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Abstract. Explainability and formal verification of neural networks may be cru-
cial when using these models to perform critical tasks. Pursuing explainability
properties, we present a method for approximating neural networks by piece-
wise linear functions, which is a step to achieve a logical representation of the
network. We also explain how such logical representations may be applied in
the formal verification of some properties of neural networks. Furthermore, we
present the results of an empirical experiment where the methods introduced are
used in a case study.

1. Introduction
Explainability of neural networks models has become of great interest to society, as the
need to explain the reasoning behind the decision-making of such models has arisen
greatly. For instance, for neural networks that perform critical tasks such as issuing air-
craft collision avoidance alerts.

A path towards explainability of neural networks that compute piecewise linear
functions is to represent them in a more amenable format, given by pairs comprehending a
domain region and a linear function that realizes the network computation in such region.
Further, from such a regional representation, a logical representation may be given, for
instance, by a pair of formulas of Łukasiewicz infinitely-valued logic (Ł∞). A polynomial
procedure that builds this logical representation is introduced in [Preto and Finger 2020,
Preto and Finger 2022].

However, neural networks do not necessarily compute piecewise linear functions.
And neural networks that compute such functions may have an exponential regional for-
mat representation in the size of their traditional graph representations. The main goal of
this work is to propose a method for approximating neural networks by piecewise linear
functions in regional format, allowing their approximate logical representation in Ł∞.

Another path to reliability in critical tasks for neural networks is to for-
mally verify properties of interest concerning them. In [Preto and Finger 2023a,
Preto and Finger 2023b], some of these properties are codified in the language of Ł∞
departing from the network representation in such logical system. Then, the properties
are verified through decisions about satisfiability and logical consequence of their codi-
fication. This work aims to present these concepts through examples and to perform an
empirical experiment of formal verification using the logical approximation of a neural
network.



2. Preliminaries: Łukasiewicz Logic and McNaughton Functions
As our final goal is to represent neural networks in Łukasiewicz infinitely-valued logic
[Cignoli et al. 2000], let us start by introducing such system. The basic language L of Ł∞
comprehends formulas freely generated from a countable set of propositional variables P,
a disjunction operator ⊕ and a negation operator ¬. A valuation is a function v : L →
[0, 1], such that, for φ, ψ ∈ L, v(φ⊕ ψ) = min(1, v(φ) + v(ψ)) and v(¬φ) = 1− v(φ).
From disjunction and negation, we derive the following operators:

Implication: φ→ ψ =def ¬φ⊕ ψ v(φ→ ψ) = min(1, 1− v(φ) + v(ψ))

Maximum: φ ∨ ψ =def ¬(¬φ⊕ ψ)⊕ ψ v(φ ∨ ψ) = max(v(φ), v(ψ))

Minimum: φ ∧ ψ =def ¬(¬φ ∨ ¬ψ) v(φ ∧ ψ) = min(v(φ), v(ψ))

Bi-implication: φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ) v(φ↔ ψ) = 1− |v(φ)− v(ψ)|

A formula φ is satisfiable if there exists a valuation v such that v(φ) = 1. A
formula φ is said to be a (semantic) consequence of a set of formulas Φ if each valuation
that satisfies Φ also satisfies φ; in this case we write Φ |= φ. We also call an expression
as Φ |= φ an instance of logical consequence and say that such expression is valid if it
represents an actual consequence.

McNaughton functions are continuous piecewise linear functions whose domain
is [0, 1]n, for some n ∈ N, and range is in [0, 1]; also, their linear pieces only have integer
coefficients. McNaughton functions may be represented in Ł∞ in such a way that there
is a one-to-one correspondence between McNaughton functions and the elements of the
Lindenbaum algebra of Ł∞-formulas [McNaughton 1951, Mundici 1994]. Unfortunately,
McNaughton functions cannot approximate continuous functions in general with any de-
sired precision. For that, one may rely on rational McNaughton functions, which are as
McNaughton functions, but allowing rational coefficients in their linear pieces. In this
work, we focus on neural networks that may be approximated by rational McNaughton
functions, that is networks with n input values in [0, 1]n and one output value in [0, 1].

Although Ł∞ cannot express rational McNaughton functions in the tradi-
tional way, such a logical system may implicitly represent them using the technique
of representation modulo satisfiability [Finger and Preto 2020, Preto and Finger 2020,
Preto and Finger 2022], which we introduce in the following.

Let us denote the Ł∞-semantics, that is the set of all valuations, by Val. Let us
also denote by ValΦ the set of valuations v ∈ Val that satisfy a set of formulas Φ; we
call such a restricted set of valuations a semantics modulo satisfiability. Given a rational
McNaughton function f : [0, 1]n → [0, 1], a formula φf and a set of formulas Φf , we say
that φf represents f modulo Φf -satisfiable or that the pair ⟨φf ,Φf⟩ represents f (in the
system Ł∞-MODSAT) if, for distinguished propositional variables X1, . . . , Xn ∈ P:

• For all ⟨x1, . . . , xn⟩ ∈ [0, 1]n, there exists some valuation v ∈ ValΦf
, such that

v(Xi) = xi, for i = 1, . . . , n;
• For all valuations v, v′ ∈ ValΦf

such that v(Xi) = v′(Xi), for i = 1, . . . , n, we
have v(φf ) = v′(φf ); and

• f(v(X1), . . . , v(Xn)) = v(φf ), for all v ∈ ValΦf
.

For a formula φ and n ∈ N∗, we denote the disjunction φ ⊕ · · · ⊕ φ, n times, by
nφ.



Let Ω◦ denote the topological interior of set Ω. There is a polynomial algorithm for
the representation in Ł∞-MODSAT having as input a rational McNaughton function given
in closed regional format: a collection of pairs ⟨pi,Ωi⟩ of linear pieces pi and regions Ωi

such that the regions are polyhedra that satisfy:

•
⋃

i Ωi = [0, 1]n;
• Ω◦

i ∩ Ω◦
j = ∅, for i ̸= j; and

• The lattice property: for i ̸= j, there is k such that linear piece pi is above linear
piece pk over region Ωi – i.e., pi(x) ≥ pk(x), for x ∈ Ωi – and linear piece pk is
above linear piece pj over region Ωj .

If there is no guarantee that such a collection of pairs satisfy the lattice property, we say
that it is in pre-closed regional format.

3. Piecewise Linear Approximation of Neural Networks
We present an algorithm for approximating a neural network by a rational McNaughton
function in pre-closed regional format. Piecewise linear regression is a technique used to
try and find a collection of simpler linear functions that are able to approximate a continu-
ous function, which is known to be possible due to the Stone-Weierstrass Approximation
Theorem [Weierstrass 1885].

Let f : Rn → R be a function determined by a neural network and Df ⊂ Rn its
domain. The goal is to find an estimator f̂ of f such that

f̂(x) =


p1(x), if x ∈ S1

...
pk(x), if x ∈ Sk

where pi : Rn → R is an element of a collection of linear functions P = {p1, ..., pk} and
Si is an element of a collection S = {S1, ..., Sk} of subsets of Rn such that

⋃k
i=0 Si = Df .

3.1. An Algorithm for Piecewise Regression

Dynamic programming algorithms to solve piecewise regression problems are introduced
in [Acharya et al. 2016]. The algorithm described in this work is a variation of those and
breaks segments based on an input cost C instead of specifying how many pieces the
regression should have.

For this we consider the following formulation: let (X, y) be a dataset of points
sampled from an arbitrary function f : Rn → R, where X is a matrix of points sampled
from f and y is a vector with the corresponding output values of f . For an estimator f̂
of f , the square error generated by the estimator, for m input-ouput pairs (xi, yi)

m
i=1, with

i, j,m ∈ N, from the dataset is
∑m

i=j (yi − f̂(xi))2. The goal of the algorithm is to find an
estimator f̂ , which should be a piecewise linear function with k linear pieces, such that it
minimizes the square error between the approximation and the observed data.

Let OPT (j) be the minimum possible error considering only pairs {(xp, yp)}p∈J
from (X, y) in the interval of indices J = {1, . . . , j}. Let, also, err(i, j), where i < j, be
the least squared error generated by a segment fitted through the points lying in the interval
of indices I = {i, i+1, . . . , j}. The optimal segment error for pairs with indices in J can



be formulated as the recursive relationship: OPT (j) = mini∈I{err(i, j)+OPT [i− 1]}.
After constructing OPT , we can backtrack and find the solution which has the minimum
overall squared error to determine the linear pieces. We propose Algorithm 1, heavily
based on the one presented by Acharya et al., that constructs such table OPT .

Algorithm 1 Piecewise Regression by Dynamic Programming
Input

X Matrix of points sampled from f where each row correponds to a point in Rn

y Vector containing the outputs of the f evaluated on each point of X
C Cost for creating a segment

Output
Cost for creating the optimal piecewise linear function

OPT [0]← 0
for j ∈ {1, ..., N} do

for i ∈ {1, ..., j} do
err(i, j)← least square error for indices in the interval {i, i+ 1, ..., j}

end for
end for
for j ∈ {1, ..., N} do

OPT [j] = mini<j(err(i, j) +OPT [i− 1] + C)
end for
return OPT [n]

The intuition behind how this works is that each interval of points is treated as
a sub-problem. If we have a point xj that is the last point of the optimal segment that
starts at xi, where i < j, we can compute the cost, OPT (j), of fitting a segment through
{xi, ..., xj} if we know the cost OPT (j − 1). Also, by varying the value of C, we can
determine how many segments the algorithm should create because the final cost value
will contain C times the number of segments.

Before obtaining an approximation for the function, we must address two issues:

• The order in which the points are presented to Algorithm 1 matters and it generates
different linear pieces depending on how the data is presented;

• The resulting approximation is not guaranteed to be continuous.

3.2. Order Matters

Taking a closer look at the algorithm, it is imperative that exists a partial order underlying
the data. Imagine that, for the one-dimensional case, we have a set of points ordered by
the x-axis. Suppose there are two optimal segments that divide this dataset: p1, which is
a regression for points {x1, ..., xj}; and p2, which is one for points {xj+1, ..., xn}. If we
purposefully create a dataset where we present {x1, ..., xj+1, xj} to the algorithm, it will
try to construct the optimal segment of xj using the cost for xj+1, which lies further in the
x-axis and that will generate a completely different approximation from before. Because
of that, we need to establish ways to sort the data before trying to apply the algorithm to
it.



For the one-dimensional case, just ordering the points based on the x-axis is suf-
ficient. For greater dimensions, we experimented with two arrangements. The first one
was described in [Acharya et al. 2016]: sort the data by a determined coordinate; in this
case, by the first coordinate x1 of every point. We call this type of ordering X1 from now
on. The other arrangement, which we call C, sorts points by values c = x1 − x2, created
based on prior knowledge of the function for experimentation purposes only.

3.3. Simplex Covering: Forcing Continuity

Another issue to be addressed is that, because the algorithm is based on a discrete set of
input points, all intervals of domain points between two created segments do not have an
approximate linear function assigned to them. Suppose that, in the approximating proce-
dure, we get two consecutive linear pieces pi and pk. Let pi be the linear approximation
of points in the interval delimited by xi and xj and pk be the same for points xk and xl,
where i < j < k < l, for i, j, k, l ∈ N. We can see that for at least one j < d < k, xd
is unmapped in our approximation, in other words it has a discontinuity. That is an issue
because the methods we intend to use require our approximation to be continuous.

To account for these points, we may partition the unmapped interval into sim-
plices and associate a linear piece to each of them in a way that makes the whole function
continuous. This is particularly useful for us because the algorithm described, coupled
with simplex covering, induces a partitioning of the domain that yields a collection of
rectangles and triangles, thus guaranteeing that we produce a function in pre-closed re-
gional format, at least. Unfortunately, simplex partitioning grows exponentially in com-
plexity as the dimension increases. In the two-dimensional case, which is the focus
of our experiments, we need only two simplices (triangles) to cover an unmapped re-
gion of the domain, but, for instance, in [0, 1]7, we would need at least 1175 simplices
[Hughes and Anderson 1996].

4. Modeling Properties in Łukasiewicz Logic
We focus on properties of a binary classification neural network N with input values in
[0, 1]n and only one output value in [0, 1], which is interpreted as the probability of the
input belonging to a class. Thus, for input values x ∈ [0, 1]n, if N(x) ≥ 1

2
, x belongs to

the class in question and, if N(x) < 1
2
, x does not belong.

Let ⟨φ,Φ⟩ be an approximate representation ofN in Ł∞-MODSAT, that is a repre-
sentation of a piecewise linear approximation of the function computed by N . We follow
[Preto and Finger 2023b] and show that properties of reachability and robustness may be
modeled in the language of Ł∞.

The reachability of a given state can be thought as the problem of determining if
N reaches a specific probability π = a

b
∈ Q∩ [0, 1] for some input x ∈ [0, 1]n. This is the

case if, and only if, formula (∧
Φ
)
∧ φ 1

b
∧ aZ 1

d
↔ φ

is satisfiable [Preto and Finger 2023b, Theorem 1].

For robustness, we verify if N maintains its prediction of belonging to a class
with respect to a perturbation limit ε = α

β
∈ Q and a probability π = a

b
∈ [0, 1] ∩ Q.



Figure 1. Sampled points of the case study XOR neural network.

That is, wether N(x + p) ≥ 0.5, for all x ∈ [0, 1]n and p = ⟨p1, p2, . . . , pn⟩ ∈ Rn,
such that N(x) ≥ π, |pi| ≤ ε, for i = 1, 2, ..., n, and x + p ∈ [0, 1]n. For that, let
⟨φ′,Φ′⟩ be defined from ⟨φ,Φ⟩ replacing each occurrence of a propositional variable X
by propositional variable X ′. For each propositional variable Xi ∈ {X1, ..., Xn}, let Pi

be a new propositional variable. Then, N is robust according to ε and π if, and only if,

Φ,Φ′, φ 1
β
, φ 1

b
, φ 1

2
, P1 → αZ 1

β
, ..., Pn → αZ 1

β
, aZ 1

b
→ φ,

(X ′
1 ↔ X1 ⊕ P1) ∨ (X ′

1 ↔ ¬(X1 → P1)),

. . . , (X ′
n ↔ Xn ⊕ Pn) ∨ (X ′

n ↔ ¬(Xn → Pn)) ⊨ Z 1
2
→ φ′,

is a valid logical consequence [Preto and Finger 2023b, Theorem 3].

5. Case Study: Approximating and Verifying a Trained Network

A neural network N for solving the XOR problem was trained in order to conduct exper-
iments. The aim is for the network to learn function f : [0, 1]2 → [0, 1], given by

f(x1, x2) =

{
0, x1 = x2

1, x1 ̸= x2
.

We can look at N as a binary classification network computing the probability of input
x ∈ [0, 1]2 to produce output 1.

We implemented Algorithm 1 and a module to perform the discussed simplex
covering in C++ 1, leveraging the linear algebra library Eigen,2 to produce a continuous
piecewise linear approximation of an input function f : [0, 1]2 → [0, 1]. We also im-
plemented a component to translate such output approximation to the input format of the
software pwl2limodsat,3 that computes representations in Ł∞-MODSAT.

For the approximation, 250 random points were sampled from the network and
ordered with the mentioned sorting methods; Algorithm 1 was fed with such ordered
points (Figure 1). Then, after the simplex segmentation of the parts of the domain that
remained unmapped, the approximation was translated into the input format taken by

1https://github.com/juaolobo/linear-piecewise-neuralnets
2https://eigen.tuxfamily.org/
3https://github.com/spreto/pwl2limodsat

https://github.com/juaolobo/linear-piecewise-neuralnets
https://eigen.tuxfamily.org/
https://github.com/spreto/pwl2limodsat


pwl2limodsat, which produced its representation in Ł∞-MODSAT. The representa-
tion was used to construct encodings of reachability and robustness properties, which
were decided by an SMT-based Ł∞-solver [Ansótegui et al. 2012].

The results obtained for the sorting method X1 were unsatisfactory. The algo-
rithm generated the maximum amount of linear pieces, taking the minimum amount of
neighboring points to create a plane, and doing this for all points. This yielded too many
linear pieces, making it very inefficient for the Ł∞-solver to deal with and deeming the
verification of the function untractable.

On the other hand, the pieces generated with method C are what one would ex-
pect to be the best pieces when looking at the graph of the function. We obtained 3 pieces
generated by the algorithm plus 4 simplices used to assert the continuity of the approxima-
tion. The representation was checked to be in closed regional format by pwl2limodsat
methods. Results of the performed verifications are in Table 1.

As expected, given the nature of the XOR problem, the network accesses every
single value between 0 and 1. As for robustness, given that the network is in state π =
3
4
, we perturbed it by adding a small number to each coordinate of the input. In this

particular scenario we can see that the network is fairly robust, because it continues to
reach N(x+ p) ≥ 0.5 even for a perturbation of 0.25 in every coordinate of the input.

Reachability Robustness
Parameters Result Parameters Result
π = 0.1 ✓ π = 0.75, ε = 0.01 ✓

π = 0.2 ✓ π = 0.75, ε = 0.1 ✓

π = 0.3 ✓ π = 0.75, ε = 0.2 ✓

π = 0.4 ✓ π = 0.75, ε = 0.25 ✓

π = 0.5 ✓ π = 0.75, ε = 0.3 ✗

π = 0.6 ✓ π = 0.75, ε = 0.35 ✗

π = 0.7 ✓ π = 0.75, ε = 0.4 ✗

π = 0.8 ✓ π = 0.75, ε = 0.5 ✗

π = 0.9 ✓

Table 1. Verification of an approximation of the network, utilizing sorting method
C on the input points.

6. Conclusions and Future Work

The results obtained in our experiments were in accordance to expectation and to what
we knew beforehand about the function. That entails that if one is able to circumvent the
issues presented, this is a valid method to create a piecewise linear approximation of a
neural network.

For future works that intend to use such method of approximation, specially when
dealing with networks in a higher dimension, one must find an efficient way to assert the
continuity of the approximated function and to find the optimal way of ordering the input
data before executing the algorithm. Moreover, one can investigate efficient exact meth-
ods for representing neural networks which already compute piecewise linear functions.
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