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Abstract. Advances allow SAT solvers to be used to solve problems in the indus-
trial sector. Therefore, in this paper, we reduce the multiple traveling salesman
problem to a weighted partial max-SAT, with the aim of increasing the qual-
ity of the solution at a reduced computational cost. A version of Clarke and
Wright’s saving algorithm has been implemented to create the initial solution,
while the 2-opt algorithm is applied to each route to improve the routes, the
search space is extended by adding k nearest neighbors of each vertex so that
post-improvement can be performed by the SAT solver. Benchmarks of four in-
stances from the literature suggest a significant post-improvement in the quality
of the solution up to 43.51% for a reasonable computational cost.

1. Introduction
Boolean satisfiability (SAT) is a significant problem in both theoretical and practical terms
[Sohanghpurwala et al. 2017]. The reduction of problems for SAT is characterized as a
very successful approach to solving difficult combinatorial problems in artificial intelli-
gence and computer science [Rintanen 2012]. According to [Rintanen 2012], reducing
the problems for the SAT makes it possible to improve the problem-solving procedure.

The advances made in solvers with the insertion of new heuristics and increasingly
refined implementations make it possible to obtain results for large and complex instances
of combinatorial optimization problems; these advances allow the solvers to be used to
solve problems in the industrial sector [Sohanghpurwala et al. 2017]. Motivating works
such as the one presented in this paper and [Zha et al. 2020] to apply SAT solvers as a
resource to solve the multiple traveling salesman problem (MTSP).

Considered one of the most interesting and popular problems in combinatorial op-
timization, MTSP is widely used to model and relax more complex problems, such as the
vehicle routing problem [Cheikhrouhou and Khoufi 2021, Shokouhi rostami et al. 2015].
The complex nature of this problem makes it necessary to develop and apply optimization
techniques to improve the quality of the final solution.

This paper modifies the approach proposed in [Rocha et al. 2023] to reduce the
MTSP to a weighted partial max-SAT, with the aim of increasing the quality of the



solution generated at a reduced computational cost. In [Rocha et al. 2023] a post-
improvement procedure was proposed for the traveling salesman problem that uses a
reduction of the problem to a weighted partial Max-SAT. The authors used the solver
to make additional improvements to the initial solution produced and improved by the 2-
Opt algorithm. The main difference between the papers lies in the method used to create
the initial solution and the logical formulation of the problem.

2. Literature Review
The Multiple Traveling Salesman Problem (MTSP) is a generalization of the well-known
Traveling Salesman Problem (TSP), in which several salesmen are involved in visiting
a given set of cities exactly once and returning to the starting position with the min-
imum travel cost [Cheikhrouhou and Khoufi 2021]. The travel cost metric can be de-
fined in terms of distance, travel time, etc [Matai et al. 2010]. In this way, the MTSP
is a relaxation of the VRP without considering vehicle capacity or customer demand
[Cheikhrouhou and Khoufi 2021].

According to [Karabulut et al. 2021] MTSP can be formulated as follows: Let
G = (N,A) be a complete graph, where N is the set of n nodes and A is the set of
arcs. Each arc (i, j) ∈ A has a non-negative associated travel cost dij . Since there are m
salesmen, the objective is to determine a tour for each salesperson in such a way that each
tour starts and ends at the depot, at least one node is visited in each tour, and all nodes are
visited only once by any salesperson. Then, the total cost of a tour v can be defined as Cv

and the total cost of m tours can be defined as TC = C1 +C2 +C3 + ...+Cm. Thus, the
objective function of minsum MTSP is to minimize the total cost of m tours and can be
described as min(TC).

Being a combinatorial optimization problem, as the size of the graph increases,
it becomes more challenging to discover optimal solutions due to the complex and non-
deterministic nature of the problem. In addition, the computational cost of exploring all
possible solutions in this search space can be extremely high and may even be unattainable
based on the size of the problem in question, these characteristics of the problem allow
for the implementation of approximate algorithms and heuristics [Tosoni et al. 2022]. A
small improvement in the quality of the initially proposed solution or even a reduction
in the execution time of the algorithm can result in significant savings in resources or in
increased productivity of a company [Huerta et al. 2022].

2.1. Constructive methods
Being a subclass of the approximate algorithms, the tour construction algorithms build a
solution by adding each city step by step, all tour construction algorithms stop when a
solution is found and never try to improve it [Matai et al. 2010, Helsgaun 2000].

As a tour construction procedure, Clarke & Wright’s Savings Algorithm was first
proposed in [Clarke and Wright 1964] and is a widely known heuristic algorithm for
applications in the traveling salesman problem (TSP) and the vehicle routing problem
(VRP). The main objective of the algorithm is to assign routes to each salesman or vehi-
cle based on the savings that are ordered in descending order.

A concise explanation of the algorithm as per [Segerstedt 2014]: Begin by com-
puting a symmetrical distance matrix based on known distances. Then, determine the



distance savings for delivery from the depot for every possible pair of points on the same
route. To initiate a new route, select the pair with the highest savings available (if the
pair is still available for distribution). Once all distribution points have been assigned, the
route is considered complete. Subsequently, include the distribution point that yields the
greatest ”total savings” for all distribution points already assigned to the route, consider-
ing the problem’s constraints. If no additional distribution points can be accommodated,
return to the initial step.

The nearest neighbor algorithm starts choosing any arbitrary node and
adds the nearest node at each step until it has no more cities to include
[Anbuudayasankar et al. 2014].

2.2. Improvement methods

After obtaining any solution generated by a walk construction algorithm, it is possible to
add an improvement heuristic. Walk improvement algorithms aim to obtain an improve-
ment in the cost of the initial solution by making several changes to the initial solution
[Matai et al. 2010, Helsgaun 2000].

One of the main improvement methods applied to TSP is the 2-opt algorithm
[Lin 1965]. The 2-opt algorithm randomly removes two non-adjacent edges from the
tour and reconnects two new edges so that the tour remains a valid tour, the procedure
is repeated until no improvement is possible, then the cost of the tour is reduced and
the resulting tour is a valid tour. Furthermore, the quality of the improvement of the
solution generated by the 2-opt algorithm is strongly dependent on the initial solution
[Matai et al. 2010].

2.3. Composite methods

The tour construction algorithms gradually build up a tour by adding a new city at each
stage. The improvement algorithms improve a tour by making several changes. Com-
posite methods combine these two characteristics to generate an initial tour using a con-
struction algorithm, and after obtaining the initial solution, one or more improvement
procedures are applied in order to improve the initial solution given by the construction
algorithm [Helsgaun 2000].

2.4. Logical approach

Let φ a propositional formula composed of a set of variables V , logical connectives
∧,∨,⇒,⇔ and ¬ (denoting conjunction, disjunction, implication, bi-implication, and
negation, respectively) and parentheses. The formula φ is said to be satisfiable if and only
if there is at least one valuation that satisfies it; otherwise, it is said to be unsatisfiable. In
this way, SAT consists of finding a valuation that satisfies a given propositional formula
[Vizel et al. 2015].

Each weighted clause in Max-SAT is a pair (c,W ) where c is defined as a classical
clause and w is a natural number that represents the cost of falsifying the associated
classical clause. The clause is said to be hard if the cost associated with it is infinite,
otherwise the clause is said to be soft. A weighted Max-SAT formula is a multiple set of
weighted clauses ϕ = {(C1, w1), ..., (Cm, wm), (Cm + 1,∞), ..., (Cm+m′ ,∞)}, such that
the first m clauses are soft and the last m′ are hard [Ansótegui et al. 2010]



With ϕ being a multi-set of weighted clauses, the NP-hard problem of a weighted
partial Max-SAT combinatorial nature consists of finding an optimal valuation for the
clauses of ϕ such that it minimizes the cost associated with the valuation in ϕ. If the cost
is infinite, it means that a clause called hard has been falsified, in which case we say that
the multiset ϕ is unsatisfiable. Thus, the weighted Max-SAT problem is equivalent to the
weighted partial Max-SAT when there are no hard clauses [Ansótegui et al. 2010].

Despite the combinatorial nature of the problem, with an exponential worst-case
execution time. Modern SAT solvers use advanced branching heuristics, clause learning
algorithms, and highly refined implementations. In this way, a large number of large
and/or difficult instances of large problems (millions of variables and clauses) can be
solved in execution times that are considered reasonable. These advances can be easily
monitored by observing the results of the annual SAT Competitions. These advances in
SAT solvers and their heuristics mean that many industrial problems can be solved quickly
and efficiently [Sohanghpurwala et al. 2017].

3. Methodology
For the development of this work, comparative analyses were carried out with
the sp11, uk12, eil51 and berlin52 instances. Instances sp11 and uk12
were obtained from https://people.sc.fsu.edu/˜jburkardt/datasets/
cities/cities.html. eil51 was previously used by [Jiang et al. 2020] and berlin52
was ported from TSPLIB [Reinelt 1991]. For instances eil51 and berlin52 it was neces-
sary to calculate the Euclidean distance between each city and build a distance matrix. Our
experiments were run on AMD® Ryzen 7 6800H 4.7 GHz processor with 16 GB of 4800
MHz DDR5 RAM with Ubuntu 22.04.4 LTS operating system. The proposed approach
can be consulted in the following repository with the possibility of replicating the experi-
ments: https://bitbucket.org/ltiufc/mtsp-modeling/src/main/

3.1. Initial Solution
To build the initial solution, a version of Clarke and Wright’s savings algorithm was im-
plemented. Using as a restriction for joining routes the criterion that each salesman cannot
visit a number of cities greater than the ratio of the number of cities to the number of sales-
man. In this way, the output of the algorithm is an initial solution of the routes for each
salesman.

3.2. 2-opt Movement
Once the initial solution consisting of the route for each salesman has been obtained, the
2-opt improvement move is applied to each route individually by swapping adjacent edges
until no further improvement is possible through these swaps.

3.3. Nearest neighbors
Next, the K nearest neighbors are added to each vertex of the path resulting from the
improvement of the 2-opt algorithm, taking the proximity of the vertices as the main
criterion of choice given the minimum spanning tree created from the distance matrix.
In cases where the vertex does not have the K neighbors required in the configuration
of the minimum spanning tree, the distance matrix is considered to choose the missing
neighbors. Once the K neighbors have been added, a new distance matrix is generated
which will be used as input in the logic modeling stage.



3.4. Logical Formulation

After adding K neighbors to each vertex, based on the dimensions of the distance matrix
and a given number m of salesman, it is possible to define the clauses as follows. Each
edge w that connects a city i to a city j in the format wijv, clauses that represent that it is
true that the vehicle v passed through the edge (i, j) as cijv, and clauses tiv representing
the association of each vehicle v with a city i. Where i, j ∈ {0, ..., n} given that i ̸= j,
and v ∈ {0, ...,m}, such that n represents the number of cities. So each clause can take
on a true value (e.g.,wijv = 1) or a false value (e.g.,wijv = 0). In this way, each clause is
mapped to an integer to build the model to be passed as input to the SAT solver.

The Nagoya Pseudo-Boolean Solver (NaPS) [Sakai and Nabeshima 2015] was
chosen for this work due to its efficient and optimized implementation based on the un-
derlying MiniSat, its exceptional results in SAT competitions, and its support for solving
instances of the weighted partial Max-SAT with time limits.

After mapping the clauses, the model constraints and the minimization function
1 are specified for running the SAT solver. The constraints 2 and 3 ensure that only one
edge exits the zero vertex for each salesperson, while 4 and 5 ensure that only one edge
exits and enters each vertex.

Min
n∑

i = 0

n∑
j = 0

m∑
v = 0

wijv × dij (1)

n∑
j = 0

wijv = 1, ∀v ∈ {0, ...,m}, i = 0 (2)

n∑
i = 0

wijv = 1, ∀v ∈ {0, ...,m}, j = 0 (3)

n∑
j = 0

m∑
v = 0

wijv = 1, ∀i ∈ {1, ..., n}, i ̸= j (4)

n∑
i = 0

m∑
v = 0

wijv = 1, ∀j ∈ {1, ..., n}, i ̸= j (5)

−wijv−wjiv ≥ 1 ∀i ∈ {0, ..., n}, ∀j ∈ {i+1, i+2, i+3, ..., n}, ∀v ∈ {0, ...,m} (6)

−wijv + cijv ≥ 1, ∀i, j ∈ {0, ..., n}, ∀v ∈ {0, ...,m}, i ̸= j (7)

−wijv − cjkv + cikv ≥ 1, ∀i, j, k ∈ {1, ..., n}, ∀v ∈ {0, ...,m}, i ̸= j (8)

−wijv + tiv ≥ 1, ∀i, j ∈ {1, ..., n}, ∀v ∈ {0, ...,m}, i ̸= j (9)



−wijv + tjv ≥ 1, ∀i, j ∈ {1, ..., n}, ∀v ∈ {0, ...,m}, i ̸= j (10)

−tiv − til ≥ 1, ∀i ∈ {1, ..., n}, ∀v, l ∈ {0, ...,m}, v ̸= l (11)

−wijv + tiv ≥ 1, ∀i ∈ {1, ..., n}, ∀v ∈ {0, ...,m}, j = 0 (12)

−wijv + tjv ≥ 1, ∀j ∈ {1, ..., n}, ∀v ∈ {0, ...,m}, i = 0 (13)

The constraint 6 ensures that no vertex is visited more than once. Constraints
7 and 8 provide the path base and induction to avoid the formation of subtours in the
solution. Constraints 9, 10, 12 and 13 link each salesperson to a city, and constraint 11
prevents a city from being visited by more than one salesman. After executing the SAT
solver, the reverse mapping from integers to clauses takes place, in order to display the
path obtained as a result, as well as the cost associated with the solution.

4. Results and discussions
To evaluate the impact of using the SAT solver on the final solution, the cost of the route
was checked before and after post-improvement with the SAT solver, on four instances
from the literature previously worked on in [Karabulut et al. 2021]. The quality criterion
for the solution was the improvement made by using the solver compared to the initial
solution, and the performance criterion was the average time of 10 executions of each
instance due to random restarts of the solver.

The table 1 shows how close the cost found by the modeling is to the optimum cost
for small instances; the costs differ from the optimum by 47.61% and 82.93% respectively
for instances sp11 and uk12. Regarding the refinement of the modeling in relation to the
initial solution, we can mention improvements of 43.51% for 11b with k = 5, 20.58% for
12b with k = 5 and 7.01% for berlin52 with five selesman and k = 5.

It can be seen that the use of the five nearest neighbors guarantees the greatest
approximation to the optimum cost, as a result of the wider search space, allowing NaPS
to reach solutions closer to the optimum in a reasonable execution time, as suggested by
the results shown in the table. The berlin52 instance had the longest execution time for 3
salespeople and k = 5, although it was still less than 100 seconds, showing that the optimal
cost was approached with minimal variation in the time required to apply the model.

The results suggest that the logical approach associated with constructive methods
and improvement methods are efficient in obtaining near-optimal solutions with accept-
able computational costs for small instances. It proves to be an appropriate approach for
contexts in which approximations to the optimal value are accepted. The improvement
achieved in the quality of the solution or in the computational cost required to obtain the
route, however small, will still result in savings of millions of dollars for the company
[Huerta et al. 2022].

In future work, we intend to investigate and analyze the impact of different strate-
gies on the choice of K neighbors. Initial solutions construction strategies specific to the



MTSP will be explored, as a result of the possibility of increasing the quality of the solu-
tion space for solver exploration. In addition, to investigate anytime solvers with support
for Weighted Partial Max-SAT and this work will be extended to the Vehicle Routing
Problem.

Table 1. Benchmark results

Instances Approach
C&W + 2-opt Logical Approach

Name Size Salesman Optimal Cost Cost K Average Time (S)
301 3 0.09
215 4 0.12

11b 11 3 104 301 169 5 0.19
3198 3 0.27
3022 4 0.41

12b 12 3 1466 3543 2814 5 0.54
721 3 3.51
657 4 4.48

eil51 51 3 159.57 744 652 5 12.98
13933 3 4.96
12830 4 9.53

berlin52 52 3 7128 13933 12679 5 99.3
977 3 5.48
977 4 5.91

eil51 51 5 118.13 977 955 5 6.44
19104 3 7.64
18007 4 9.56

berlin52 52 5 7074 19104 17765 5 19.91
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Karabulut, K., Öztop, H., Kandiller, L., and Tasgetiren, M. F. (2021). Modeling and
optimization of multiple traveling salesmen problems: An evolution strategy approach.
Computers Operations Research, 129:105192.

Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44(10):2245–2269.

Matai, R., Singh, S., and Mittal, M. L. (2010). Traveling Salesman Problem: an Overview
of Applications, Formulations, and Solution Approaches. In Davendra, D., editor,
Traveling Salesman Problem, chapter 1. IntechOpen, Rijeka.

Reinelt, G. (1991). TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on
Computing, 3(4):376–384.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–
86.

Rocha, A. C., Lima, J. P., Arruda, A., and Dmontier (2023). USING A MAX-SAT
SOLVER AS A POST-IMPROVEMENT MOVE FOR TRAVELING SALESMAN
PROBLEM. volume 2, page 908 – 916. Computers and Industrial Engineering.

Sakai, M. and Nabeshima, H. (2015). Construction of an ROBDD for a PB-Constraint in
Band Form and Related Techniques for PB-Solvers. IEICE Transactions on Informa-
tion and Systems, E98.D(6):1121–1127.

Segerstedt, A. (2014). A simple heuristic for vehicle routing – A variant of Clarke and
Wright’s saving method. International Journal of Production Economics, 157:74–79.
The International Society for Inventory Research, 2012.

Shokouhi rostami, A., Mohanna, F., Keshavarz, H., and Rahmani Hosseinabadi, A. A.
(2015). Solving Multiple Traveling Salesman Problem using the Gravitational Emula-
tion Local Search Algorithm. Applied Mathematics Information Sciences, 9:1–11.

Sohanghpurwala, A. A., Hassan, M. W., and Athanas, P. (2017). Hardware accelerated
SAT solvers—A survey. Journal of Parallel and Distributed Computing, 106:170–184.

Tosoni, D., Galli, C., Hanne, T., and Dornberger, R. (2022). Benchmarking Metaheuristic
Optimization Algorithms on Travelling Salesman Problems. In Proceedings of the 8th
International Conference on E-Society, e-Learning and e-Technologies, ICSLT ’22,
page 20–25, New York, NY, USA. Association for Computing Machinery.

Vizel, Y., Weissenbacher, G., and Malik, S. (2015). Boolean Satisfiability Solvers and
Their Applications in Model Checking. Proceedings of the IEEE, 103(11):2021–2035.

Zha, A., Gao, R., Chang, Q., Koshimura, M., and Noda, I. (2020). CNF Encodings for
the Min-Max Multiple Traveling Salesmen Problem. In 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), pages 285–292.


