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Abstract. Introduced by Hector Levesque in the 1990s, the logic of only-
knowing (OL) has proven to be a rich framework for knowledge representation,
a central topic in Artificial Intelligence. Since then, various extensions of OL
have been explored by different authors. More recently, S. Molick and V. Belle
extended OL to incorporate abductive reasoning, resulting in the logic of only-
knowing and abduction (AOL). In this paper, we present sound and complete
tableau rules for AOL, providing a preliminary step toward the development
of an adequate proof-theoretic foundation for abductive reasoning within this
extended logic.

1. Introduction

The development of logic-based frameworks for knowledge representation is an impor-
tant subject for modern logic and theoretical computer science. An influential frame-
work for modeling epistemic reasoning in different scenarios was first introduced by Hec-
tor Levesque in [Levesque 1990]. Levesque’s basic framework, named Logic of Only-
knowing (OL), was subsequently extended by different authors for handling multi-agent
scenarios, the dynamics of update announcement and belief revision, among other rele-
vant features for epistemic modelling (see [Belle and Lakemeyer 2010], [Levesque 1989],
[Belle and Lakemeyer 2015]).

A novel extension of OL was recently introduced in [Molick and Belle 2025] to
express abductive reasoning within the bounds of the background knowledge of an agent,
a framework called Logic of Only-knowing and Abduction (AOL). Abductive rea-
soning is a central component for contemporary accounts of knowledge representation
in artificial intelligence. It is often described as a kind of “backward reasoning”. While
deductive reasoning seeks to determine whether a certain conclusion φ follows from a
background knowledge ∆ (written ∆ ⊢ φ), abductive reasoning consists of working from
the pair ⟨∆, φ⟩ (called an abduction problem) such that ∆ ̸⊢ φ and seeking for a formula
α (called an explanation for the event φ) such that ∆, α ⊢ φ.

In AOL, abductive reasoning is expressed by the modality Aφ capable of ex-
pressing that the “formula φ is inferred by abduction”. The rationale is to treat ab-
duction as a process of epistemic change, a topic initiated in [Aliseda 2000]. For this,
the logic AOL validates core inferences of abductive reasoning for propositional modal
languages such as |= (O(ϕ → ψ) ∧ Oψ)) → Oϕ or O(ϕ → ψ), Oψ |= Oϕ (where
Oφ expresses that the agent “only knows φ”) via semantic means. While the authors



in [Molick and Belle 2025] explored only semantical properties of the system, the pur-
pose of this paper is to introduce a sound and complete tableau rules for the logic of
only-knowing and abduction. The result represents a first step toward the development of
tableaux systems suitable for abductive reasoning in the sense proposed by [Aliseda 2000]
or [Nepomuceno-Fernández 2002].

2. Preliminaries

Let L be a propositional modal language with a countable set of propositional letters p,
q, r..., a countable set of arbitrary formulas φ, ψ, δ ..., the classical operators ¬, ∧, →
and the modalities K, O and A. The set of L-formulas of the logic AOL is recursively
defined in the following way:

φ :== p | ¬φ |φ ∧ φ |Kφ |Oφ |Aφ

We will follow Levesque’s presentation ([Levesque 1990]) and let Oφ to be read
as “the agent only knows φ” and Kφ to be read as “the agent knows or believes φ”.
In addition, Aφ should be read as “the agent knows φ by abduction”. Accordingly, all
propositional formulas will be called objective, boolean formulas preceded by any of the
three modal operators will be called subjective. A formula will be called abductive if it
is a boolean formula preceded only by the modal operator A.

According to Levesque’s semantics, an epistemic situation is a pair (W , w),
where W is a set of epistemic states and w has the usual truth-assignment to primitive
formulas. The resulting Kripke’s semantics is defined as follows:

Definition 2.1. ([Molick and Belle 2025]) Where L is a modal language, a Kripke model
for L is a tuple M = ⟨W ,R, v⟩, where W is a set of epistemic states, R is a binary
relation over W and v is a mapping that assigns to each atom of L a subset of W .

(i) (M, w) |= p iff w ∈ v(p) and p is an atom.
(ii) (M, w) |= ¬φ iff (M, w) ̸|= φ.

(iii) (M, w) |= φ ∧ ψ iff (M, w) |= φ or (M, w) |= ψ.
(iv) (M, w) |= φ→ ψ iff (M, w) ̸|= φ or (M, w) |= ψ
(v) (M, w) |= Kφ iff (M, w′) |= φ for all w′ ∈ M such that wRw′.

(vi) (M, w) |= Oφ if for all states w′ ∈ W: wRw′ iff (M, w′) |= φ.
(vii) (M, w) |= Aφ iff ∃α : (M, w) |= Oα and (M, w) |= K(φ→ α).

Definition 2.2. (Local validity) We shall write (M, w) |= φ to denote that the modal
formula φ is valid at the state w of a model M. We shal write ‘Γ |= φ’ to denote that
every model (M, w) such that (M, w) |= γ (for every γ ∈ Γ) implies (M, w) |= φ.

Definition 2.3. (Global validity) A formula φ is valid with respect to a class F of models
M (written |=F φ ) if (M, w) |= φ for every model M ∈ F .

Definition 2.4. (Abductive explanation) A formula α will be called an explanation for
the abduction problem ⟨Θ, φ⟩ if α is an abductive formula and Θ ∪ {α} |= φ.



As explained by the authors in [Molick and Belle 2025], an useful application
of the abductive modality A is to employ abductive reasoning in accordance with the
background knowledge of the agent1. Thus, clause (vii) of the semantics guarantees that
the formula explanation discovered by the agent is within the bounds of her background
knowledge, as the following example illustrates.

Example 1. Let Θ denote a set of diagnostic principles, F denote the set of symptoms of
a patient, and E be the set of possible diagnostic explanations. Consider the following
medical situation

Θ = {O(cold→ cough),
O(flu→ (cough ∧ fever)),

O(pneumonia→ (chest pain ∧ cough ∧ fever))}
F = {fever, cough}

E = {flu}.
In this example the best abductive explanation for the patient’s symptom is that it is

caused by the condition flu. According to the semantics of the abduction operator A,
the diagnostician obtains the explanation φ = flu. Since both Oα and K(φ→ α) hold,

the diagnostician can conclude Aφ, which in this case corresponds to flu. As a
consequence, the doctor does not directly know that the patient has the flu, but

abductively infers it based on the symptom cough∧ fever. The combination of K and O
expresses the relation between the only-known facts (O) acknowledged by the agent and

the possible explanations expressed by K. The abductive explanation A is derived in
accordance with the hypotheses for which the agent is aware of explaining the event α.

2.1. Tableaux system

In this section, we introduce a set of tableau rules for the logic AOL (in the style
presented in [Priest 2008]) . Unlike standard modal logics, AOL incorporates epistemic
operators that capture both the agent’s explicit knowledge and the restrictions imposed
by only-knowing specific information. The rules introduced in this section are designed
to reflect the semantics of the three central modal operators in AOL: the knowledge
operator (K), the only-knowing operator (O), and the abduction operator (A). We start
by introducing the basic definitions:

Definition 2.5. A modal tableau tree is a structured sequence of nodes, where each
node is any finite set of formulas endowed with a state w. The node at the top of a
tree is called the root. The nodes at the bottom are called tips. A branch is a max-
imal sequence of nodes, where each node is obtained by applying a tableau rule to a node.

Definition 2.6. The initial list of a tableau tree is the single branch in which occur the
premises and the negation of the conclusion, where each node comes endowed with both
a formula and an initial state.

Definition 2.7. A tableau is complete iff every rule that can be applied has been applied.

1The reader may check [Molick and Belle 2025] to see other semantic properties that guarantee this
behavior.



Definition 2.8. A branch is closed iff there are formulas of the form φ and ¬φ on
two of its nodes labeled with the same state; otherwise it is open. (A closed branch
will be indicated by ×). A tableau is closed iff every branch is closed; otherwise it is open.

Definition 2.9. We will say that the formula φ is a proof-theoretic consequence of the set
of formulas Γ written (Γ ⊢ φ) iff there is a complete tableau whose initial list is closed
and starts with the formulas of Γ and the negation of φ. We will also write Γ |= φ to
denote that the formula φ is a semantic consequence of the set of formulas Γ.

The tableau rules in Priest’s presentation come endowed with a formula and an
index number to indicate the world at which the formula is valid. Thus, ψ,w1 indicates
that the formula is valid at state w1 and w1rw2 indicates that w2 is accessible from
w1.Furthermore, each connective has a pair of rules, one of which applies to its negated
form. We introduce below all rules for our tableaux system2:

2.2. Rules for Conjunction

Conjunction Rule
ϕ ∧ ψ,wi

ϕ,wi

ψ,wi

Negated Conjunction Rule

¬(ϕ ∧ ψ), wi

¬ϕ,wi | ¬ψ,wi

2.3. Rules for Disjunction

Disjunction Rule

ϕ ∨ ψ,wi

ϕ,wi | ψ,wi

Negated Disjunction Rule

¬(ϕ ∨ ψ), wi

¬ϕ,wi

¬ψ,wi

2.4. Rules for Conditional

Conditional Rule

ϕ→ ψ,wi

¬ϕ,wi | ψ,wi

Negated Conditional Rule

¬(ϕ→ ψ), wi

ϕ,wi

¬ψ,wi

The rules for the modal operators are the following:

2.5. Rules for Knowledge

Knowledge Rule

Kϕ,wi and wiRwj

ϕ,wj

Negated Knowledge Rule

¬Kϕ,wi

wiRwj

¬ϕ,wj

2The ‘|’ denotes an or, i.e. a bifurcation in the branch.



The knowledge rule states that if Kϕ is in a state wi, then ϕ can be introduced in all states
wj such that wiRwj . In a different situation, the negated knowledge rule allows us to
introduce ¬ϕ only in new states wj .

2.6. Rules for Only-knowing

Only-Knowing Rule

Oφ,wi

ϕ,wj and wiRwj

Negated Only-knowing Rule

¬Oφ,wi

¬ϕ,wj and wiRwj | φ,wj and ¬wiRwj

The only-knowing rules states that if Oϕ holds at a state wi, then ϕ must hold in all
accessible states. The negated rule works in terms of the biconditional, i.e., either a state
validates φ or is not accessible. In spite of its similarity with the knowledge rule, it is
important to note that only the knowledge rule allows one to create new states.

2.7. Rules for Abduction

Abduction Rule

Aφ,wi

Oα,wi, K(α → φ), wi

Negated Abduction Rule

¬Aφ,wi

¬Oα,wi, | ¬K(α → φ), wi

The abduction rule states that if Aϕ holds at a state w, one can introduce an abductive
assumption α such that both Oα and K(α → ϕ) hold in w3. In contrast, the negated
abduction rule states that either O or K fails at a state w for any abductive assumption α.
In the next section, we introduce the proofs of soundness and completeness.

3. Soundness and Completeness

The soundness and completeness proofs follow the standard practice and presentation for
tableaux systems as developed in [Priest 2008]. In the following, we present the relevant
parts of the proof.

Definition 3.1. Let M = ⟨W ,R, v⟩ be a kripke model, and b be any branch of a tableau.
We say that M is faithful to b iff there is a map f : N → W such that
(i) For every node φ,wi on b, then φ is true at f(wi) in M, and
(ii) If w1Rw2 on b, then f(w1)Rf(w2) in M.
We say that the map f shows M to be faithful to b.

Lemma 1. (Soundness lemma) Given a branch b and a kripke model M, if M is faithful
to b, and a tableau rule is applied to it, then it produces an extension b′ such that M is
also faithful to b′.

3The problem of finding an adequate α for any abduction problem ⟨Θ, ϕ⟩ is still open. Thus, a cen-
tral assumption of our tableaux system is that it handles only abduction problems for which there is an
explanation α.



Proof. The proof proceeds by induction on the size of the branch, analyzing the applica-
tion of each rule that may extend the branch under consideration. We show only the case
for the modal operators4. Let f be a function that shows a model M to be faithful to a
branch b.

(K-case) Suppose that Kφ,wi appears in b and we apply the knowledge rule. According
to this rule, we know that wiRwj and obtain an extended branch with a state wj at which
ϕ holds. Finally, since M is faithful to b, we know that Kφ, f(wi) appears in b. Again, by
the knowledge rule, we get an extended branch b′ with a state f(wj) at which ϕ holds. As
a consequence, M is faithful to b′. For the negated knowledge rule, suppose that ¬Kφ,wi

appears in a branch b. According to the negated knowledge rule, one is allowed to create
a novel state wj such that wiRwj and ¬ϕ holds at wj . Now, given that M is faithful to
b, we know that ¬Kφ, f(wi) appears in b. Moreover, by the negated rule, we obtain an
extended branch with a state f(wj) such that f(wi)Rf(wj) and ¬ϕ holds. Finally, M is
faithful to b′.

(A-case) Suppose that Aφ,w appears in b and we apply the abduction rule and get an
extended branch containing Oα,w and K(α → φ), w. Since M is faithful to b, Aφ is
true at f(w). Hence Oα and K(α → φ) are true at f(w). For the negated abduction rule,
¬Aφ,w appears in b and we apply its corresponding rule. Hence, we get two branches,
one extending bwith ¬Oα,w (left) and the other extending bwith ¬K(α → φ), w (right).
For each branch apply, respectively, the negated only-knowing and negated knowledge
rule5. For both cases, b is extended to a branch b′ that is faithful to M. In the first case
f is faithful to the left branch; in the second case, f is faithful to the right branch. The
rest of the proof for the negated abduction rule and the O operator follows by analogous
reasoning.

Theorem 1 (Soundness). For finite Σ, if Σ ⊢ φ then Σ |= φ.

Proof. Assume that Σ ̸|= φ. By definition of validity, there is a Kripke model such that
(M, w) |= Σ and (M, w) ̸|= ϕ. Now assume there is a completed tableau such that M is
faithful to the initial list. By the Soundness lemma, any extension of it remains faithful.
As a result, the tableau remains open and our desired conclusion Σ ̸⊢ φ follows.

Definition 3.2. Let b be an open branch of a tableau. We will call a model M =
⟨W ,R, v⟩ the model induced by b iff M is defined as follows:
(i) W = {wi : i occurs on b}
(ii) wiRwj iff iRj occurs on b
(iii) If p, i occurs on b, then vwi

(p) = 1;
if ¬p, i occurs on b, then vwi

(p) = 0.
Lemma 2. (Completeness lemma) Where b is an open complete branch of a tableau, let
M = ⟨W ,R, v⟩ be the model induced by b. Hence:
(i) if ϕ, i is on b, then ϕ is true at wi

(ii) if ¬ϕ, i is on b, then ¬ϕ is false at wi.

4The reader may check [Priest 2008] for a detailed description of the propositional operators.
5The negated knowledge rule requires the creation of a novel state, say wj such that wiRw. For this, it

is sufficient to note that one can extend f to a map f ′ such that f ′ is equivalent to f and f ′(j) = w.



Proof. The proof is by induction on the structure of φ. We show only the modal cases.
Consider the case ϕ is of the form Kψ. Suppose that Kψ appears in b. Since b is complete,
the knowledge rule was applied. Therefore, ψ is in b. Finally, by induction hypothesis,
v(ψ) = 1. Now suppose that ¬Kψ appears in b. By the negated knowledge rule, ¬ψ is
in b. Again, by induction hypothesis, v(ψ) = 0. The proof for the O operator follows
by analogous reasoning. For the abduction operator A, the semantic clause makes it
reducible to the cases K and O.

Theorem 2 (Completeness). For finite Σ, if Σ |= φ then Σ ⊢ φ.

Proof. Suppose that Σ ̸⊢ ϕ and consider a completed open tableau based on it. The
interpretation M induced by it gives us (M, w) |= Σ and (M, w) ̸|= ϕ. Finally, by the
completeness lemma and the definition of validity, Σ ̸|= ϕ follows.

4. Future work
This paper introduced a structured proof system based on tableaux rules for the Logic of
Only-Knowing and Abduction (AOL). Future work may explore extending our tableau
semantics by developing dynamic tableau rules for creative abduction or resolution cal-
culus for the logic of only-knowing and abduction6.
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