0
Γ
, EA, r, l, L, P ⟩, where:

• V is a non-empty set of nodes;
• For each i ∈ O0

Γ, Ei
D ⊆ V × V is the family of sets of edges of deduction;

• EA ⊆ V × V is the set of edges of ancestrality;
• r ∈ V is the root of the DLDS;

• l : V → Γ is a function, such that, for v ∈ V , l(v) is the (formula) label of v;
• L :

⋃
i∈O0

Γ

Ei
D → B(OS) is a function, such that, for every ⟨u, v⟩ ∈ Ei

D, L(⟨u, v⟩)

is the bitstring representing from which formulas the i-th colored deduction edge
⟨u, v⟩ carries its dependency;

• P : EA → {1, . . . , || Γ ||}⋆, such that, for every e ∈ EA, P (e) is a string of the
form o1; . . . ; on, where each oi, i = 1, . . . , n, is an ordinal in OΓ.

For each i ∈ O0
Γ and ⟨u, v⟩ ∈ Ei

D, i is called the color of the edge ⟨u, v⟩. Each deduction
edge is coloured with formulas from Γ or the colour 0. The colours are introduced every
time a collapsing of nodes, as explained in [Haeusler et al. 2023], is performed. Tree-
like greedy derivations have only 0 coloured deduction edges. DLDSs obtained from
Tree-like greedy derivations by effectively collapsing vertexes, sometimes edges, have
coloured deduction edges. Not all DLDS is in the image of the function that maps Tree-
like derivations into DLDS, but any ND (usually tree-like) derivation of a formula α can
be seen as a DLDS, as shown in [Haeusler et al. 2023]. It is also worthy of note that every
DLDS having EA empty and only Ei

D for i = 0, i.e., a DLDS without ancestral edges and
only with 0-coloured deductive edges, is a greedy tree-like derivation2.

2. An Example of Derivation Compression

A ND proof of a M⊃ tautology can end in a series of ⊃-Intro rule applications, and it
must if we consider normal proofs. The HC algorithm collapses equal formulas in each
level from the bottom up and left to right. We cannot compress the final part with ⊃-Intro
only since it already has one formula by level. So, to show smaller ND derivations, we
consider derivations without the final ⊃-Intro only part. For example, the derivation in
figure 1 comes from a proof of A1 ⊃ A2 ⊃ (A1 ⊃ (A2 ⊃ A3)) ⊃ (A2 ⊃ (A3 ⊃ A4)) ⊃
(A3 ⊃ (A4 ⊃ A5)) ⊃ (A1 ⊃ A5) that that had the final ⊃-Intro part removed.
We use bitstrings to represent subsets of a linearly ordered finite set. According this, the
subset {A ⊃ B,B ⊃ C,C} of the the ordered set {A,B,C,A ⊃ B,B ⊃ C}, with order
A ≺ B ≺ C ≺ A ⊃ B ≺ B ⊃ C, is represented by 00111. The formal definition of this
representation is in definition 4.
The derivation in figure 1 is greedy, i.e., all ⊃-Intro rule applications concluding α ⊃
β discharge every possible occurrence of α that is a hypothesis of the derivation of its
premiss, β. We can represent ND greedy derivations as labelled trees. The tree nodes
are labelled by the formulas in the derivation, and the edges are labelled by bitstrings that
represent sets of formulas. In Fig.2a� we consider the following linear ordering ≺ on
the set of formulas that are in figure 1:

A1 ≺ A2 ≺ A3 ≺ A4 ≺ A5 ≺ A1 ⊃ A2 ≺ A2 ⊃ A3 ≺ A4 ⊃ A5 ≺ A1 ⊃ A5 ≺ A1 ⊃ (A2 ⊃ A3) ≺ A2 ⊃ (A3 ⊃ A4) ≺ A3 ⊃ (A4 ⊃ A5)

We can choose any linear order to represent ND derivation in the form of trees. The
(fixed) linear order is used to represent sets of formulas as bitstrings. The linear order must
be taken as part of the representation of the greedy ND tree representation. For example,
the set {A1, A1 ⊃ A2, A1 ⊃ (A2 ⊃ A3)} is represented by the bitstring 100001000100.
∠Definition 4. Let L be a set of formulas in M⊃ and O(α) be a linear order O(L) =
{β0, β1, . . . , βk}. A bitstring on O(L) is any string b0b1 . . . bk, such that bi ∈ {0, 1}, for
each i = 1 . . . k. There is a bijective correspondence between bitstrings on O(α) and
subsets of L, given by Set(b0b1 . . . bk) = {βi/bi = 1}.

2Greedy tree-like derivations are defined in [Haeusler et al. 2023].

https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf

We can use HC to compress the derivation. The algorithm obtains smaller representa-
tions of proofs and derivations in minimal implicational logic by applying transformation
rules to a given greedy derivation or proof that must be provided as a labelled tree, as
in Fig.2a �. The rules are applied deterministically, bottom-up and left to right. The
purpose of each rule is to collapse redundant parts of the derivation. They collapse nodes
that have the same label in the same level. For example, the formula A3 appears twice
in level3 3. These two occurrences of A3 are conclusions of identical derivations. More-
over, in level 4 three repeated occurrences of A2 can be collapsed too. It first collapses
these two lower occurrences of the formula A3 using the rule depicted in Fig.2b �,
whose official name is R0EE. It matches the tree in level 3 according to the markings in
Fig.2c �. The nodes labelled with A3 match with u and v, in the rule, respectively,
and their respective children p1 and p4, and, p2, p3 match with the premisses in the rule
accordingly.
All the compression rules of HC are deterministic and used to define a rewriting operation,
HCom(u, v), that collapses two nodes, u and v that are labeled with the same formula.
Each rule has a context provided by pattern matching and applies to a specific graph, af-
terwards defined as a DLDS4 D, by the matching of its left-hand side.
The rules are named as Rimlmr, where i = 0 . . . 3 and ml,mr ∈ {I, E,H,X}, such that
i is the type of the rule itself and ml/mr is type of the left/right vertex to be collapsed.
For exemple, in Fig.2b�, the rule named R0EE, collapses the conclusion of an appli-
cation of the ⊃-Elim ND rule with the conclusion of another application of the ⊃-Elim
ND rule. There are also small variations in this naming convention, with rules such as
Rv2mlmr and Re2mlmr. The indexes v and e indicate that the respective rule collapses
only vertexes (v) or vertexes and edges (e). Rules Rv2EE, Fig.3b �, and Re2EE
depict these examples. In this introductory example it is not important to understand what
a DLDS is in detail, but the fact that they represent derivations, possibly in the form of
a DAG, Directed Acyclic Graph. in the naming rule scheme, the X represents that the
formula is conclusion of more than one rule at the same time, what is necesserilly a con-
sequence of a previous collapse.
We use R0EE to show how to read the pictorial representation of HC-rules. The left and
the right-hand sides are subgraphs of, respectively, two DLDSs, D and D′. This rule says
that we must replace the subgraph represented by the left-hand side by the right-hand side
graph in D, resulting in D′, defined below, where •a is the left • in the figure, while •b
is the right one. In R0EE left-hand side, pi, i = 1, 3, u and v are different nodes in the
subgraph, such that v and u have the same label(formula), the black arrows are deductive
edges, which have as labels the bitstring representing the dependency set denoted by L.
For example, L(⟨p1, u⟩) = c̄1 shows that the deductive edge ⟨p1, u⟩ ∈ E0

d is labeled by
the dependency set Sets(c̄1). The absence of a label on an edge indicates that it is irrel-
evant to the pattern. A label’s node is • whenever it is not relevant what is its label to
read the rule. In this case, the • is also used to denote the node. •s label different nodes
unless explicitly stated by the rule. In Fig.2b �, the bullets label different nodes. In
the set-theoretical semantics of the rules, see [Haeusler et al. 2023]; we use •a and •b as
a reference to each of the two different nodes. Edges that belong to Ei

D have the colour i;

3The root is in level zero
4Dag-Like Decorated Structure

https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf

Figure 1. Deriving A1 ⊃ A5 from A1 ⊃ A2, A1 ⊃ (A2 ⊃ A3), A2 ⊃ (A3 ⊃ A4), and
A3 ⊃ (A4 ⊃ A5)

this is the red ordinal5 number 1, . . . , n on a black deduction edge. The members of EA,
the ancestor edges, are coloured blue, and their labels under P labelling function are red
in the picture. For example, ⟨•, p1⟩ ∈ EA and P (⟨•, p1⟩) = 1. Moreover, we have that
⟨u, •⟩ ∈ E1

D in the graph on the right-hand side of R0EE. A DLDS D is specified by a set
of nodes V , and multiple sets of deductive edges, Ei

D ⊆ V × V , i = 0, n, called coloured
edges, and a set of ancestor edges EA ⊆ V × V , plus some labelling functions. The
definitive definition is in the following section. The definition of a valid DLDS is more
involving, and is presented at [Haeusler et al. 2023]. We will find the label λ assigned to
some edges, i.e., those belonging to Eλ

D. The members of Eλ
D are edges that must have the

dependency set calculated by the validation verification algorithm that verifies if a DLDS
is valid [Haeusler et al. 2023]. Moreover, a node on the left-hand side must show all the
edges, outgoing or incoming. If no incoming edge is drawn, then the node should not
appear in the rule. In a ND derivation, the correct and logical reading starts in the hypoth-
esis and follows down the conclusion analysing the changing of dependency sets obtained
by each rule application. The path downwards is the path that links a node to its parent,
the latter to its respective parent and so on. In a dag, the correct reading is a bit more in-
volving. The result of the application of R0EE, in Fig.2b�, to the match in Fig.2c
� is depicted in Fig.2d �. The matching is represented by ellipses around the nodes
that are bullets in the rule (R0EE) representation instead of the original rectangles. After
the application, the matching is still present to us appreciate the effect of the application
of R0EE. In Fig.3a �, we remove this focus by defocusing and show the derivation
resulting from rule R0EE application, ready to be used in a new matching by a new rule
applies. We must observe that the graph in this figure, resulting from a node application
collapse, is no longer a tree. It is represented by a dag. The collapsed node labelled by
the formula A3 has out-degree 2, i.e., has two outcoming edges labelled with 1 and 2,
in red, respectively, besides their respective dependency sets as bitstrings. Labels 1 and
2 inform which path a derivation validation algorithm should follow to have the correct
logical dependency from the conclusion to the hypothesis. The path that must be followed
from a given node v to obtain the correct reading is given by the label of the ancestor edge
incident in v. If there is no ancestor edge incident in a node, then the correct reading is to
follow the parenthood path. For example, in Fig.2d�, the list [0, 2], in red, labels the
edges that go from the node labelled with A4 ⊃ A5 to the labelled nodes A2 and A2 ⊃ A3,
respectively. [0, 2] is the path to follow from A2 to A4 ⊃ A5 passing by A3. The same
can be said about the path from A2 ⊃ A3 to A4 ⊃ A5. These two paths are the only ones
present in the tree-like derivation from these two nodes, labelled with A2 and A2 ⊃ A3 to
A4 ⊃ A5, respectively. Hence, the ancestor edges drive the correct reading of the dag-like
derivation regarding the original tree-like derivation before applying the collapsing rules.

5Remember that we can use the formulas themselves as ordinal numbers in this case since they are
linearly ordered

https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf

A reading algorithm reads and validates a dag-like derivation, [Haeusler et al. 2023]. We
can observe that the correct paths are preserved after the R0EE application. This is the
soundness of the R0EE application.
The following collapse from the bottom up involves three A2 in level 4. The HC algo-
rithm always deals with levelled dag-like derivations. The rule that applies considers the
first two occurrences of A2 from left to right in the dag. They are the leftmost A2 and
who is the minor premiss of a ⊃-Elim with A2 ⊃ (A3 ⊃ A4) as major premiss. The rule
Rv2EE, in Fig.3b�, is used, and it is matching to the current dag-like deduction, in
Fig.3a �, shows up in Fig.4a �. Fig.4b � is a graphical rearrangement of the
same dag-like derivation to have a more evident matching of Rv2EE, in Fig.4a �.
In Fig.4c �, we show the subsequent result of the application of rule Rv2EE. From
this point on the rules R e2XE, in Fig.3c � and Re2EE, see [Haeusler et al. 2023],
provide the derivation depicted in Fig.5b �. Due to space limitations, Re2EE is not
shown in this article. Please, see [Haeusler et al. 2023] for all other rules.
The dag-like derivation in Fig.5b� has nodes labelled with the same formula only at
the top formulas, i.e., hypothesis or top-formulas. In this case, the four occurrences of
A1 and the three occurrences of A1 ⊃ A2. Moreover, it is a simple directed and coloured
graph, i.e., for each colour c and pair u and v of nodes, there is at most one edge of
colour c from u to v. Suppose we do not count the top formulas. In that case, the ob-
tained dag-like derivation is of size h.m3, where h is the height of the original tree-like
ND derivation and m is the number of formulas in the original derivation. Please, refer to
[Haeusler et al. 2023] for more detail.
The next, and final, step in the compression task is to collapse the top formulas. We
use Moving Downward Edges rules (MDE-rules) in this task. The application of the
MDE-rules moves the ancestor edges down, but preserves the number of ancestor edges,
so that we have at most one top formula by level at the end of the compression process,
and the same number of edges counted above. We can conclude that the dag-like proof is
polynomial on the number of formulas and the height of the tree-like derivation.

3. Formalisation in Lean

This section describes the first steps towards a formalization in Lean (Lean 3, v0.16.53)
for the proof of the following:
∠Main Theorem: Let HCom(u, v) be the application of a type-0 or type-1 / type-2 or
type-3 compression rule to nodes u and v of a DLDS D. Let u′ be the resulting collapsed
node and D′ the resulting DLDS after the collapse. Let v′ be a node in D′, at the same
level and with the same M⊃ formula as u′. Then there must be some valid application
HCom(u′, v′) of some type-1 / type-3 compression rule to nodes u′ and v′.
As a consequence of the above, if HC is applied to a valid DLDS, then we can be cer-
tain that it eventually halts exiting a DLDS that has no level with two nodes labelled
with the same formula. From the Main Theorem 3, we take that every matching in-
volving a collapsed node resulting from the application of a type-0 or type-1 rule will
be mapped by a type-1 rule. Similarly, every matching involving a collapsed node re-
sulting from the application of a type-2 or type-3 rule will be mapped by a type-3 rule.
So long as there is a rule among the compression rules that maps the matching nodes,
HC will collapse them. Therefore, HC will not halt before collapsing every node. This
section prioritizes explaining more complex/important proofs, lemmas, and definitions

https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf
https://github.com/Robilsu/Horizontal-Compression/blob/main/ImageExampleHC.pdf

over simpler ones. The complete, up-to-date, formalization in Lean can be viewed at
Horizontal-Compression.

3.1. Type Definitions

As our result is about the compression rules that define HCom(u, v), we need to create
a type for the entries u and v. In this context, u and v indicate the nodes to be collapsed
by the application of HCom(u, v). However, the information of which nodes u and v
represent is insufficient for our proof. Not only the nodes to be collapsed, we need to know
all neighboring arrows and vertexes around the nodes u and v. The neighborhood�
type is directly defined by the compression rules, and composed of 4 distinct parts: a
central node which is used for the collapse (CENTER); a list of deduction edges arriving
at that central node (IN); a list of deduction edges exiting from that central node (OUT);
and a list of edges of ancestrality pertinent to the compression rule (ANCESTRAL). These
parts are given as parameter to the neighborhood type constructor. The types of these
parameters are node�, deduction�, and ancestral�.
In the node type’s definition, a node’s level and label (an identifier unique to that node)
are each represented by a natural number, which must be given as parameters to the type
constructor. This representation is justifiable because the number of possible levels/labels
in a DLDS is always a natural number, so any arbitrary ordering over the set of possible
levels/labels creates a bijection between the set of levels/labels and the natural numbers.
The level parameter of a node is used to associate nodes of the DLDS for collapse, and
check if they are at the same level of the DLDS. Using a parameter to represent the
label of a node makes it possible to differentiate any two nodes of the tree even when
looked at in isolation. These parameters allow for a better, more precise categorization
of the nodes, something which our proof requires. The last part of a node is its formula,
which in this context is a M⊃ formula, defined as formula �. The deduction type
is used to instantiate a neighborhood’s deduction edges while the ancestral type is
used to instantiate a neighborhood’s edges of ancestrality. A deduction edge is composed
of: a starting node (START); an end node (END); an identifying colour (COLOUR);
and a dependency set (DEPENDENT). An edge of ancestrality is composed of: a starting
node (START); an end node (END); an identifying colour path (PATH). The formalisation
of both these types is taken as a direct translation from their definition as stated in the
previous sections.

3.2. Proving the Main Theorem

Central to understanding the Lean-assisted proof� are the methods:

• elimination_neighborhood�, introduction_neighborhood�,
hypothesis_neighborhood�, which validates if a given neighborhood of
the DLDS represents a node that is the conclusion of an application of ⊃-Elim,
the conclusion of an application of ⊃-Intro, or a hypothesis;

• neighborhood_type_01 �, which validates if a given neighborhood of the
DLDS represents a node that is the resulting collapsed node of an application of
either a type-0 or a type-1 compression rule;

• check_nodes �, which checks if two given neighborhoods are valid and if
they should be collapsed; and

https://github.com/Robilsu/Horizontal-Compression
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L77
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L37
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L64
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L71
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L13
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part2].lean
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L132
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L151
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L167
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L235
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L181

• horizontal_collapse �, which takes two applicable neighborhoods and
exits a collapsed neighborhood, like shown in the figures at Subsection 2.

By analysing these four categories of neighborhoods, and considering the method for hor-
izontal collapse, the proof of Main Theorem 3 proceeds by comparing each type-0 and
type-1 rule, again disregarding symmetrical cases, with each case formalised separately.
To prove the same for rules of type-2 and type-3 the process is almost identical, save for
the definitions invoked.
We wrote the formalization to more closely resemble a computer program, motivated by
the reasoning that this would make it easier for us to write it and later for the reader to
comprehend it. Usage of Lean’s tactics mode, marked by keywords begin and end,
means that, when processing the input bracketed by the keywords, the theorem prover
can execute each tactic in a compound sequence to produce an expression of its required
type. It also helps the user keep track of the multiple goals and subgoals involved in a
proof by forcing the theorem prover to show that kind of information. On the topic of
goals/subgoals, tactics have and from are used to introduce new subgoals and solve ex-
isting goals/subgoals, respectively. The tactic from provides an exact proof term as the
solution, meaning that if G is a goal and t is a term of type T, then from t succeeds,
iff, G and T can be unified. Finally, assume is used here to introduce and name all our
hypotheses and variables.

4. Conclusion
In this paper we intended to prove that HC halts for every M⊃ tautology, exiting a valid
DLDS with no two equal nodes on the same level.
A DLDS is a type of graph, similar to a ND tree-like derivation, with levels over which
recursion can be applied. Still, there is no need to ever instantiate an entire DLDS to prove
our result, allowing us to use the neighborhood� type instead. The neighborhood
type has a more direct definition, based solely on the compression rules. Using Lean’s N,
list, and set types required some additional definitions. Their number is minimal,
though, and most come directly from the in-built recursion over those types.
Compression of naive and huge proofs in natural deduction for the non-hamiltonianicity
of some graphs has been done in [Barros Júnior and Haeusler 2019]. A compression ra-
tio of almost 90% was obtained, with bigger and more redundant proofs having the best
compression ratio. We intend to write a Lean-assisted proof of the soundness of each com-
pression rule, or that the set of compression rules preserves the validity of any DLDS, as
shown informally in Theorem 11 in [Haeusler et al. 2023]. This will finish the complete
Lean-assisted proof of the Main Theorem 3.

References
Barros Júnior, J. and Haeusler, E. (2019). A comparative study on compression tech-

niques for Propositional Proofs. In Book of Abstracts, 19th Braz. Meeting on Logic,
pages 85–86, Brazil.

de Moura, L., Kong, S., and Avigad, J. (2023). Theorem Proving in Lean.

Haeusler, E., Moura Brasil Filho, R., and Barros Júnior, J. (2023). On the horizontal
compression of dag-derivations in minimal purely implicational logic.

Prawitz, D. (1965). Natural Deduction: Proof-Theoretical Study. Dover Publications.

https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L204
https://github.com/Robilsu/Horizontal-Compression/blob/main/!HaltingProof[Example][Web][Part1].lean#L77

	Introduction
	An Example of Derivation Compression
	Formalisation in Lean
	Type Definitions
	Proving the Main Theorem

	Conclusion

