EtherYou: Ethereum-based privacy-preserving social media
platform

Pedro I. C. Oyama!, J6 Ueyama?, Paulo Matias®

!Secretaria Geral de Informética — Universidade Federal de Sdo Carlos (UFSCar)
Rod. Washington Luis km 235 — Sdo Carlos — SP — Brazil

Instituto de Ciéncias Matematicas e de Computacio — Universidade de Sdo Paulo (USP)
Avenida Trabalhador Sao-carlense, 400 — Sao Carlos — SP — Brazil

3Departmento de Computagio — Universidade Federal de Sdo Carlos
Rod. Washington Luis km 235 — Sao Carlos — SP — Brazil

pedro.oyama@ufscar.br, joueyama@usp.br, matias@ufscar.br

Abstract. Social media has become part of our daily lives. It brought significant
developments in the way we communicate, but it also raised some concerns, in-
cluding privacy and censorship. In this context, this work presents a social
media platform — EtherYou — that makes use of cryptographic primitives and an
Ethereum smart contract to overcome these issues. Experiments were conducted
to evaluate the operating costs involved. The results showed considerable val-
ues for senders, zero for receivers, and zero maintenance costs, indicating its
potential in scenarios with a reduced number of content producers and a large
number of consumers. The proposal offers users privacy over their data, trans-
parency on the system behaviour and censorship resistance.

1. Introduction

Social media use has continuously increased for years, and with this trend, not only have
technological challenges emerged but also some concerns involving privacy, social control
and censorship. Although users are the ones creating content, they are not its actual
owners, since they do not have control over how the produced data is used by the platforms
that store and manage it. The matter is aggravated by the fact that the social media market
is controlled by very few groups and that they have free access to all exchanged data.

In 2008, amidst the ascension of social media, a white paper [Nakamoto 2008]
was published proposing a peer-to-peer electronic cash system named Bitcoin. The paper
proposed a solution to securely remove trust amongst the participants of transactions in-
volving an electronic asset — Bitcoin — and solved the double-spend problem. Up to then,
to prevent an electronic asset to be copied and spent more than once, a central trusted third
party was needed. The concept that makes these new features possible is the blockchain,
a distributed data structure based on cryptographic techniques and ruled by a consensus
protocol. The decentralised feature of Bitcoin soon began to be seen as a solution where
the requirement of trust amongst participants is undesirable, and many projects based on
its code were born. Ethereum [Buterin et al. 2014] is one of them, and was conceived to
be a general-purpose decentralised platform capable of executing arbitrary scripts.

In this context, it seems natural to use blockchain technology to build a social me-
dia platform, removing the trusted third party responsible for storing data and for provid-

ing its processing and distribution. Some works have been published proposing solutions
in this regard, as the following ones. An instant messaging system that uses blockchain
in the context of Chinese online shopping was proposed in [Yi 2019]. It aims to pro-
vide a reliable, traceable and secure messaging mechanism for both clients and shops.
[Chakravorty and Rong 2017] proposes a social network based on blockchain that allows
users to grant and revoke access and limit sharing while ensuring privacy, security and
anonymity. Steemit[Steem 2017] uses its own blockchain to base a social media, in a
system that rewards content producers and curators with tokens. Even though these sys-
tems offer solutions to the aforementioned problems in electronic communication, further
analyses are needed to support their feasibility. Steemit is an exception, as it has been op-
erating for some time, successfully overcoming costs and scalability challenges, but it was
done by the expense of allowing a higher level of centralisation.[Li and Palanisamy 2019].

In this paper, we propose a decentralised social network — EtherYou — that pro-
vides a censorship-resistant environment and has cryptographic features that prevent non-
authorised agents from accessing private content. Our proposition uses a smart contract
deployed into the Ethereum blockchain to transparently manage the storage and distribu-
tion of data so any user can know how the processing is done. We further contribute with
experiments to analyse the expenses involved in the proposed system. The expenses were
assessed in terms of maintenance and charges for exchanging messages; also, how costs
rise as the length of a submitted message increases, how they rise as the number of private
recipients increments, and how celerity in processing a message impacts the price.

The remainder of this paper is organised as follows: section 2 shows our proposi-
tion and implementation details; section 3 describes the experiments conducted to assess
the system viability; section 4 brings the conclusions.

2. Proposed System

EtherYou! is divided into two parts: the client software and the blockchain smart contract.
The former is responsible for encapsulating the user message in a structure that provides
authenticity, confidentiality (optional, as the message can be public) and integrity. The
latter is responsible for storing the messages in a decentralised environment and building
a timeline of messages that cannot be modified. The system uses two key pairs to provide
its security features: ECDSA to use the Ethereum wallet to interact with the smart contract
and Curve25519 as part of the encryption and signature mechanism. The Curve25519
public key is also used as user identification.

An overview of the system, showing the interaction between the two parts and the
actors, is portrayed in Figure 1, with an example of Alice sending a private message to
Bob. First, Alice uses the client software executed in her computer to write a message
(1). The client software encapsulates her message in a data structure that can only be
reverted to the original message by Bob. This sequence of bytes is sent to the smart
contract (2) where it is processed and then stored in the blockchain. At any time later,
Bob uses the client software executed in his computer to retrieve any public message or
private message addressed to him (3). The client software prompts the smart contract to
return the messages (4). The encapsulated message from Alice is returned (5), and the
client software processes it to give Bob the original message (6).

! An implementation of EtherYou is available at https:/github.com/pedrooyama/etheryou

%A\ice Blockchain @ % Bob Message
l o I% H I%:J@ @»/ \ E' Encapsulated

—_— @ data
T Client Software

Figure 1. System Overview

-
——‘ Smart Contract

‘ Client Software

2.1. The client software

As a sender, the client software receives from the user the following parameters: the
message in plaintext m, which is encoded by an encoding system e, its type ¢, a set of
n recipients’ Curve25519 public keys K+ = {k{",kJ,...,k} (an empty set if it is a
public message), a compression algorithm ¢ and the user’s Curve25519 private key £,
and Curve25519 public key k;". This input is used to build the data structure that is sent
to the smart contract: the message block. In the first step of this procedure some flags
containing metadata needed to read the message (if the message is encrypted or not, the
compression algorithm ¢ and the encoding system e) are computed and encoded in a byte.
The next step, presented in Equation 1, is to compress the message, its type, the user
public key and a nonce (Unix timestamp). Notice that || is the concatenation operation.

m. = Compress(nonce || k|| t || m, c) (1)

Then comes the encryption step. In order to send the message to multiple recip-
ients, a trivial multi-key encryption schema is adopted, as follows. A symmetric key k;
(AES in CBC mode) is randomly generated to encrypt the compressed content and its
length (Equation 2). Then, a set of ciphered versions of this key is calculated by Equa-
tion 3. If the message is not to be encrypted, this step is skipped and m, = m,. and
K*® = {}. To yield authenticity, all generated data are concatenated, and the resulting
bytes are hashed and then signed with the sender’s private key. The signature is given by
Equation 4. At this point, all elements of the message block have been created, and it can
be assembled using Equation 5.

me = Encrypt(length(m.) || me, ks) 2)

K* ={k}, ...k}, where ki = Encrypt(ks, k"), fork € K* 3)
Signature = Sign(Hash(flags || me || K°), k,)) 4)
messageBlock = flags || signature || m, || K* (3)

As a receiver, the client software fetches message blocks from the smart contract
and delivers the pertinent ones to the user. If the messages are public, their content can be
directly obtained by decompression. For a private message, the software tries to decrypt
the symmetric key with the user’s private key. If the attempt is successful, the user is a

rightful recipient, and the original message can be recovered. After decoding the content
the message signature can be extracted, and authenticity and integrity can be checked.

2.2. The smart contract tailored for privacy

The smart contract® is responsible for storing into and retrieving messages from the
blockchain. The client software can interact with it playing two distinct roles — sender
and receiver — and each one of these roles has an interfacing function. The client software
accesses the contract as a sender by calling the sendMessage function with the message
block as a parameter. The message block is appended to an array along with calculated
metadata: the block timestamp and its hash. The block hash serves as an identifier for the
message so a user can reference it to reply, share or register a reaction. With the client
software as a receiver, the smart contract can be accessed by the view function getMes-
sagesFromTimestamp with a timestamp as parameter. The function returns all message
blocks registered in the blockchain since the given timestamp, along with their respec-
tive metadata. Since a view function does the retrieval of message blocks, no transaction
needs to be submitted, and therefore, there are no costs involved.

3. Experiments

3.1. Overview

One of the aspects to take in consideration to assess the viability of the proposed system
is its cost. Since all expenses reside in sending messages, two experiments® were con-
ducted in that regard: the first one investigating how the costs rise as the message length
increases, and the second one analysing the expenses as the number of recipients of a
private message increases. In both experiments, messages were created and sent to the
smart contract to be processed, so the amount of gas used in each transaction could be
registered. The smart contract was deployed in a test network using Ganache Truffle*.
In the message block building procedure three compression algorithms — LZMA, ZLIB
and BZ2 — were tested and the best one (or none) was selected. In the first experiment,
different sizes of messages were used, ranging from 1 to 2000 characters. The characters
were randomly chosen amongst the printable ones and the white space. In the second ex-
periment, a fixed-length encrypted message (composed of all 96 printable characters and
the white space) was built with a varying number of private recipients (from 1 to 200).

3.2. Results and Discussion

The data collected with the experiments are measured in gas, therefore they must be com-
bined with the gas price in a given transaction to calculate the real cost. Higher gas prices
tend to result in faster transaction processing. So, two arbitrary priorities (expected pro-
cessing time) were defined: low (1 minute) and high (15 seconds). The gas market price
for these values was estimated by perusing the Ethereum blockchain’. The closest values
obtained were: 2 gwei for 63 seconds, and 5 gwei for 13 seconds (1gwei = 1072 Ether).
The Ether market price was valued® at 170.39 American dollars (USD) at the time.

2 Available at https:/github.com/pedrooyama/etheryou/blob/master/smart_contract/EtherYou.sol
3 Available at https://github.com/pedrooyama/etheryou/tree/master/experiments
*https://www.trufflesuite.com/ganache

SUsing https://etherscan.io/gasTracker at 2020.abril.09

Using https://coinmarketcap.com/

The results from the experiment assessing the cost for different message length
are shown in Figure 2, in gas and USD. It can be seen that the gas used increases almost
linearly with the length of the message, and at a certain point (around 370 characters) the
increase continues close to linear, but with a slightly less steep inclination. This change in
inclination is due to the compression step, as it is not capable of reducing the size when the
message is short. The line has a jagged pattern, which is due to the fact that the Ethereum
Virtual Machine processes some operations using 32-byte words. Consequently, a more
significant increase is experienced every 32 additional bytes. The costs of processing
messages (in gas and USD) with different numbers of recipients are shown in Figure 3.
The price increases linearly with the number of users addressed. The cost for including
a receiver is not dependent on the length of the message, because to do so, it is only
necessary to append a ciphered symmetric key to the message block.

1500000 @ High Priority @ Low Priority

1000000

500000
0.25 //-,

o 500 1000 1500 2000 o 500 1000 1500 2000

Gas Used
Cost (in USD)

Message Lenath (in characters) Message Length (in characters)
(a) (b}

Figure 2. (a) Gas x Message Length; (b) Cost x Message Length

1.25E+7 @ High Priority @ Low Priority
1.00E+7

7.50E+6

Gas Used

5.00E+6

2.50E+6 : /
o o

50 100 150 200 50 100 150 200

Cost (in USD)

MNumber of Private Recipients Number of Private Recipients
(a)

Figure 3. (a) Gas x Number of Private Recipients;
(b) Cost x Number of Private Recipients

With the figures collected in both experiments, we defined equations to calcu-
late the approximate cost of submitting a message m. Equation 6 returns the cost in
gas, and Equation 7 returns the cost in USD cents (¢) by the market price evaluated at
2020.abril.09. [(m) is the length of m, and n is the number of private recipients (note
that n = 0 for a public message). p € {0,1} is the priority with which m is to be to
processed, with p = 0 being low and p = 1 being high. The estimated cost for the most
simple message (a single-character public text that takes around 1 minute to be processed)
is 6.5654¢. Each additional character costs 0.0214¢, while embedding privacy, limiting
the access to a set of users, costs 1.8987¢ per user. Making a message closer to instant
(around 13 seconds to be processed) multiplies the price by around 2.5.

192,029 + 6281(m) + 55,717n for 1 < I(m) < 370
Costyes(m,n) = (6)
211,544 4+ 576 1(m) 4 55,717n for I(m) > 370
Coste(m,n,p) = 3.4078 Costyqs(m,n) (1 + 1.5p) 107° (7)

4. Conclusions

Experiments were conducted to assess the viability of the proposed system in terms of
costs. Since retrieving messages is free, and there is no cost to keep the system available,
all expenses are related to message submission. It was shown that the approximate costs of
sending a message are composed of a constant value, a term proportional to the message
length and a term proportional to the number of private recipients, if any, as depicted
in Equations 6 and 7. The price for a public message that has the same length as the
maximum allowed in Twitter was estimated in 12.1973 USD cents when it is delivered in
about 1 minute. Celerity also has its price, so the faster a user requires their message to be
delivered, the higher the costs. For that same message to be delivered in about 13 seconds,
the price is multiplied by 2.5. The system has its strength in scenarios where a few people
generate public content that is consumed by many, as is the YouTube environment, or in
situations when censorship is a concern.

Acknowledgments

Prof. J6 Ueyama would like to thank FAPESP (Sao Paulo Research Foundation) for
funding his research project (Grant ID 2018/17335-9).

References

Buterin, V. et al. (2014). A next-generation smart contract and decentralized applica-
tion platform. White paper. URL: https://github.com/ethereum/wiki/wiki/White-Paper.
Accessed 10.apr.2020.

Chakravorty, A. and Rong, C. (2017). Ushare: user controlled social media based on
blockchain. In Proceedings of the 11th international conference on ubiquitous infor-
mation management and communication, page 99. ACM.

Li, C. and Palanisamy, B. (2019). Incentivized blockchain-based social media platforms:
A case study of steemit. In Proceedings of the 10th ACM Conference on Web Sci-
ence, WebSci '19, pages 145-154, New York, NY, USA. Association for Computing
Machinery.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. White paper.
https://bitcoin.org/bitcoin.pdf. Accessed 10.apr.2020.

Steem (2017). Steem: An incentivized, blockchain-based, public content platform. White
paper. URL: https://steem.io/SteemWhitePaper.pdf. Accessed 10.apr.2020.

Yi, H. (2019). Securing instant messaging based on blockchain with machine learning.
SAFETY SCIENCE, 120:6-13.

