
Estimating transaction cost for cloud-based private ethereum
blockchains

Igor Gonçalves Silva1, Pedro Henrique Gonzalez1, Diogo Silveira Mendonça1

1Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
Rio de Janeiro – RJ – Brazil

igor.goncalves@aluno.cefet-rj.br,{pedro.silva,diogo.mendonca}@cefet-rj.br

Abstract. Blockchain technology is increasingly being used by several compa-
nies in the most varied sectors of the economy. The possibility of having de-
centralized applications (DApps) allows for the emergence of technological in-
novations such as cryptocurrencies and decentralized asset tracking applicati-
ons. Many of these DApps are deployed in the cloud with Infrastructure as a
Service (IaaS) payment model, in which the payment is made according to the
use of the service. However, it is not simple to estimate the cloud infrastruc-
ture costs that a DApp will consume. Furthermore, correctly estimating infras-
tructure costs is essential to analyze the viability and develop business models
for enterprise DApps. This work presents an experience report on estimating
the cloud infrastructure cost for an enterprise DApp. To do that, we deployed
a private Ethereum DApp, using Proof-of-Authority consensus algorithm, with
several different configurations of Amazon Web Services (AWS) EC2 instances
and blockchain parameters. We benchmark the transaction processing capacity,
CPU and disk usage in each configuration, estimating their maximum capacity
and costs. We shared our methodology to measure and estimate those costs
and our insights on best configuration practices for reducing costs of deploying
enterprise DApps in the cloud.

Resumo. A tecnologia Blockchain é cada vez mais utilizada por diversas em-
presas dos mais diversos setores da economia. A possibilidade de ter aplicati-
vos descentralizados (DApps) permite o surgimento de inovações tecnológicas
como criptomoedas e aplicativos de rastreamento de ativos descentralizados.
Muitos desses DApps são implantados na nuvem com modelo de pagamento In-
fraestrutura como Serviço (IaaS), em que o pagamento é feito de acordo com a
utilização do serviço. No entanto, não é simples estimar os custos de infraestru-
tura em nuvem que um DApp consumirá. Além disso, estimar corretamente os
custos de infraestrutura é essencial para analisar a viabilidade e desenvolver
modelos de negócios para DApps corporativos. Este trabalho apresenta um re-
lato de experiência na estimativa do custo de infraestrutura em nuvem para um
DApp empresarial. Para isso, implantamos um Ethereum DApp privado, usando
o algoritmo de consenso de Prova de Autoridade, com várias configurações di-
ferentes de instâncias EC2 e parâmetros de blockchain da Amazon Web Servi-
ces (AWS). Nós avaliamos a capacidade de processamento de transações, uso
de CPU e disco em cada configuração, estimando sua capacidade máxima e
custos. Compartilhamos nossa metodologia para medir e estimar esses custos
e nossas intuições sobre as melhores práticas de configuração para reduzir os
custos de implantação de DApps corporativos na nuvem.



1. Introduction

Blockchain technology was initially developed to enable cryptocurrencies
[Nakamoto et al. 2008]. The growth of cryptocurrencies made companies interes-
ted in using blockchain for many other purposes, such as tracking digital assets
[Crosby et al. 2016]. Applications that use blockchain infrastructure to provide trust
in a decentralized manner are usually called decentralized applications (DApps). In
DApps, information/transactions can be validated without a centralized authority
[Buterin et al. 2013], implying the possibility of cost reduction. Several companies from
the most variated sectors of the economy are currently studying the implementation
of enterprise DApps [Crosby et al. 2016], i.e., DApps which are provided by a set of
companies.

Enterprise DApps are usually hosted on the cloud, using infrastructures as
a service (IaaS) payment model, also called pay-as-you-go [Ibm 2019, Oracle 2019,
Microsoft 2019, Amazon 2019]. In this format, the fees are proportional to the dispo-
nibility of the server, its processing capacity, RAM available, and storage space used
[Ibm 2019, Oracle 2019, Microsoft 2019, Amazon 2019]. Properly estimate infrastruc-
ture costs is essential to analyze the viability and to develop business models for enter-
prise DApps. Although there are some reports on the cost of smart contracts execution in
DApps [Zhu et al. 2019, Al Omar et al. 2019, Schäffer et al. 2019], they neither provide
complete information needed for estimating cloud infrastructure costs nor a methodology
to perform those estimates for enterprise DApps.

In this work, we present an experience report on estimating cloud infrastruc-
ture costs for an enterprise DApp. We deployed an Ethereum DApp, using Proof-of-
Authority consensus algorithm, with several different configurations of Amazon Web Ser-
vices (AWS) EC2 instances and blockchain parameters. We modified the benchmark tool
chainhammer [chainhammer 2020] to measure not only transaction processing capacity,
but also CPU and disk usage in each configuration. In this way, we estimated the ma-
ximum processing capacity and computational resource utilization of each configuration.
We developed and used a theoretical model to estimate the long-term cloud infrastructure
costs given the maximum transaction workload on the blockchain network.

We shared our methodology to measure and estimate infrastructure costs of de-
ploying enterprise DApps on the cloud. We also provide our insights on best configura-
tion practices for reducing those costs. As future work, we suggest some improvements
in blockchain technology that could reduce long-term infrastructure costs of enterprise
DApps.

The remainder of this paper is structured as follows. Section 2 explains the back-
ground needed for understanding the experience report. Section 3 presents related work.
Section 4 explains our methodology to select blockchain configurations, measure and es-
timate costs. Section 5 presents the results found. We discuss the results in Section 6.
Finally, we conclude and present future works in Section 7.

2. Background

This section presents the background needed for understanding our measurement and
estimation methodology used during the experience report. We present concepts about



blockchain technology[Nakamoto et al. 2008], Ethereum [Wood et al. 2014] and cloud
computing.

2.1. Ethereum Blockchain

Blockchain is a technology for enabling trust in a decentralized system of transacting peer
participants. In Blockchain, a distributed record storage technology (Distributed ledger)
is shared and used. A set of validation participants verifies each transaction sent to the
DApp. The transactions that reach the consensus of those validation participants, using a
consensus algorithm, are registered on the blockchain network. The validation nodes on
the network must contain the full transaction history of all validated transactions.

A set of transactions is stored on the network in a block, and each block also has
the hash address of the previous block. Such a process forms a block list with a valid
chronological order of all transactions on the network. The transactions presented in the
block are usually stored in a dispersion tree, as it easily allows checking if a transaction
is present in the block [Merkle 1980].

The main feature of the Ethereum platform is the ability for users to program self-
executing protocols that are used to facilitate or reinforce a contract between two or more
parties in the Ethereum network. This protocol is called a smart contract, and its code is
executed by Ethereum Virtual Machine [Wood et al. 2014].

Smart contracts can be implemented using several programming languages. One
of the most used on the Ethereum platform is Solidity [Solidity 2019] language. An exam-
ple of a smart contract would be selling a title deed from one party to another. One party
would pay several installments of the sale price to the other, and the contract (which trans-
fers the title to the other party) will be executed automatically when all installments are
paid [Wood et al. 2014].

A consensus protocol is used to define which block will be added to the block-
chain network and who will add it. The most common consensus algorithm in public
blockchain networks, i.e., where anyone can send transactions and read data, is the proof-
of-work. The Ethereum platform uses a modified version of the proof-of-work protocol
called Ethash. This algorithm includes selecting random pieces of the dataset and using
them in a hash function until the resulting value is equal to the number of zeros defined
by the difficulty of the block [Wood et al. 2014].

Proof-of-work algorithms are not appropriate for enterprise blockchains since the
peers are known and usually there is no competition or rewards for blocks validation.
One standard consensus protocol in enterprise blockchains is proof-of-authority. In this
algorithm, there is no computational cost for calculating hashes for mining (as in the
proof-of-work). The transactions are collected, validated, and inserted by specific sealing
nodes [Gethclique 2017].

Click is one of the implementations of this algorithm. In this implementation, it
is possible to set a time period in which a new block can be sealed, limiting the number
of transactions processed. This algorithm has the concept called sealing in order, which
implies that the blocks must be sealed by a list of sealing nodes in which their addresses
are in lexicographic order. For example, the sealer node in the first position of this list
must seal the first block of the network and so on, the second sealer must seal the second



block, and so on, with the list of sealers being repeated when reaching the end of the list
[Gethclique 2017].

If a block is sealed by a node that respects this concept, that block is considered
an ordered block and otherwise a disorderly block. The network with the largest number
of ordered blocks will be selected and chosen by the consensus algorithm. Another fac-
tor that will influence the selection of blocks is that a sealer can only seal one block on
each floor(number of sealers / 2) + 1 blocks. This means that at least 51% of the sea-
ling nodes must be active in the network and sealing so that the network does not block
[Gethclique 2017].

These sealing nodes can be defined in the genesis block and can be inclu-
ded/excluded by other sealers in a proposal that can be made for each sealed block. If
this proposal is accepted by 51% of the sealing nodes, it is carried out. Proof-of-authority
algorithms are widely used in private networks, in which the block inclusion process must
be done quickly [Gethclique 2017].

2.2. Cloud Computing
Scalability is one of the main problems of companies that work with computing. A com-
puting infrastructure can quickly become obsolete as a company grows and its compu-
tational demands increase. To solve this problem, cloud computing emerged, which is
offering computing infrastructure as a service [JoSEP et al. 2010].

Cloud computing consists of creating a virtual machine that simulates specific
hardware. Cloud users can use that machine in order to outsource computing/data storage.
This outsourcing occurs when sending a request on the network, with the information that
will be computed/stored in the cloud, so that the infrastructure in the cloud meets this
request [JoSEP et al. 2010].

Usually, cloud infrastructure providers work with a payment system where the
user pays as she consumes (pay-as-you-go). This form of payment is very interesting for
users with regard to scalability, considering that to increase the computing/storage load,
the user would only have to pay for the infrastructure made available [JoSEP et al. 2010].

3. Methodology
This section presents the smart contract under evaluation and the methodology used to
measure and calculate the costs involved in using it in a private ethereum network de-
ployed in the cloud.

3.1. Smart Contract under evaluation
In order to perform cost evaluations, we develop a smart contract to store/retrieve fi-
nancial transactions, allowing users to record their financial transactions on the block-
chain and later consult them. This contract was implemented using the Solidity
language[Solidity 2019].

The evaluation used the insertTransaction method that stores the user’s transaction
and associates it with an id, which identifies a transaction. This id is returned as a method
response. The smart contract code is available in Github 1.

1github.com/igorgs-rj/chainhammer/blob/master/hammer/contract.sol



Tabela 1. Input variables

Input Variable
1. Block period
2. AWS node type
3. Number of AWS nodes
4. Number of blockchain node ins-
tances in each AWS node
5. Number of threads

3.2. Tooling

In order to measure some parameters of blockchain infrastructure usage, we modified
the benchmark tool called Chainhammer [chainhammer 2020], which aims to study the
performance of a smart contract in the cloud.

Chainhammer measures the number of transactions per second (TPS) that an ethe-
reum private blockchain network can process by sending many transactions at once and
measuring the processing results. The modification made in this software was to allow
the measurement of average CPU usage and disk consumption during the experiments.
These data is necessary for the cost study of a smart contract.

3.3. Context and Variables

There are three types of blockchains regarding access control: private, permissioned and
public. In this work, we chose to use a private network as it allows total control of the
experiments and has no processing involved in authentication and authorization. Hence,
we measured the cost of the application only (smart contract execution).

Among the various infrastructure cloud providers, we selected Amazon Web Ser-
vices (AWS) to deploy the blockchain. We selected AWS because they have the cheapest
pricing, are the most commonly used provider, and have good documentation. We used
different types of AWS EC2 instances to estimate the cost of a blockchain application in
the cloud. The instances used in the experiments were of the standard type. We selec-
ted this type of instance instead of instances with GPU processors with more processing
capacity due to the project’s financial limitations.

In order to evaluate the transaction costs, we considered a set of input and output
variables. Table 1 presents the input variables. As explained in Section 2, the Clique
algorithm accepts as parameter the period of time that each block will be sealed, which
is called block period. This period could influence the throughput of transactions sealed
per second and consequently in the transaction cost. We also plan to evaluate whether the
types, number of AWS nodes, number of blockchain nodes in each AWS instance, and
the number of threads influence the transaction throughput.

The output variables are presented in table 2. We plan to measure the throughput
of transactions (in transactions per second) and the usage of computational resources such
as CPU and disk usage. Finally, we calculate the transaction cost with the formulas of
section 3.4.



Tabela 2. Output variables

Output Variable
1. Throughput (Transactions per Second)
2. Average CPU consumption
3. Disk consumption

3.4. Costs Calculation
The costs of cloud computing consist of two components, the disk storage cost used by
instances and the cost of the availability of the instances. Cloud providers offer different
prices depending on the region where the infrastructure is located. Only the AWS Oregon
region was used for this work, as their prices are lower than other regions.

The availability cost of an instance is constant and depends on the number and type
of nodes. Table 3 presents the availability costs of AWS EC2 instance used in our work by
the time when this paper was written. On the other hand, the storage cost increases linearly
with the number of transactions stored, considering that transactions in blockchain will
not be deleted. This implies a constant growth of storage costs. While writing this paper,
AWS charges USD 0.1 per Gigabyte of data stored in an Oregon data center.

The Chainhammer tool sends many transactions and calculates the mean and peak
throughput for processing transactions in an Ethereum blockchain. With the mean th-
roughput (TPSmean), we calculate the maximum number of transactions that a blockchain
configuration can process in a month (TXMmax) by multiplying the mean throughput by
the number of seconds in a month (SECmonth = 2, 592, 000), as shown in Formula 1.

TPMmax = TPSmean ∗ SECmonth (1)

As cloud computing processing is charged by availability, the best usage of re-
sources is when we use the full processing power of the nodes. In case of blockchain, to
maximize resource usage, we need to process the maximum number of transactions given
the cloud nodes available. In this scenario, we calculate the minimum cost of processing a
transaction (CTXPmin) by dividing the availability cost of a node per month (AVcost) by
the maximum number of transactions that the blockchain network can process in a month
(TPMmax), as showed in Formula 2. It worth noticing that this cost is for each cloud
node in the blockchain, as each node has its availability cost.

CTXPmin =
AVcost

TPMmax

(2)

In a blockchain, the disk is effectively used when a block is validated and stored
in the blockchain. Furthermore, each block can have a different number of transactions.
In our case, all transactions in a block are of the same type. Hence, we can calculate the
disk usage of a transaction (Dtx) by dividing the disk usage of an experiment (Dexp) by
the number of transactions sent in the experiment (Ntx), as shown in Formula 3.

Dtx =
Dexp

Ntx

(3)



The disk cost in cloud computing is charged per Gigabyte per month (Dcost).
Furthermore, the data stored in the blockchain cannot be deleted. Thus, for calculating
the total disk cost of a transaction (CDtotal), we need to measure the disk usage of a tran-
saction (Dtx) and multiply it by the expected number of months that the transaction will
be retained in the blockchain (NMlifetime), as shown in Formula 4. As an information
system lifetime is around ten years to 20 years, we can assume an expected lifetime, in
months, of around 180 months. It worth noticing that disk cost, as calculated here, is not
considering the interest rate of the economy or inflation. If those factors should be consi-
dered for analysis, the disk cost calculation should use the present value of each monthly
expenditure.

CDtotal = Dtx ∗NMlifetime ∗Dcost (4)

Finally, the minimum total cost of a transaction (CTXmin−total), per node, in a
blockchain is the minimum cost of processing (CTXPmin) summed with disk total cost
(CDtotal), as shown in Formula 5. It worth noticing that is possible to calculate other costs
than the minimum one with the same formula set presented in this section. To perform
this calculation, set the throughput parameter in formula 1 for the desired one and apply
the result found in the other formulas.

CTXmin−total = CTXPmin + CDtotal (5)

3.5. Experiments
In order to investigate the resource utilization and calculate the transaction cost of the pri-
vate Ethereum network, we planned and executed several experiments making variations
of the input parameters shown in Table 1.

We individually investigated the impact of the block period, the number of threads
and the number of nodes on the throughput, CPU usage and disk usage, performing the
experiments configurations of tables 4, 5 and 6, respectively. After performing those
experiments, we selected the configuration that presented the best throughput for each
type of cloud node instance and performed experiments varying the number of cloud
node instances, as shown in Table 7.

4. Results
This section presents the results obtained in the experiments and calculates the transaction
cost for the best and worst scenarios of them, showing its variation.

Table 8 presents the results of throughput by type of cloud node and block period.
We can observe that for all types of cloud nodes, the period of 1 second had the best
throughput. For this reason, the following experiments had the block period set to 1
second.

Table 9 presents the result of the experiments varying the number of threads in a
blockchain node. We observed few variations in the throughput by increasing the number
of threads used by a validation node. For all types of cloud instances, the best throughput
was using one thread. For this reason, we set the number of threads with the value of one
for the subsequent experiments.



Tabela 3. Availability cost of AWS EC2 instances

Type Monthly cost (USD)
medium 33.408

large 66.816
xlarge 133.632

Tabela 4. Experiments varying the block period

Block Period
1
2
3
4
5

10

Tabela 5. Experiment varying the number of threads

Threads Instance Experiment code
1 Medium 1t-1m
2 Medium 2t-1m
3 Medium 3t-1m
4 Medium 4t-1m
1 Large 1t-1l
2 Large 2t-1l
3 Large 3t-1l
4 Large 4t-1l
1 Xlarge 1t-1xl
2 Xlarge 2t-1xl
3 Xlarge 3t-1xl
4 Xlarge 4t-1xl
5 Xlarge 5t-1xl
6 Xlarge 6t-1xl



Tabela 6. Experiment varying the number of nodes

Nodes Instance Experiment code
1 Medium 1t-1m
2 Medium 1t-2m
3 Medium 1t-3m
4 Medium 1t-4m
1 Large 1t-1l
2 Large 1t-2l
3 Large 1t-3l
4 Large 1t-4l
1 Xlarge 1t-1xl
2 Xlarge 1t-2xl
3 Xlarge 1t-3xl
4 Xlarge 1t-4xl
5 Xlarge 1t-5xl
6 Xlarge 1t-6xl

Tabela 7. Experiment varying the number of instances

Quantity Instance Experiment code
1 Medium 1m
2 Medium 2m
3 Medium 3m
1 Large 1l
2 Large 2l
3 Large 3l
1 Xlarge 1xl
2 Xlarge 2xl
3 Xlarge 3xl



Table 10 presents the results of the experiments varying the number of blockchain
nodes. We can observe that increasing the number of blockchain nodes in the same EC2
instance increases the CPU utilization of the instance but can decrease the throughput.
We observed this behavior in medium and large instances. In extra-large instances, the
number of nodes increased until the value of 6 nodes did not decrease the throughput of
the nodes.

Table 11 presents the results of the experiments varying the number of cloud node
instances. We can observe that the throughput had few variations with the increase of
the number of cloud node instances in the blockchain network. In the case of extra large
instances, the throughput increased for two nodes and after decreased. In all other cases,
the throughput decreased.

As explained in section 3.4, the transaction cost using cloud computing is influen-
ced by the throughput of the blockchain network. In our experiments, the best throughput
was around 230 TPS (xl-2i), and the worst was around 178 TPS (m-4n). The difference
between these two throughputs is 48 TPS. The transaction cost per node of the best th-
roughput result was USD 0.00000589, while the cost in the worst throughput scenario was
USD 0.00000574. In the next section, we discuss the implication of the results found.

5. Discussion
In this section, we discuss the implications of the results found.

The throughput analysis showed that it is possible to use low-price cloud instances
to deploy a private ethereum blockchain, with a considerable throughput, around 200 TPS,
to store financial transactions. For example, if the worst throughput scenario (178 TPS)
were maintained by one month, the blockchain would process around 462,000,000 tran-
sactions, while the best one (230 TPS) would process around 600,000,000 transactions.
This capacity is enough to process almost all transactions of bitcoin history (650,000,000
by July of 2021) in a month.

The transaction cost found for the financial DApp is meager for the maximum
throughput of the blockchain configurations analyzed, around USD 0.000006. However,
it is highly improbable that nowadays, any private ethereum blockchain needs such high
throughput. In this case, let us calculate the transaction cost for a more realistic scenario,
such as 1.000 transactions/month. In this case, using an AWS EC2 medium instance, each
transaction would cost USD 0.0335, which is an affordable price.

One interesting finding related to transaction cost is that the best throughput con-
figuration is not always the best transaction cost. For example, the best throughput in
our experiments costs USD 0.00000589 per transaction, while the worst one costs USD
0.00000574. This is because of the difference in the pricing of cloud servers used. This
finding opens room for cost optimization in private blockchain networks instead of only
performance optimization.

Another interesting finding concerning transaction cost is its composition in high
throughput scenarios. In this case, the disk cost is much higher than the processing cost.
For example, in our best throughput scenario, the processing cost is USD 0.00000006
while the disk cost is USD 0.00000567, i.e., the disk cost is two orders of magnitude
higher than the processing cost. This shows the necessity for storage improvements in



Tabela 8. Throughput by type of cloud node and block period

Exp. code TPS
m-1p 208,3600
m-2p 205,5146
m-3p 195,1863
m-4p 205,3500
m-5p 198,8600
m-10p 194,1300
l-1p 222,1948
l-2p 203,6118
l-3p 195,8390
l-4 200,9800
l-5p 193,4100
l-10p 195,1300
xl-1p 223.1560
xl-2p 210,8809
xl-3p 198,8580
xl-4p 202,0600
xl-5p 205,3100
xl-10p 191,1700

blockchain since it is impossible to delete or move data to cheaper storage like tapes.

Finally, if any DApp needs a throughput higher than 200 TPS, there is room for
scaling by improving the processing capacity of the cloud node. It is also possible to
make technological improvements, since none of our experiments achieved a complete
utilization of the CPU capacity of the nodes.

6. Related work
Our objective was to measure and report the experience of calculating the transaction
cost of a specific financial DApp. Many other studies benchmarked private ethereum
networks, but they did not calculate the transaction cost of the DApp using cloud compu-
ting. Furthermore, the direct comparison of our results with other works is not applicable
since the DApp measured and experiment configurations are different. The related work
that is near to our experiments is explained below.

Schäffer et al. 2019 did a study on the impact that the variation of parameters (e.g.,
block frequency, block size) of a private blockchain network (using the Ethereum platform
with the Geth client) would have on what concerns the performance and scalability of
the network. Several experiments were carried out using instances of type c2 (large,
xlarge, 2xlarge and 4xlarge) with varying number of nodes in order to measure the rate
of successful transactions per second, the latency of the network and how the variation of
these experiments would imply scalability of the network as a whole.

7. Conclusion
Blockchain technology is increasingly being used by several companies in the most va-
ried sectors of the economy. In this work, we presented an experience report on estimating



Tabela 9. Experiments varying the number of threads and cloud node types

Exp. code Bytes/TX Cpu (%) TPS
m-1t 338.0055 56.1 208.3600
m-2t 338.0046 56.4 204.6794
m-3t 338.0051 56.8 203.5053
m-4t 338.0048 56 207.0956
l-1t 338.0008 28 222.0920
l-2t 338.0034 56.5 214.4590
l-3t 338.0035 55.4 217.5400
l-4t 338.0020 55.4 217.4469
xl-1t 338.0008 28 223.1560
xl-2t 338.0037 27.6 219.8260
xl-3t 338.0032 27.4 222.7810
xl-4t 338.0014 27.6 220.4340
xl-5t 338.0018 27.6 203.6800
xl-6t 338.0005 27.6 204.2800

Tabela 10. Experiments varying the number of blockchain nodes

Exp. code Bytes/TX Cpu (%) TPS
m-1n 338.0055 56.1 208.3600
m-2n 338.0051 63.8 195.6860
m-3n 337.9989 68.5 188.1014
m-4n 333.9943 74.1 178.3319
l-1n 338.0008 28 222.0920
l-2n 337.9997 62.3 204.4990
l-3n 337.9980 68.7 197.5973
l-4n 334.5656 72.4 187.8780
xl-1n 338.0008 28 223.1560
xl-2n 338.0029 31.6 217.5520
xl-3n 337.9966 35.2 209.5890
xl-4n 337.9944 38 211.8110
xl-5n 337.9907 43 223.8633
xl-6n 337.9927 44.3 223.2100

Tabela 11. Experiments varying the number of cloud node instances

Exp. code Bytes/TX Cpu (%) TPS
m-1i 338.0055 56.1 208.3600
m-2i 327.0156 59.2 204.4173
m-3i 337.9964 58.9 205.9880
l-1i 338.0008 28 222.0920
l-2i 317.7832 51.1 218.1773
l-3i 340.4081 56.5 214.7089
xl-1i 338.0032 27.4 222.7810
xl-2i 337.9996 24.9 230.2542
xl-3i 337.9823 29.4 214.2000



cloud infrastructure costs for an enterprise DApp. We deployed an Ethereum DApp, using
Proof-of-Authority consensus algorithm, with several different configurations of Amazon
Web Services (AWS) EC2 instances and blockchain parameters. We measure the through-
put of those configurations to investigate the best configuration scenario and calculated
the transaction cost of the DApp. We shared our insights and methodology to estimate
infrastructure costs of using enterprise DApps on the cloud.

Referências
[Al Omar et al. 2019] Al Omar, A., Bhuiyan, M. Z. A., Basu, A., Kiyomoto, S., and

Rahman, M. S. (2019). Privacy-friendly platform for healthcare data in cloud based on
blockchain environment. Future Generation Computer Systems, 95:511–521.

[Amazon 2019] Amazon (2019). Amazon blockchain platform pricing
https://aws.amazon.com/pt/managed-blockchain/pricing/.

[Buterin et al. 2013] Buterin, V. et al. (2013). Ethereum white paper. GitHub repository,
1:22–23.

[chainhammer 2020] chainhammer (2020). Projeto chainhammer -
https://github.com/drandreaskrueger/chainhammer.

[Crosby et al. 2016] Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.
(2016). Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-10):71.

[Gethclique 2017] Gethclique (2017). Clique poa protocol -
https://github.com/ethereum/eips/issues/225.

[Ibm 2019] Ibm (2019). Ibm blockchain platform pricing
https://www.ibm.com/cloud/blockchain-platform/pricing.

[JoSEP et al. 2010] JoSEP, A. D., KAtz, R., KonWinSKi, A., Gunho, L., PAttERSon, D.,
and RABKin, A. (2010). A view of cloud computing. Communications of the ACM,
53(4).

[Merkle 1980] Merkle, R. C. (1980). Protocols for public key cryptosystems. In 1980
IEEE Symposium on Security and Privacy, pages 122–122. IEEE.

[Microsoft 2019] Microsoft (2019). Microsoft blockchain platform pricing
https://azure.microsoft.com/en-in/pricing/details/blockchain-service/.

[Nakamoto et al. 2008] Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer electronic
cash system.

[Oracle 2019] Oracle (2019). Oracle blockchain platform cloud service pricing
https://www.oracle.com/br/blockchain/.

[Schäffer et al. 2019] Schäffer, M., Di Angelo, M., and Salzer, G. (2019). Performance
and scalability of private ethereum blockchains. In International Conference on Busi-
ness Process Management, pages 103–118. Springer.

[Solidity 2019] Solidity (2019). Solidity language
https://solidity.readthedocs.io/en/v0.5.11/.

[Wood et al. 2014] Wood, G. et al. (2014). Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32.

[Zhu et al. 2019] Zhu, L., Wu, Y., Gai, K., and Choo, K.-K. R. (2019). Controllable and
trustworthy blockchain-based cloud data management. Future Generation Computer
Systems, 91:527–535.


