Formal Development for a Node Replication Calculus with
Abstract Machine Extraction for a Lazy Strategy

Felipe A. Costa', Daniel Ventura'

Instituto de Informdtica — Universidade Federal de Goids (UFG)
Goiania, GO — Brazil

felipeac@egresso.ufg.br, venturalufg.br

Abstract. Node-by-node replication is related with the implementation of op-
timal graph-based reduction for the \-calculus and its associated substitution
mechanism was recently identified as the Curry-Howard interpretation of deep-
inference. A lazy (weak) strategy was defined for the node-replication calculus,
with full-laziness and an observationally equivalent relation equivalent to the
same relation for a (weak) call-by-name strategy. A node-replication calculus
with a fully lazy call-by-need reduction strategy is specified in the Coq Proof As-
sistant (currently known as Rocq), following an approach based on refocusing,
allowing the automatic extraction of the corresponding abstract machine.

1. Introduction

The node-replication calculus in [Kesner et al. 2024] has a fully lazy call-by-need reduc-
tion strategy, i.e. the number of steps to compute an answer is the same as the shortest
path in a (weak) strategy. Reduction strategies define how some term is reduced, corre-
sponding to how a program in the functional paradigm is executed [Diehl et al. 2000].
An abstract machine is a theoretical model that allows for step-by-step execution of pro-
grams, where single steps operations on the state of computations can be defined by a
rewriting system [Hannan and Miller 1992]. For instance, Haskell is a well-known func-
tional language with its abstract machine implementing a lazy strategy [Jones 1992].
Refocusing allows the extraction of the abstract machine from the calculus specifica-
tion which includes its reduction strategy (see [Biernacka and Charatonik 2019] and ref-
erences therein). We present a specification of a node-replication calculus based on
[Kesner et al. 2024] in the Coq Proof Assistant (currently known as Rocq)!. We fol-
low the approach in [Biernacka and Charatonik 2019], using the refocusing procedure, to
extract the corresponding abstract machine.

Contributions To the best of our knowledge, the current development is the first formal-
isation of a node-by-node replication calculus. Once the properties necessary to allow
machine extraction are proved, the following properties hold for the specified calculus:
strategy determinism and a characterisation of the strategy normal forms. However, a for-
mal relation between the lazy strategy in [Kesner et al. 2024] and the one introduced in
the present work has yet to be investigated.

The document has the following structure: Sec. 2 presents some general back-
ground to reduction strategies, the node-replication calculus with related notions, and
refocusing; Sec. 3 introduces our node-replication calculus based in [Kesner et al. 2024];

'"https://rocg-prover.org/

in Sec. 4 key aspects of the Coq development are discussed and finally Sec. 5 concludes
with a discussion of future work.

The complete formal development (Coq Version 8.11.1) is available at
https://github.com/felipeagc/generalized_refocusing/blob/
master/examples/node_replication.v.

2. Background

We assume the reader is familiar with the A-calculus [Barendregt 1985] and with explicit
substitution calculi [Kesner 2009], where the syntax is extended with terms of the form
t[z\u], denoting a term ¢ with a pending substitution, which can also be interpreted as a
sharing device, where u or any computation from it is shared by all free occurrences of
x in t. Terms with no explicit substitutions are called pure terms.

Reduction Strategies Reductions can happen at any place in a term in the general theory,
i.e. any subterm which is a redex can be contracted. However, different reduction strate-
gies can be defined, restricting where a reduction can take place®. For instance, the call-
by-name strategy does not reduce an argument before the function application, i.e. before
the corresponding (-redex contraction, while the call-by-value strategy applies a func-
tion only to values, i.e. terms which are either a variable® or an abstraction. Functional
language implementations need to define a (deterministic) reduction strategy, executed by
its abstract machine. Context-based reductions is one way to define it. A context is
defined as a term with a (unique) hole: C == ¢ | Az.C | Ct | ¢C, where C(t) denotes a
context C where its hole is filled with term ¢. Elementary contexts are such that context-
variables correspond to ¢, e.g. elementary C-contexts are (), A\z.(, ¢t and t{. Reductions
in the general theory can then be defined by the closure of the 3-reduction rule (—g) for
C-contexts, i.e. a term ¢ is reducible if t = C((Az.u)r) for some context C. The (weak)
call-by-name strategy is defined as the closure of — 3 by D-contexts: D == { | D¢ | nD,
where n denotes a (weak) neutral normal-form, i.e. a weak normal form which is not
an abstraction. The strategy is called weak because no reduction under \-abstractions
is allowed. The call-by-need strategy [Ariola and Felleisen 1997] is a lazy strategy that
combines the advantages of call-by-name and call-by value. Some memoisation tech-
nique is applied in this strategy, in order to avoid recalculations of partial results used
more than once during computations. We use explicit substitutions, also called explicit
cuts, as a memory device in the current work.

Node Replication Node-by-node replication is the Curry-Howard interpretation of deep
inference [Kesner et al. 2024], where substitutions are executed constructor by construc-
tor. Node replication was originally introduced to implement optimal graph-based reduc-
tion for the A-calculus [Lamping 1990] and the first Curry-Howard interpretation was the
so-called atomic \-calculus [Gundersen et al. 2013]. The atomic A-calculus is an explicit
resource calculus where, besides explicit substitution, both weakening —corresponding to
garbage collection— and contraction —dealing with term duplications— are also handled
through explicit constructors/devices. Investigation of properties of the calculus and for
different reduction strategies —as an application to concrete implementations of program-
ming languages— is very difficult. Therefore, in [Kesner et al. 2024] a node replication

2each strategy has a corresponding set of normal-forms
3some definitions do not consider variables as values

calculus with implicit weakening and contraction was defined, allowing several prop-
erties to be established for the node-replications paradigm, including the investigations
of two different (weak) reduction strategies: call-by-name and call-by-need. Full lazi-
ness of the call-by-need strategy for pure terms, when a normal-form is obtained with
the same number of S-reduction steps as in the shortest (weak) reduction in the pure \-
calculus, is achieved through an operation called skeleton extraction. A skeleton of \z.¢
is the minimal term structure necessary to keep the same binding relation between \x
and free occurrences of x in ¢. For instance, let t = (A\x.z x)u g (z x)[z\u], where
u = (Az.2(I1)) with I = \z.z. Term u cannot be reduced in a weak strategy and replac-
ing both occurrences of = by u will duplicate the redex (I I), both executed in a later stage.
Instead, w is split in two components: term \z.zy, the skeleton of u, and {(II)}, a mul-
tiset of terms with no free occurrence of z, called the maximal free expressions (MFE).
Term (z x)[z\(Az.2(I11))] is then reduced to ((Az.zy)(Az.zy))[y\(I I)], where only the
skeleton is duplicated while maintaining the redex (I I) shared. Skeleton extraction was
already used for full laziness in [Ariola and Felleisen 1997] but extraction was defined as
a meta-operation while in [Kesner et al. 2024] the operation was defined as a substrategy
in the calculus. Besides explicit substitutions, the syntax of terms is then extended with
the distributors to deal with shared abstractions: ¢[z\\ \y.u]. Explicit substitutions and
distributors are called (explicit) cuts, where ¢[x < u| denotes both.

Refocusing Introduced as a general approach to extract abstract machines from context-
based reduction semantics, refocusing was specified with Coq, with an automated ma-
chine extraction from a reduction semantics satisfying some syntactical properties (see
[Biernacka and Charatonik 2019] and references therein). Reduction in a context-based
calculus depends on the term decomposition in a reduction context and a redex. Refocus-
ing is based on keeping a stack of elementary contexts built while processing the term to
identify the current redex, with a continuation of the decomposition/recomposition pro-
cedure from its contractum, avoiding a rework while identifying the next redex. For in-
stance, let t = (Ax. A\y.y ¥)uvw s and the weak call-by-name strategy with the D-contexts
defined above. Then we decompose ¢ = D(rg) where D = Qv w s and 7y = (A\x. A\y.y x)u;
contracts 79 g Ay.yu = ry; and recompose t' = D(r(). The decomposition stage in
the next step holds ¢’ = D'(rq) where D' = Q) w s and r; = r{ v, where the new redex 7,
is contracted. Decomposition can be obtained through an iteration of a process splitting
a term in a subterm and an elementary context (e.c.), until a redex or a “stuck term”, i.e.
a normal form, is achieved. Considering ¢ as above, a first iteration would hold the pair
(Ax.A\y.y z)uvw and ¢s while the full iteration holds ry as before and [Qv; Qw; 5], a
stack of e.c.’s obtained in each iteration. The reduct ¢’ is then obtained plugging back
contractum 7y, and the resulting terms, in e.c.’s popped from the stack. Decomposition
of ¢’ then holds the redex r; and the stack [Qw; (s]. Therefore, instead of the recompo-
sition to obtain ¢’ as described above, and the subsequent decomposition of ', refocusing
proceeds from the pair r and [Qv; Qw; O s| as follows:

1. after ry —4 1, decomposition continues from r(, identified as non-decomposable;

2. r{ is then plugged back in the e.c. in the top of the stack, where the redex r; is
identified;

3. r1 —3 vu = r}, with decomposition continuing from 7.

Hence, the first two iterations while decomposing both ¢ and ¢’ are executed only once.
An axiomatisation of a reduction semantics was proposed and proved sufficient to auto-

mate the extraction of an abstract machine equivalent to the (reduction) evaluator. Those
axioms must be satisfied by the calculus specification provided by the user. For example,
some syntactic categories must be defined in the specification: terms, values, potential re-
dexes and e.c.’s (then called context frames). Properties about decomposition need to be
satisfied, resulting in the following three cases for any term ¢ decomposition: (1) ¢t = r,
a non-decomposable redex; (2) ¢ = v, a non-decomposable value; (3) t = C(t’), with
C an e.c.. As illustrated by the example above, such a decomposition is iterated until a
non-decomposable term is reached. If it is a redex, then a contraction is executed and
decomposition applied in its result. If it is a value v, then the e.c. stack is analysed where:

1. v is the final answer, if the stack is empty;

2. v is plugged back into the e.c. on the top of the stack, with the resulting term
re-analysed with three possible outcomes: a redex, a value or it is decomposable
in a pair of a term and a new e.c..

Decomposition and value recomposition functions, as described above, must be provided
by the user. Uniqueness of decompositions is a consequence of several properties proved
to be satisfied by the provided functions, where strict orders for term and contexts —the
latter also provided by the user— are considered. Once all properties are checked by the
user, the automatic extraction of the corresponding abstract machine can be applied.

However, the so-called hybrid strategies, such as the normal order evaluation
[Barendregt 1985], could not be handled by the approach. Thus, a generalisation of the
refocusing procedure was presented and applied in [Biernacka and Charatonik 2019] for
both weak and strong call-by-need calculi, the former a uniform strategy while the latter
is hybrid. The present work follows this specification approach.

3. Towards a Lazy Node-Replication Machine

The weak call-by-need calculus in [Biernacka and Charatonik 2019] uses two explicit
substitution constructors to differentiate when a substitution term needs to be evaluated.
Such construct is called an active or a strict substitution, denoted by ¢[x\u]. The original
strong call-by-need in [Balabonski et al. 2017] has no such a constructor but the strong
strategy defined in [Biernacka and Charatonik 2019] uses the same approach. We follow
this approach in the node-replication calculus specification. The syntax of term expres-
sions from [Kesner et al. 2024] is extended to include active cuts t[x < u]:

(Terms) t,u == x| Ax.t | tu|t[z\u] | tfx\Ay.u] | t]x\u] | tfz\\y.u]
(Term Values) v := Ax.t (List Contexts) L == ¢ | L[z\u] | L[z\\y.u]
with the corresponding needy reduction contexts: N == | Nt | N[z < ¢| | N{(x))[=\N].

Reduction rules for the extended syntax is presented below, where the relation ||’ used
for skeleton extraction, with ¢ a set of variables, is presented in Fig. 1:

L(\z.t)u —ap L{t[x\u])
N{a)|z\t] —epr N((@) [2\¢]
N{(z)

[\LQOw] =sps LL (@) [2\Ayt])), ift 43 L)
N{(a)) [z\] —s N(z)[e\v]
N{(a) [\v] —1ss N{(0)[z\v]

The reduction strategy in [Kesner et al. 2024] is considered on a restricted set of terms

x fresh . .
if fv(p) N 6 = @; otherwise:

p I? z[z\p]
p IO L) p L) qUf La(d)
z % Az.p |7 Lz.p') pg I La(Li(p'q))

Figure 1. Skeleton Extraction Big-Step Semantics

while here the reduction strategy is considered for any term originated from a reduction
starting from a pure term, i.e. a term without explicit cuts. Normal-forms are expected to
be one of two kinds, as in [Kesner et al. 2024]:

(Needy Terms) n* := z |n®t|n®ly<t] | nY[y\n*] (Answers) a == v |alr<t]

Note that n” is a needy term iff exists a needy context N s.t. n® = N{(z)) and «a is an
answer iff exists a term value v and a list context L s.t. a = L(v). Following the refocusing
approach, all normal-forms are considered to be values in the formal development. Needy
terms are used to syntactically restrict active cuts to be of the form n*[z < u], then called
strict cuts. Differently from [Biernacka and Charatonik 2019] where needy terms play
the role of intermediate results only, the current strategy considers them as final results
since open terms, i.e. terms with free variables, are allowed.

As noted in Sec. 2, refocusing uses a stack of elementary contexts (e.c.) to avoid

recalculations. We now define the two functions used as inputs in the procedure.
Definition 3.1 ({}/{) Functions). Down ({}) and Up (1) functions —where V_ and R indi-

cates a value and a redex, respectively— are defined by:

(n_>t ﬂ Vn
. 9; 4, (a)t TR
xZ. Uva
- (a)z <t] f Vg
1t2) (t1, O t2) (n")z<t] R
talzato] I (tr, O [z ata]) (n¥)[x 9 t] 4 Vo, if #
t1[z\t2] U (t2, t1[2\O]) n®[z\(a)] 1 Rm ’

tz\t2] L R n® [\ ()] 4 Vi

Values can either be an answer (V,) or a needy term (V,,). Intuitively, decomposi-
tion is achieved iterating |} until either a redex or a value is obtained, the latter triggering

the application of {}, recomposing values in order to identify the next redex.
Example 3.1 (Refocusing Procedure). Let t = (Az.x)rs then: t | ((Ax.z)r,0s);

Ae.z)r | (A\e.x,Or); Av.x | V,, ie the decomposition procedure holds a pair
(Ar.x,Or; 0 s) of a term, already identified as an answer a, and a stack of e.c.. 1} is
then applied to the recomposed term: (\x.x)r f} R. Once the redex is identified, the cor-
responding reduction rule is applied: (\x.x)r g x[x\r]. Decomposition restarts from
z[z\r|, holding (x, [x\r]; O s) with x || V,,, triggering 1 once again.

4. Coq Formal Development

The formal development for the calculus in Sec. 3, allowing an extraction of the
corresponding abstract machine, is based on the weak call-by-need specification in

[Biernacka and Charatonik 2019]*. The original codebase provides a framework for spec-
ifying and extracting the abstract machine utilizing the so-called generalised refocusing
procedure. It was implemented using Coq version 8.11.1, also used in the present work>.

The implementation is split into two modules, one implementing the re-
duction semantics (satisfying the PRE_REF_SEM module signature), and one im-
plementing the lower-level reduction strategy (satisfying the signature returned by
REF_STRATEGY). Starting with the module defining the reduction strategy —called
Lam_cbnd_PreRefSem—, first thing to be defined are the kinds of contexts considered
in the strategy and, since the current strategy is uniform, the only kind of context is N.
Among the adaptations necessary to implement the node replication strategy, we extended
the expr definition to include explicit distributors, along with their strict variants. The
same was done to the needy type definition, where a needy term n” has the dependent
type needy x. For instance, term y[y\u] can be encoded as ExpSubst (Var Y) Y
Uwhere Y = (Id 2),anencoding of y as a name, and U denotes the encoding of term
u. Moreover, y[y\u] is encoded as ExpSubstS Y (nVar Y) U. Note that variable
y as the body of an explicit cut is encoded differently in each case, being a term — with
type expr — in the former and a needy variable — with type needy Y — in the latter.

The value (dependent) type is one of the must-do definitions, based here on term
values with type val N, answers as defined in Sec. 3 and needy terms:

Inductive val : ckind —-> Type :=
| vLam : forall {k}, var -> term -> val k.

Inductive answer : ckind -> Type :=
| ansVal : val N -> sub —-> answer N
| ansNd : forall x, needy x -> answer N.

Definition value := answer.

A needy term mY is encoded as ansNd Y M and an answer a = L{\x.t) is encoded
as ansVal (vLam X T) L, where L —with type sub- is the encoding of L as a list
of explicit cuts. Parametrisation of answer and thus value by context kinds is due to
the possibility of different values to be considered in different (sub-)strategies in a hybrid
setting. A notable difference from the original implementation is our use of lists of cuts
instead of the context-like ansCtx definition in the original implementation. The main
difference is that ansCtx type is also parametrised by context kinds while the type sub
of lists of cuts is not. Redices are defined as in Sec. 3:

Inductive red : ckind —-> Type :=

| rApp : forall {k}, val k -> sub -> term -> red k

| rSplS : forall {k} x, needy x —> val k -> sub -> red k

| rSpl : forall {k} x, needy x —> term -> red k

| rLsS : forall {k} x, needy x —> val k -> red k

| rLs : forall {k} x, needy x —-> val k -> red k.
Definition redex := red.

The type definition for e.c. eck was also adapted to match the definition of e.c. in Sec. 3:

Inductive eck : ckind -> ckind -> Type :=

| eckApp : forall {kl k2}, term —> eck kl k2

| eckSubst : forall {kl k2}, var -> term -> eck kl k2

| eckDist : forall {kl k2}, var -> var —-> term -> eck k1l k2
| eckPlugSubst : forall {kl k2} x, needy x -> eck k1l k2.

“see https://bitbucket.org/pl-uwr/generalized_refocusing
SFull development at https://github.com/felipeagc/generalized_refocusing/
blob/master/examples/node_replication.v.

The key departure from [Biernacka and Charatonik 2019] is the implementation of the
skl _extract function, which encodes the skeleton extraction defined in Fig. 1. We
needed auxiliary functions to implement this step, such as £v for obtaining the set of free
variables in an expression, as well as fresh_ind to obtain an index corresponding to
a fresh variable for an expression. The contraction rules are defined as shown in Sec. 3,
with the skeleton extraction being applied in the rSplS case:

Definition contract {k} (r : redex k) : option term :=
match r with
| rApp (vliam x t) 1 u => Some (sub_to_term 1 (ExpSubst t x u))
| rSplS x nx (vliam (Id y) t) 1 =>
let '(1', p', _) :=
skl_extract t (S.singleton y) (1 + (fresh_ind t))
in
Some (sub_to_term 1 (sub_to_term 1' (ExpDistS x nx (Id y) p')))
| rSpl x nx t => Some (ExpSubstS x nx t)
| rLsS x nx (vLam y p) =>
Some (ExpDist (subst_needy x nx (@GvLam k y p)) x y p)
| rLs x nx (viam y p) =>
Some (ExpDistS x nx y p)
end.

Now we define the second module —called Lam_cbn_St rategy—, which satisfies the
signature returned by REF_STRATEGY with module Lam_cbnd_PreRefSem passed as
a parameter. For instance, definition dec_t erm specifies the | function:

Definition dec_term t k : elem_dec k :=
match k with N =>
match t with

| App tl t2 => ed_dec N tl (eckApp t2)
| Var x => ed_val (ansNd _ (nVar x))
| Lam x tl => ed_val (ansVal (vLam x tl) subEmpty)
| ExpSubst tl x t2 => ed_dec N tl (eckSubst x t2)
| ExpSubstS x nx t => ed_dec N t (eckPlugSubst x nx)
| ExpDist t x y u => ed_dec N t (eckDist x y u)
| ExpDistS x nx y u => ed_red (rLsS x nx (vLam y u))
end
end.

The automated abstract machine extraction is based on calculi satisfying some
properties, as briefly discussed in Sec 2. Therefore, properties such as a value cannot be a
redex (Lemma value_redex), aredex does not contain another redex when considering
the reduction strategy (Lemma redex_triviall), and some properties which guaran-
tee uniqueness of a term decomposition —resulting that the strategy is deterministic— (e.g.
Lemmas search_order_comp_if and dec_context_term_next), must be proved

in order to be able to execute the extraction procedure.

Once both Lam_cbnd_PreRefSem and Lam_cbn_Strategy modules are de-
fined, we can produce the abstract machine. First, by passing these modules to the functor
RedRefSem, we produce a module defining the refocusable semantics. More specifi-
cally, it automatically proves crucial decomposition lemmas required by refocusing. The
functor RefEvalApplyMachine is then applied, producing the abstract machine.

5. Conclusion

A node-replication calculus based in [Kesner et al. 2024] was specified in the Coq Proof
Assistant (currently known as Rocq), following the refocusing procedure, allowing the ex-
traction of the corresponding abstract machine. Our formalisation was implemented using

Coq version 8.11.1, with the framework presented in [Biernacka and Charatonik 2019] °.
To the best of our knowledge, the current development is the first formalisation of a node-
by-node replication calculus. The calculus strategy is proved to be deterministic, and
normal forms are characterised by the needy terms and answers as defined in Sec. 3.

As future work, there are several properties to be checked in order to establish a
formal relation between the —¢1,664 Strategy in [Kesner et al. 2024] and the one in Sec. 3.
One property to be checked is if our calculus is closed to the restricted class of the U-terms
in [Kesner et al. 2024], even without syntax restrictions present in the reduction rules def-
initions for the — 1,004 Strategy. One important detail that needs further investigation is
the generation of fresh variables considered in the function computing the skeleton ex-
traction. Freshness is guaranteed locally, and one has to check if this local freshness is
sufficient to guarantee the calculus consistency. Yet another consideration about skele-
ton extraction, a function implementing its big step semantics was used in the current
development, differently from the extraction considered in —¢150eq, Where a small-step
semantics in the calculus is used to implement the extraction. It remains to be checked if
our calculus can be specified with skeleton extraction as a substrategy.

References

Ariola, Z. M. and Felleisen, M. (1997). The call-by-need lambda calculus. J. Funct.
Program., 7(3):265-301.

Balabonski, T., Barenbaum, P., Bonelli, E., and Kesner, D. (2017). Foundations of strong
call by need. Proc. ACM Program. Lang., 1(ICFP):20:1-20:29.

Barendregt, H. P. (1985). The lambda calculus - its syntax and semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland.

Biernacka, M. and Charatonik, W. (2019). Deriving an abstract machine for strong call
by need. In FSCD, volume 131 of LIPIcs, pages 8:1-8:20. Schloss Dagstuhl - LZI.

Diehl, S., Hartel, P. H., and Sestoft, P. (2000). Abstract machines for programming lan-
guage implementation. Future Gener. Comput. Syst., 16(7):739-751.

Gundersen, T., Heijltjes, W., and Parigot, M. (2013). Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In LICS, pages 311-320. IEEE CS.

Hannan, J. and Miller, D. (1992). From operational semantics for abstract machines.
Math. Struct. Comput. Sci., 2(4):415-459.

Jones, S. L. P. (1992). Implementing lazy functional languages on stock hardware: The
spineless tagless g-machine. J. Funct. Program., 2(2):127-202.

Kesner, D. (2009). A theory of explicit substitutions with safe and full composition. Log.
Methods Comput. Sci., 5(3).

Kesner, D., Peyrot, L., and Ventura, D. (2024). Node replication: Theory and practice.
Log. Methods Comput. Sci., 20(1).

Lamping, J. (1990). An algorithm for optimal lambda calculus reduction. In POPL, pages
16-30. ACM Press.

Ssee https://bitbucket.org/pl-uwr/generalized_refocusing

