Towards Logical Representations
of Recurrent Neural Networks

Sandro Preto!

LCenter for Mathematics, Computing and Cognition
Federal University of ABC — Santo André — SP — Brazil

sandro.preto@ufabc.edu.br

Abstract. Representations of neural networks in the formal language of logical
systems may be used to enhance their interpretability and as a step in the for-
mal verification of their properties. This work builds on the literature regarding
the representation of feedforward neural networks that compute rational Mc-
Naughton functions in the language of tukasiewicz logic. Thus, we propose a
technique for representing recurrent computations, enabling the representation
of recurrent neural networks. This is an initial investigation conducted within
the specific context of simple recurrent networks (SRNs) whose layers compute
rational McNaughton functions.

1. Introduction

The logical representation of neural networks is a step toward advancing the understand-
ing of these artificial intelligence systems. Formalizing a network within a logical frame-
work can enhance the interpretability of the model. Furthermore, such formalization
might be used in the formal verification of neural networks, improving the security of
these models when performing critical tasks.

Techniques for representing neural networks within the language of Lukasiewicz
logic are already discussed in the literature. Specifically, feedforward neural networks
that compute rational McNaughton functions have been explored [Preto and Finger 2024,
Preto and Finger 2022, Preto and Finger 2020]. These representations were used to for-
mally encode and verify properties of binary classification neural networks through
the framework of Lukasiewicz logic [Preto and Finger 2023a, Preto and Finger 2023b,
Preto et al. 2023].

The aim of this work is to propose a path for advancing this line of research to-
wards logical representations of recurrent neural networks. To achieve this, we introduce
a mechanism for representing the computation of recurrent layers within Lukasiewicz
logic. This technique is explored in the context of simple recurrent networks whose lay-
ers compute rational McNaughton functions.

The rest of this work is organized as follows. In Section 2, we introduce simple
recurrent networks. In Section 3, we introduce Lukasiewicz logic and functional repre-
sentations as a means of representing neural networks. In Section 4, we propose a tech-
nique for representing recurrent computations and simple recurrent networks. Finally, in
Section 5, we provide some final remarks.

2. Recurrent Neural Networks

While neural networks are computational models defined by connections between their
computing units—commonly organized in layers—, recurrent neural networks are a spe-
cific type of these models that include cycles in their connections. These cycles enable the
model to establish context when processing sequential data, which is essential for tasks
involving data such as text. In this work, we focus on a simple kind of recurrent neural
networks called Elman networks or simple recurrent networks (SRN) [Elman 1990]. The
following presentation of SRNs is based on [Jurafsky and Martin 2025, Chapter 8].

Let the input data for an SRN, such as written text or recorded speech, be rep-
resented through (column) vectors in R%». These vectors might be, for instance, word
embeddings, which are representations of words in a natural language. Then, a sequence
of vectors Xy, ...,x; € R%» might stand for a sequence of words in a text excerpt. An
SRN processes sequences of vectors, each element of a sequence one at a time, from
the first to the last. The further along a vector is in the sequence, the more context the
SRN is expected to accumulate. The computation path of an SRN, depicted in Figure 1,
comprehends:

« Aninput layer, that stores the input data given by a vector x; € R%" in a sequence
of vectors;

* A hidden layer, that receives as input both the data in the input layer and its own
previous output through a recurrent connection; and

* An output layer, that receives as input the output from the hidden layer.

) A O)
Xt ht yi
- - -

Figure 1. The computation path in an SRN

An SRN is determined by matrices W € Ré%*din U € R%*% and V € RboutXdn_
where d;, is its input dimension, d,,; is its output dimension and dj, is its hidden layer
dimension. Let x, € R%" be an element of a sequence of vectors that is given as input to
the SRN; the computation of this element by the SRN is given by equations:

ht = g(WXt + Uhtfl); (1)

ye = f(Vhy). 2)
Equation (1) describes the computation in the hidden layer and equation (2) describes the
computation in the output layer.

Vector h;_; € R% is the output of the hidden layer from the computation of the
previous element x; ; in the sequence, and is reused as input for the hidden layer in

the computation of the current element x;. This mechanism provides context acquired
from x; up to x;_; when processing x;. Then, h; is the output of the hidden layer in the
processing of x;; it is used to calculate the SRN output y;, through the output layer, and
is given as input for the hidden layer when processing a possible next element x;, in the
sequence.

Note that, for processing the first element x; in a sequence of vectors, a predefined
standard initial vector hy is necessary; in this work, we assume it to be the zero vector.
Also note that, in addition to linear operations between matrices and vectors, nonlinearity
is introduced in (1) and (2) through the activation functions f and g. Function g must map
vectors in R to vectors still in R%.

In this work, we consider the particular case where activation functions f and g
transform an argument vector by applying the truncated identity function Tld : R — R
to each of its entries, where TId(z) = max(0, min(1,z)). We also assume that vectors
X, in an input sequence are constrained to [0, 1]%» C R,

As an example of application, assume that the elements of an input sequence
X1,...,X; € [0,1]%" are word embeddings of a text. Then, each output y;, for t €
{1,..., k}, might classify the text encoded by the subsequence x1, . . ., X; into d,,; topics,
for instance, such as news, sports, technology, etc. The final output y;, determines a clas-
sification for the entire encoding sequence. For more details on recurrent neural networks,
including applications and training, we refer the reader to [Jurafsky and Martin 2025].

In order to achieve our aim of representing an SRN by logical formulas, it is
convenient to rewrite equation (1) as follows:

X
h;, = W U . 3
—o(w o[]))
Note that equations (1) and (3) are equivalent.

3. Lukasiewicz Logic for Functional and Neural Representations

Lukasiewicz logic (L) is defined from a basic language £ containing freely generated
formulas from a countable infinite set of propositional variables [P, a binary disjunction
operator (&) and a unary negation operator (—). Let us denote propositional variables by
uppercase Latin letters, possibly with subscripts and superscripts.

A E-valuation is a function v : £ — [0, 1] that satisfies, for ¢,y € L:

v(p @) = min(1,v(p) + v(¥)); 4)
v(=p) =1—v(p). (5)

Let Val be the set of all valuations. A formula ¢ € L is satisfiable if there exists a L-
valuation v € Val such that v(¢) = 1; a set of formulas & C L is satisfiable if there
exists a E-valuation v € Val such that v(p) = 1, for all ¢ € P; otherwise (sets of)
formulas are unsatisfiable. Let Valg be the set of all L-valuations v € Val that satisfy
a set of formulas ® C L; we call such a restricted set of valuations a semantics modulo
satisfiability. Note that Val, = Val.

For ;1 € L, derived operators from disjunction and negation are defined as
follows.

Conjunction: p ® 1) = —(—p &) v(p ®v¥) = max(0, () +v(y) —1)
Implication: ¢ — ¥ = - &Y v(p =) =min(1, 1 — v(p) +v(¥))
Maximum: ¢ V 1) = —(—p &) ® ¢ v(p V) = max(v(gp), v(1))
Minimum: ¢ A ¢ = = (=@ V) v(p Atp) = min(v(p), v(¥))
Bi-implication: ¢ <>) = (¢ = V) A (b = @) v(p < ¥) =1 — |v(p) — v(¥)]
Truncated subtraction: ¢ & 1) = —(p — 1) v(p © 1) = max(0,v(p) — v(¥))

Note that v(¢ —) = 1iff v(¢) < v(¢) and, similarly, v(¢ < ¢) = 1 iff
v(p) = v(v). Let X be a propositional variable; as we have v(X ® —=X) = 0, for any
v € Val, we define constant 0 by X ®—X. We also define 0p = 0andnp = @ --- By,
n times, for n € N*; and ,_,, ¢; = 0.

A rational McNaughton function f : [0,1]" — [0, 1] is a function that satisfies:

* f is continuous with respect to the usual topology of [0, 1] real number interval;

* There are linear functions py, ..., p, over [0, 1] with rational coefficients such
that, for each point x € [0, 1]", there is an index ¢ € {1,...,m} with f(x) =
pi(x). Polynomials py, . . ., p,, are the linear pieces of f.

A McNaughton function is a rational McNaughton function whose linear pieces coeffi-
cients are constrained to integer values.

Formulas of Lukasiewicz logic represent McNaughton functions. That is, for a

formula ¢ € £ whose propositional variables are X1, ..., X,, € P, function f, : [0,1]" —
[0, 1], given by

fgo(xla-"axn) :’U(QD), (6)
for a E-valuation v € Val such that v(X;) = z1,...,v(X,) = x,, is a Mc-

Naughton function. Conversely, for any McNaughton function f : [0,1]" — [0, 1],
there is a formula ¢y € £ with n distinct propositional variables, which may be iden-
tified with X5, ..., X,,, satisfying an expression analogous to (6). Such identification
of formulas and McNaughton functions is established by the McNaughton’s Theorem
[McNaughton 1951, Mundici 1994].

Although formulas of L only represent (integer) McNaughton functions,
an implicit kind of representation may be used to overcome such constraint
[Finger and Preto 2020, Preto and Finger 2022, Preto and Finger 2020]. Let f : [0, 1]* —
[0, 1] be a function, ¢ € L a formula and & C L a set of formulas. The pair (¢, ®) is a
representation (modulo satisfiability) of f if:

e For all (xq,...,x,) € [0,1]", there exists a L-valuation v € Valg, such that
v(X,) ==x,fore=1,...,n;and
o f(u(X1),...,v(X,)) = v(p), for all L-valuation v € Vals.

Every rational McNaughton function has a representation modulo satisfiability
[Preto and Finger 2022]. From this point onward, whenever we refer to function rep-
resentations in this text, it is understood that we are speaking of representations modulo
satisfiability.

For example, constant functions f : [0,1]" — [0, 1], given by f(x) = ¢, where
c € [0,1] N Q, are rational McNaughton functions. Let ¢ = /b, where b € N*. Formula

P/ = _|(b — 1>Zl/b g Z1/b

has the property that any L-valuation v satisfying 1/, is such that v(Z,,) = 1/o. Then,
the pair (Zy,, {¢1/,}) is a representation of f. In case ¢ = 0, the pair (0, &) represents
f. And, in case ¢ = %/s, where @ € N, b € N* and a < b, the pair (aZ1,, {¢1}) is a
representation of f.

Neural networks may be represented in Lukasiewicz logic by encoding the func-
tions they compute. Techniques exist for constructing such representations for certain
non-recurrent (feedforward) neural networks that compute rational McNaughton func-
tions [Preto and Finger 2024].

Both the hidden and output layers of an SRN compute rational McNaughton func-
tions if matrices W, U and V have rational entries, their inputs are restricted to vectors
in [0, 1]%" and activation functions f and g are elementwise applications of function TId,
as agreed upon in the previous section. Let us refer to such a neural network as a Mc-
Naughton simple recurrent network (McN-SRN).

In this case, by Equation (3), each of the dj, entries in the output vector h; of the
hidden layer is given by a rational McNaughton function of the input vector [x] hl |7
[0, 1]%n*dn where T is the transposition operator; let (p;, ®;) be the representation of
each such function, for i € {1,...,d;}. And, by Equation (2), each of the d,,; entries
in the output vector y; of the output layer is given by a rational McNaughton function
of the vector h; € [0,1]%; let (¢;, ¥;) be the representation of each such function, for

j S {17 s 7dout}-
For example, consider a McN-SRN, where d;,, = d;, = 2 and d,,,; = 1, given by:

0 -1 10
W_Lh J,[L{OJ and V=[1 1]. (7)
The first and second entries in the output h; € [0,1]? of the hidden layer are given by
rational McNaughton functions fi, f> : [0, 1]* — [0, 1], respectively defined by:
fi(zq, 29, 23, 24) = max(0, min(l, — xg+ x3));

fo(xy, 9, x3, £4) = max(0, min(1, 21/2 4+ x4)).

And the output y; € [0, 1] of the output layer is given by rational McNaughton function
g :[0,1]* — [0, 1], defined by:

g(x1, x9) = max(0, min(1, z1 + z2)).

Functions fi, fy and g are represented, respectively, by (@1, 1), (2, ®2) and (¥, V),
which are defined in the following.

p1=X30 X, ¢ =0
V2 =7Z7® X, by = {Xl — 2@ Z, Z1/2 — _|Zl/2, Z — ZI/Q}
b= X B X, V=g

4. Representing Recurrent Neural Networks

In the previous section, we saw that the hidden and output layers of the class of McN-
SRNs (whose layers compute rational McNaughton functions) may be represented in
Fukasiewicz logic. We now turn to the problem of constructing logical representations
for the entire neural networks.

Let a McN-SRN be given by the matrices W € Q%*4» U € Q%> and
V ¢ Qdutxdn Following the previous section, let the representations of the rational
McNaughton functions computed by each entry in the output vector of the hidden layer
be given by (p;, ®;), fori € {1,...,d,}. And let the representations of the rational Mc-
Naughton functions computed by each entry in the output vector of the output layer be
given by (v;, V), for j € {1,..., dou}.

Let X1,...,X; € [0,1]%" be an input sequence of vectors to the McN-SRN, and
yi € [0,1]% its output relative to x;. Also, let X{,..., X} X§ ..., X} , €P
be distinguished propositional variables, for ¢ € {1,...,k}. Our aim is to establish,
for each k € N* and j € {1,...,dou}, a representation (£F, Z¥) such that, for any E-
valuation v € ValE;?, if

o(X)) =x11, -y U(Xém) = X1.4,,,
U(Xf) = Xk,1) .-+ U(XC’ZH) = Xk,din>
then,
v(EF) = yny.
Thus, representing a McN-SRN means to represent functions fF : [0, 1)~ — [0, 1] by
pairs (€¥, ZF), for sizes k € N* of input sequences of vectors and indices j € {1, ..., dou}

of the McN-SRN output vector. For each such £ and j, function ff has:

e As arguments, the %k - d;, entries in the k vectors in an input sequence for the
McN-SRN; and
* As output, the j-th value of the McN-SRN output vector.

To proceed with the construction, we represent the recurrent computation per-
formed by McN-SRNs. For that, for each i € {1,...,d;}, define k new representations
(pf, ®t), fort € {1,...,k}, by replacing all propositional variables in (¢;, ®;) with fresh
ones, ensuring that no propositional variable is shared among the k£ new representations.
Let us agree that, in a pair (¢!, ®!), propositional variables X/ € IP are the replacements
of X, € P in the original functional representation (p;, ®;), for . € {1,...,d;, + dp}.
Pairs (!, ®!) are meant to represent computations in distinct recurrences of the SRN, for
ted{l,... .k}

Moreover, we need to ensure that, for fixed ¢ € {1,...,k}, the only shared
variables among pairs (o}, ®;), for i € {1,...,dy}, are X{,..., X} X} .1,...,
X§ a4, € P. Also, if i # " and t' # t", (¢h,) does not share any propositional
variable with (!, ®%,). As a last agreement, pairs (1;, U;), for j € {1,... doy}, only
share propositional variables X, ..., X; among themselves and do not share any propo-
sitional variable with any pair (¢!, ®!), whatever are i and ¢.

Then, we are able to define representation (¥, Z%) by

ko
gj = ¢j
and
dp, k
=k t .
== U U vy ou
i=1 t=1
din+dp k din+dp, dp
U {X}<—>O} v U U {Xf<—>gofjlm} U U{Xﬁ—ﬂpf}.
t=d;n+1 t=2 1=din+1 =1

A representation for the neural network given in previous section by matrices (7),
for k = 2, is established by pair (¢*, Z*), where

fk =X, ® Xy
and
=k = {Xll o2 @7, 7Y, o2, Z2'— 7,

Xi e Z2a 7, Zi, o 2, 20— 7,
X; <0, X, <0,

X2 XioX), X2eZ'eX],

X, & X2o X2, XQHZQ@XZ}.

5. Final Remarks

In this work, we delineated the first steps towards the logical representations of recurrent
neural networks. We devised techniques to represent recurrent computations from repre-
sentations of layer computations in the language of Lukasiewicz logic. These techniques
were applied to the specific case of a class of simple recurrent networks (SRN), which we
called McNaughton simple recurrent networks (McN-SRN).

In order to achieve more general techniques for representing recurrent neural net-
works in Lukasiewicz logic, many extensions of the approach presented here might be ex-
plored in future research. One may pursue techniques to account for activation functions
other than the TId function aiming at representations of layers that compute functions
beyond rational McNaughton functions. Ultimately, this line of research might culmi-
nate in the logical representation of recurrent neural networks widely used today, such
as long short-term memory (LSTM) and gated recurrent unit (GRU) neural networks
[Hochreiter and Schmidhuber 1997, Cho et al. 2014].

The logical representation of recurrent neural networks is part of a broader re-
search effort to develop formal representations of neural networks in general. Among
the potential applications of this endeavor, we highlight the formal verification of neural
networks. Thus, another direction for future research is to identify critical properties of
recurrent neural networks, such as specific features desired in natural language models,
and formalize these properties in the language of Lukasiewicz logic.

Funding

This work was carried out at the Center for Artificial Intelligence (C4AI-USP), with sup-
port by the Sao Paulo Research Foundation (FAPESP) [grant #2019/07665-4] and by the
IBM Corporation.

References

Cho, K., van Merrienboer, B., Giil¢ehre, C., Bougares, F., Schwenk, H., and Bengio, Y.
(2014). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179-211.

Finger, M. and Preto, S. (2020). Probably partially true: Satisfiability for fLukasiewicz
infinitely-valued probabilistic logic and related topics. Journal of Automated Reason-
ing, 64(7):1269-1286.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9(8):1735-1780.

Jurafsky, D. and Martin, J. H. (2025). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition
with Language Models. 3rd edition. Online manuscript released January 12, 2025.

McNaughton, R. (1951). A theorem about infinite-valued sentential logic. Journal of
Symbolic Logic, 16:1-13.

Mundici, D. (1994). A constructive proof of McNaughton’s theorem in infinite-valued
logic. The Journal of Symbolic Logic, 59(2):596—602.

Preto, S. and Finger, M. (2020). An efficient algorithm for representing piecewise linear
functions into logic. Electronic Notes in Theoretical Computer Science, 351:167-186.
Proceedings of LSFA 2020, the 15th International Workshop on Logical and Semantic
Frameworks, with Applications (LSFA 2020).

Preto, S. and Finger, M. (2022). Efficient representation of piecewise linear functions
into Lukasiewicz logic modulo satisfiability. Mathematical Structures in Computer
Science, 32(9):1119-1144.

Preto, S. and Finger, M. (2023a). Effective reasoning over neural networks using
Lukasiewicz logic. In Hitzler, P., Kamruzzaman Sarker, M., and Eberhart, A., edi-
tors, Compendium of Neurosymbolic Artificial Intelligence, volume 369 of Frontiers in
Artificial Intelligence and Applications, chapter 28, pages 609-630. IOS Press.

Preto, S. and Finger, M. (2023b). Proving properties of binary classification neural net-
works via Lukasiewicz logic. Logic Journal of the IGPL, 31(5):805-821.

Preto, S. and Finger, M. (To appear in the proceedings of LSFA 2024). Regional, lattice
and logical representations of neural networks.

Preto, S., Manya, F., and Finger, M. (2023). Benchmarking f.ukasiewicz logic solvers
with properties of neural networks. In 2023 IEEE 53rd International Symposium on
Multiple-Valued Logic (ISMVL), pages 158—163.

