
Evaluation of a High-Level Metamodel for Developing Smart
Contracts on the Ethereum Virtual Machine

Gislainy Crisostomo Velasco1, Marcos Alves Vieira1,2, Sergio T. Carvalho1

1Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 — 74001-970 — Goiânia — GO -– Brasil

2Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano)
76200-000 – Iporá – GO – Brasil

gislainycrisostomo@discente.ufg.br, marcos.vieira@ifgoiano.edu.br,

sergio@inf.ufg.br

Abstract. Developers of smart contracts face challenges such as the immutabil-
ity of contracts and asset storage, which make the activity complex and error-
prone. To make contracts safer and more reliable, Model-Driven Engineer-
ing (MDE) offers an alternative approach with an emphasis on the High-Level
Metamodel for Smart Contract (HLM-SC), which allows for the high-level dec-
laration of elements within a contract. This paper evaluates the HLM-SC using
the MQuaRE framework to verify its conceptual validity with 11 external evalu-
ators. The results demonstrated the acceptance of the metamodel. Additionally,
this paper presents a guide on how to use HLM-SC to facilitate its adoption by
developers. Finally, it demonstrates the application of HLM-SC in a scenario
related to the NFT industry.

1. Introduction
Blockchain technology and smart contracts have enabled the creation of new decentral-
ized applications that explore properties such as immutability, traceability, transparency,
and privacy [Angelis and Ribeiro da Silva 2019, Khan et al. 2019]. However, the im-
mutability of contracts and asset storage present significant challenges for developers,
making the activity complex and error-prone [Jurgelaitis et al. 2022, Ferreira et al. 2020].
These challenges, in turn, represent barriers to entry for new developers in the field, as the
learning curve is steep [Garamvölgyi et al. 2018, Jiao et al. 2020a].

Contracts developers face numerous challenges during the conception and
implementation process, including the need for a more rigorous and secure
approach [Zeng et al. 2022, Feist et al. 2019, Li et al. 2021, Dharanikota et al. 2021,
Jiao et al. 2020b]. In the case of the Ethereum Virtual Machine (EVM), the con-
tract development platform requires developers to have knowledge of its func-
tioning mechanism and the high-level language used to write contracts. Ad-
ditionally, it offers limited tools for validation and verification [Zeng et al. 2022,
Dharanikota et al. 2021, Annenkov et al. 2020, Kaleem et al. 2021, Ferreira et al. 2020,
Jiao et al. 2020a]. Understanding contracts by non-technical users also poses significant
challenges [Qasse et al. 2021].

Model-Driven Engineering (MDE) has been considered an alternative approach
to making smart contracts safer and more reliable [Chirtoaca et al. 2020]. For the

EVM, the High-Level Metamodel for Smart Contract (HLM-SC) has been proposed as
a metamodel that enables the high-level declaration of elements in a contract, includ-
ing complex structures, state variables, functions, and similar elements [Velasco 2023]
[Velasco and Carvalho 2022]. With HLM-SC, both technical and non-technical develop-
ers can create contracts more efficiently, regardless of their previous knowledge in mod-
eling.

This paper emphasizes the importance of evaluating the quality of HLM-SC using
objective metrics, exploring its conceptual validity, and the relevance of a usage guide for
the metamodel. External evaluation of HLM-SC is crucial, as it allows external experts
to objectively and impartially analyze and validate the metamodel, leading to potential
improvements in the metamodel and its practical application. Additionally, a usage guide
can assist developers in better understanding the metamodel and using it appropriately,
which can increase its adoption among developers. The objective of this paper is to
present the evaluation of HLM-SC using the MQuaRE framework [Kudo et al. 2020a],
along with a usage guide to its application in a scenario related to the NFT (Non-Fungible
Tokens) industry.

The paper is organized as follows: Section 2 presents the concepts of smart
contracts, MDE, and the tool used to evaluate the quality of the proposed metamodel
(MQuaRE). Section 3 discusses related works. Section 4 provides details on HLM-SC,
including its usage guide. In Section 5, an application in a use case related to the NFT
industry is presented. In Section 6, the results of the quality evaluation of HLM-SC are
presented. Finally, Section 7 offers concluding remarks.

2. Background

2.1. Smart Contracts

Smart contracts are computer protocols that can be implemented on blockchains, allow-
ing parties to establish decentralized and trustworthy agreements [Buterin et al. 2014,
Rajasekaran et al. 2022, Wang et al. 2019]. When the conditions of the agreement are
met, these contracts are automatically executed without the need for a trusted third
party [Buterin et al. 2014, Rajasekaran et al. 2022, Wang et al. 2019]. The immutability
of smart contracts after deployment is a critical aspect, as it ensures the transparency and
traceability of transactions [Cai et al. 2018].

Ethereum is a blockchain platform that pioneered the implementation of smart
contracts, allowing for their writing in Solidity or Vyper programming languages
[Buterin et al. 2014]. Other blockchain platforms, such as Tron, Cardano, and Poly-
gon, also support smart contracts and are compatible with the Ethereum Virtual Machine
(EVM), which enables code reuse across them [Grigg 2017]. The EVM is a virtual ma-
chine that executes contracts on different blockchain platforms, as long as they support
the EVM. This means that smart contracts can be developed in a common language and
executed on multiple blockchain platforms without the need to rewrite the code. As a
result, interoperability between platforms increases, and efficiency in the development of
smart contracts improves.

On the EVM platform, the essential concepts that make up smart contracts include
interfaces, abstract contracts, concrete contracts, types, variables, complex data structures,

functions, and events. Interfaces represent the elements that a contract must implement,
such as functions, events, or errors. They are critical in contract development because
they specify all the necessary elements for the contract and can serve as a communication
mechanism between contracts.

Abstract contracts are those that cannot be directly instantiated but require imple-
mentation by a concrete contract. They are used in cases where it is necessary to limit the
scope, such as in utility contracts that only add functionality for control and security. On
the other hand, concrete contracts are effectively implemented on the blockchain through
a contract deployment transaction. They contain the business rules of a particular domain
and can inherit other contracts, including concrete and abstract contracts or interfaces,
allowing for code reuse and the implementation of additional functionalities.

Types are elements that are directly related to the programming language used for
smart contract development. Each type of the language abstracts a concept from the real-
world business rule, such as numbers, words, participant identification, and complex data
structures. Variables are responsible for representing and storing information within the
context of a smart contract. They serve as a source of truth for the contract and are used
to make decisions and control the internal behavior of the contract. Changes to a state
variable must be made by specific functions and controlled within the contract, ensuring
the security and reliability of the stored information.

Functions contain and execute the business rules of a smart contract and have the
ability to perform various actions, such as transferring monetary values, returning infor-
mation to external applications, executing specific business rules, and modifying internal
contract information. They are used to manage access to resources and have limitations,
such as gas limit and execution time, which must be considered during development.
Events, on the other hand, are used to notify decentralized applications when specific ac-
tions occur within the smart contract. They serve as a means of communication between
the contract and external applications within the context of the EVM.

2.2. Model-Driven Engineering

The MDE approach uses models as the primary artifacts for software development and
metamodels to guide their creation [Seidewitz 2003][Schmidt 2006]. Metamodels are for-
mal descriptions of models that define their elements, structure, constraints, and semantics
[Rodrigues da Silva 2015, Seidewitz 2003]. To create a metamodel, a meta-metamodel
that describes the modeling language is required, and the MetaObject Facility (MOF) is
the OMG standard specification for defining metamodels [Seidewitz 2003].

The MOF is structured as a four-layer architecture, with each lower element being
an instance of a higher element. The layers are the M0 layer (models), the M1 layer (meta-
models), the M2 layer (meta-metamodels), and the M3 layer (meta-meta-metamodels).
Ecore, developed by the Eclipse Foundation, is an implementation of MOF and a widely
used alternative for creating metamodels. The metamodel evaluated in this work is an
instance of Ecore.

2.3. MQuaRE framework

MQuaRE (Metamodel Quality Requirements and Evaluation), proposed by
[Kudo et al. 2020a], is an important tool for evaluating the quality of a metamodel

in various application areas. To ensure the quality of the metamodel, MQuaRE is divided
into five characteristics: compliance, conceptual suitability, usability, maintainability, and
portability. Each of these characteristics is further subdivided into sub-characteristics,
which serve as a guide for evaluating the quality of the metamodel in all relevant aspects.

MQuaRE defines 19 MQRs (Metamodel Quality Requirements) and 23 quality
measures associated with the mentioned characteristics, which should be considered dur-
ing metamodel evaluation. To perform the evaluation, the framework suggests a process
consisting of five phases: (1) establish the evaluation requirements, (2) specify the eval-
uation, (3) design the evaluation, (4) execute the evaluation, and (5) conclusion of the
evaluation. Each phase is essential to ensure that the evaluation is conducted consistently
and effectively.

3. Related Work
Several authors have employed techniques to model contracts at a high level based on
MDE approach. However, in some cases, the quality of the presented tools has not been
evaluated, with some validations based only on use cases. In this section, we present
related works that address contract modeling on blockchain platforms and metamodel
evaluation, highlighting their contributions and limitations.

The work of [Hamdaqa et al. 2020] proposed IContractML for contract mod-
eling on blockchain platforms. In [Qasse et al. 2021], the authors used IContractML
in conjunction with iContractBot for contract modeling using a chatbot. The work
[Velasco and Carvalho 2022], in turn, proposed a metamodel for contract development
on the EVM. However, in some cases, the quality of these tools has not been evaluated.

In the context of metamodel evaluation, the works of Kudo et al. in
[Kudo et al. 2020a] and [Kudo et al. 2022] employ the MQuaRe framework, proposed
by the same authors, to evaluate metamodels. Although these works are not directly re-
lated to contract development, they were important as a basis for applying the metamodel
evaluation process proposed in this work.

This work differs from related works by using a quality evaluation method for
metamodels, specifically for the metamodel proposed by [Velasco and Carvalho 2022].
The evaluation method used was MQuaRe, which evaluated the conceptual suitability of
the metamodel in relation to the contract development concepts presented in this paper.

4. HLM-SC Metamodel
The HLM-SC (High-Level Metamodel for Smart Contract) incorporates essential parts
of a contract, such as state variables, functions, constructors, complex data structures,
events, errors, and modifiers. Comprising nine metaclasses, this metamodel presents a
complete and well-structured approach to smart contract development.

4.1. The Metamodel

Figure 1 presents the HLM-SC Metamodel. The primary metaclass of the HLM-SC meta-
model is Contract, which instantiates other metaclasses and models the smart contract.
Although HLM-SC was originally designed for concrete contracts and not for abstract or
interface contracts, adaptations can be made to represent them. Concrete smart contracts

Figure 1. HLM-SC Metamodel.

are where the business logic is implemented during the development stage. The abstract
metaclass Types represents the types supported in the Solidity language metamodel, which
are used in other metaclasses through composition, including Integer, Boolean, Address,
String, and Mapping.

The Structs metaclass represents more complex structures declared at the smart
contract level, where each member is defined by composition with the abstract class Types.
Structs can be used as parameters in functions, reducing the number of required inputs,
and can also be used in function returns. The State Variables metaclass represents state
variables in the smart contract, where their values are permanently stored and can be
modified through RPC calls. Variables can have internal, public, or private visibility and
are composed of a name, visibility, and type. The type can be a basic type, a key-value
structure like mapping, or a data structure (struct).

The Errors and Events metaclasses in the metamodel have the purpose of enabling
traceability and monitoring of activities in a smart contract. The Errors metaclass allows
for the generation of more semantic and precise errors during the execution of an RPC
call. On the other hand, the Events metaclass records a state change in a structured way
within a smart contract. The event data is stored in the transaction that originated it
and can be consumed by DApps (decentralized applications). However, a smart contract
cannot directly access information emitted by events from other contracts.

The Modifiers and Functions are two important metaclasses in HLM-SC for build-

ing a smart contract. Modifiers are used as a special kind of function that can be included
in the code of another function to control access or prevent reentrancy attacks. In the
metamodel, a piece of code can be added and incorporated into the modifier through
composition with the Behavior metaclass.

Functions, in turn, are responsible for checking conditions and performing neces-
sary actions. They can be of two types: view, which do not change the contract state and
have zero cost for the call, and modifying, which change the contract state and have a cost
involved. In the metamodel, functions can receive input parameters and return a sequence
of variables, in addition to having public, internal, or private visibility. Functions can also
have behavior added to them through composition with the Behavior metaclass.

The Constructor is a metaclass that enables the initialization of state variables
when the smart contract is instantiated. It is similar to a constructor of a class in object-
oriented modeling. In the metamodel, input arguments can be added to the constructor,
and all of them must be used to initialize a state variable. Additionally, behavior can be
added to the constructor through composition with the Behavior metaclass.

4.2. Usage Guide

This subsection presents a guide to assist in smart contract modeling on the EVM using
the HLM-SC. The process of contract modeling using the HLM-SC starts with the instan-
tiation of the Contract metaclass and the definition of a symbolic name, which is used as
the contract identifier. If the contract presents complex data structures, it becomes nec-
essary to define these structures using the Struct metaclass, as they can be used by other
elements such as state variables, function parameters, and events.

State variables are defined in sequence using the StateVariables metaclass. Vari-
ables with internal or private visibility must be declared starting with (underscore), while
public variables must start with letters. Variable names should be descriptive of their pur-
pose, especially in the case of public variables since view functions are automatically
created for them. Additionally, each variable must have a unique name in the context of
the contract, i.e., it cannot have the same name as other elements such as functions, events,
errors, and others. During this step, it is essential to assign a type to each variable through
the relationship with the Types metaclass. It is possible to use the structures defined in the
previous step as a type.

If there is a need to initialize state variables during the contract deployment, it is
recommended to declare the Constructor. It is important to note that the constructor is
capable of initializing only state variables, and state variables of type mapping cannot be
automatically initialized by it.

Errors are declared in sequence using the Errors metaclass. It is recommended that
the names and arguments of each error be semantic and appropriate to the context of the
error, as errors are a mechanism for DApps to understand the reason for a function failure.
It is important to emphasize that defining effective errors contributes to the improvement
of contract comprehension as well as its usability.

When there is a need to trace interactions and modifications with the contract, the
Events metaclass is used, which must be defined in sequence. It is important that each
event is related to its context. Additionally, it is recommended that when there is a need

to use the EVM’s filtering mechanism, indexed events should be declared first to ensure a
more efficient filtering process.

The modifiers metaclass must be declared before the functions but after defining
all state variables that can be used within the modifier’s scope. The order is important so
that functions can use modifiers correctly. Next, at least one function must be declared us-
ing the Functions metaclass. It is important to emphasize that functions can use the errors,
events, and modifiers previously defined in the contract, allowing for greater flexibility in
their implementation.

The careful definition of each of these elements is essential to ensure that the
contract is efficient and easy to understand. The sequence of the eight steps described
in this paper can facilitate the modeling of the contract using the HLM-SC metamodel,
ensuring that all relevant elements are considered and that the contract meets the user’s
needs.

5. Use Case Scenario

This section describes a use case scenario of a company that aims to offer a system for
buying and selling NFTs, applying the usage guide of the proposed metamodel. The
objective of this use case is to provide an effective way for users to put their NFTs up for
sale. The NFTs can be traded using the native currency of the blockchain and can also be
exchanged for other fungible tokens (ERC-20)1. To serve users who release collectibles,
the use case aims to provide an efficient way to list multiple NFTs from the same contract
with the same settings. The user who places an NFT sell order should be able to update
or cancel the order. Due to cost and blockchain interaction concerns, it is desired to have
only one contract that serves the sale of NFTs from different contracts and users. It will
only be possible to purchase a single NFT per transaction. The payment method can be
chosen exclusively through the native or ERC-20 currency. For each token sold, a service
fee will be charged and transferred to an address owned by the use case. Additionally,
when there are royalties on the NFT during its sale on the secondary market, it is required
that the creator’s percentage be passed on. The elements necessary to build the Purchase
contract (Figure 2) according to the requirements of the scenario are described below.

NFTs are listed for sale with support for both native currency and ERC-20 tokens
through the Order structure. When trading with ERC-20 tokens, it is not possible to send
the quantity of tokens in the transaction content. Therefore, there is a need for a new
Currency structure. In the HLM-SC metamodel, a Struct does not relate to other Structs.
Therefore, a state variable is used to represent ERC-20 prices (orderToPrices).

As the use case must have only one sales contract, control is done through a state
variable that represents open orders. For this purpose, two state variables are created:
nextOrderId, and orderIdToOrder. To represent the sold tokens, orderIdToTokensSold
is used, which is a mapping. In addition to these variables, two more are created to
represent the service charged by the platform: marketplaceFee and marketplaceAddress.
When a token has been previously sold by the marketplace, the nftSoldPrimaryMarket
variable is updated, which is used to transfer royalties in the secondary market.

1ERC-20 tokens are contracts with an unlimited number of tokens pegged to other currencies such as
dollars, euros, and ether.

Figure 2. Illustrate the structs, events, errors, variables, modifiers, and functions
of the Purchase contract.

A new order is created through the createOrder function, which receives the Or-
der and a list of Currency as inputs. All parameters are validated, and in case of success,
the OrderCreated event is triggered with the assigned order identifier. When there is an
inconsistency, the transaction fails, and the order is not created. The function can fail with
errors such as AmountCannotBeZero, CurrencyCannotBeAddressZero, TokensIdsCannot-
BeEmpty, and IsNotOwnerOfNftContractAndTokenId.

After creation, the order can be modified or canceled by the creator. Given this
context, there is the isCreator modifier that validates permissions to execute the action.
The updateOrder function can modify all data of a particular order and triggers the Or-
derUpdated event. In case of cancellation, the cancelOrder function is used, which trig-
gers the OrderCanceled event. There are other management functions for updating infor-
mation, and each function has an associated event. To validate if the caller has permission
to make changes, the onlyOwner modifier is used.

For purchasing with native currency or with ERC-20 tokens, two new functions
are used. The purchase with native currency, the buy function is used, which is a payable
function with orderId as the input. In the other case, the buyWithERC20 function has
the orderId and currency as inputs. In both cases, if the caller meets all requirements,
the OrderPurchased event is triggered. In case of any failure, an error is used, such as
TokenIdAlreadySold, OrderDoesNotExist, and AmountDoesNotMatchCurrentPrice. Fi-
nally, when the contract is implemented, the service fee and receiving wallet address are
initialized. Additionally, the ownerAddress variable receives the address of the responsi-
ble party for the transaction.

6. Quality evaluation
The evaluation method used in this study is an adaptation of MQuaRE
[Kudo et al. 2020a]. In Subsection 6.1, the evaluation planning is presented ac-
cording to the MQuaRE usage guide. In Subsection 6.2, the execution process is
presented. In Subsection 6.3, the evaluation results are presented for each evaluator,
as well as the profile of each evaluator and the evaluation discussions according to the
purpose. Finally, in Subsection 6.4, threats to validity are presented.

6.1. Planning

The purpose of the HLM-SC evaluation is to identify improvement points and verify the
acceptance of the metamodel. In this scope, the conceptual completeness and conceptual
correctness subcharacteristics were selected. These were chosen due to their relation-
ship with the research objectives, allowing for the evaluation of whether the metamodel
contains the contract concepts correctly and completely. Table 1 presents the selected
Metamodel Quality Requirements (MQR), including the relationship between the MQRs,
selected characteristics and subcharacteristics, and measures.

Quality Requirements Characteristics Subcharacteristics Measures
MQR02 - The metamodel must
cover the concepts found
in its specifications.

Conceptual
Suitability

Conceptual
Completeness

Conceptual
Coverage

MQR03 - The metamodel must
represent the concepts found
in its specifications correctly.

Conceptual
Suitability

Conceptual
Correctness

Conceptual
correcteness

Table 1. Relation between quality requirements, measures, characteristics and
subcharacteristics selected. Adapted from Kudo et al. [Kudo et al. 2020b].

To assist in the evaluation of the selected MQRs, the MQuaRE tool presents ar-
tifacts that should be used in this process. According to the scope of this evaluation, the
necessary artifacts are the metamodel specification and the metamodel implementation.
The following is a detailed description of each artifact used for the evaluation:

• Metamodel specification: It includes concepts related to contract development.
The fundamental concepts include contracts (C1), interfaces (C2), abstract (C3)
and concrete (C4) contracts, types (C5), numbers (C6), string (C7), partici-
pant identification (C8), complex data structures (C9), variables (C10), functions
(C11), and events (C12).

• Metamodel implementation: It includes an explanatory guide of the metaclasses,
relations, and attributes of the metamodel represented in Ecore format in both text
and video formats. Additionally, to facilitate the visualization of the metamodel,
a complementary video was made available that presents a visual interpretation of
the metamodel, especially for those who are not familiar with MDE concepts and
their interrelationships.

In addition to the presented artifacts, external evaluators were provided with com-
plementary video materials to assist in their understanding. These include an explanation
of the structure of the Solidity language. This measure was taken considering the evalua-
tors lack of familiarity with the Solidity language, and it aims to ensure that they have the
necessary knowledge to understand the metamodel’s implementation.

MQR Measures Description
of the measure Measurement function

MQR02
CCp-1 -
Conceptual
coverage

What proportion of
the specified concepts
has been modeled?

X = 1 - A / B
A = Number of missing concepts.
B = Number of concepts described
in the metamodel specifications.
0 <= X <= 1.
The closer to 1, the more complete.

MQR03
CCr-1 -
Conceptual
correctness

What proportion of
metamodel concepts
are modeled
correctly?

X = 1 - A / B
A = Number of incorrectly modeled concepts
incorrectly.
B = Number of concepts considered
in the evaluation.
0 <= X <= 1.
The closer to 1, the more correct.

Table 2. Quality measures, description, measurement, interpretation. Adapted
from [Kudo et al. 2020b].

The selection of quality measures was carried out according to the previously se-
lected MQRs. Table 2 presents the quality measures, their descriptions, the measurement
functions, and the interpretation of the measured value. The target value for the measures
is 1, and the acceptable tolerance value is 0.8. The target value of 1 indicates that the
software artifact fully satisfies the corresponding quality measure, while the acceptable
tolerance value of 0.8 allows for some level of imperfection while still considering the
artifact to be of acceptable quality.

Finally, the decision criteria for the evaluation and the formulas used to calculate
the scores of the characteristics and subcharacteristics are defined. For each subcharac-
teristic, the measurement function suggested by the authors of MQuaRE was used.

6.2. Execution

After planning the evaluation, the selection of external evaluators was carried out based
on specific criteria, taking into account that they should have knowledge in programming
or blockchain. This choice was motivated by the fact that the metamodel, in its current
state, requires technical knowledge for its use. Therefore, the selection of evaluators with
these skills was strategic, as the research objective is to facilitate contract development
for software developers who possess such technical knowledge.

A Google Forms2 questionnaire was created to collect evaluation information. In
addition to questions related to MQRs, the form included sections to collect information
about the evaluators profile and level of knowledge about the topic. The presentation of
the material and the evaluation dynamics were presented to the evaluators according to
their availability. The preference was through video calls, but in some cases, it was only
done through text. This process began in early February 2023, and the phase of collecting
responses from external evaluators lasted for three weeks.

6.3. Results and discussion

The evaluation process involved 11 evaluators, all with previous programming experi-
ence, with an average of over 5 years of experience (82%). The evaluators familiarity

2Google Forms is a Google application that allows the creation of dynamic forms. For more information,
please visit: https://docs.google.com/forms/.

with blockchain concepts was significant (73%), however, their knowledge that went be-
yond basic (intermediate or advanced) was lower (37%). The vast majority of evaluators
(73%) had no prior knowledge of the Solidity language, with only one evaluator having
intermediate knowledge in this language. Only a portion of the evaluators knew the MDE
approach (45.5%), and only one of them had intermediate knowledge in the area.

Regarding the evaluation of the specified concepts (MQR02), some evaluators
(45.5%) stated that the concept of abstract contracts (C3) was not modeled. Additionally,
other evaluators (27.3%) indicated that the concept of interfaces (C2) was not applied
in the modeling. Only one evaluator considered that the contract concept (C1) was not
applied, but this same evaluator considered that the concepts of interfaces (C2), abstract
contracts (C3), and concrete contracts (C4) were modeled. Furthermore, one evaluator did
not consider the application of the participant identification concept (C7), while another
evaluator did not consider the application of the complex data structures concept (C8).

The results of the evaluation of the modeled concepts (MQR03) showed differ-
ences between the evaluators. According to one evaluator (E2), the interface concept
(C2) was correctly modeled, while in the previous question, they considered that it was
not applied. Only this evaluator (E2) considered that the concept of concrete contracts
(C4) was not correctly modeled. The other concepts pointed out as not correctly modeled
are consistent with the quality measure MQR02, which already indicated the absence of
application in the metamodel.

Figure 3. Distribution of evaluators scores for quality requirements MQR02 and
MQR03.

According to the evaluation’s objective (identification of improvement points), the
evaluators pointed out some aspects that could be improved in the metamodel. One eval-
uator (E7) highlighted the difficulty in understanding the distinction between the contract
and the concrete contract in the representation proposed by the metamodel. Therefore,
it is essential to provide a clearer explanation of this aspect in the support materials to
facilitate a better understanding of the metamodel’s usage.

In addition, other evaluators (E4 and E9) identified the need for the provision
of complementary materials that demonstrate the application of the metamodel, such as
use cases. However, these materials were not included in the evaluation, considering the
established objective and the necessary requirements provided by the used framework.
It is essential to consider these suggestions for future improvements and updates of the
metamodel to enhance its applicability and usefulness for contract developers. The pro-

vision of additional materials, such as use cases, can facilitate the understanding of the
metamodel’s usage and its potential benefits for the development of smart contracts.

Figure 3 shows the distribution of scores assigned by evaluators for quality re-
quirements MQR02 and MQR03. The information includes the mean (0.908) of all
scores. It was observed that the scores were similar for both quality requirements, which
was expected. Considering that no weight was assigned to the concepts and that the ap-
plication of the concepts in the modeling could result in correct modeling, the scores
obtained indicate an overall acceptable level of quality for the metamodel.

The score obtained for MQR02 and MQR03 indicates conformity between the
metamodel and the completeness and correctness of the incorporated concepts. However,
it is important to note that there is still room for future improvements. It is important
to emphasize that the evaluation of concepts is subjective and may vary according to the
evaluators views and experience, which can influence their assessment.

Finally, based on the experimentation phase of the evaluation and the final score
obtained by the metamodel, there are indications of acceptance of the metamodel. How-
ever, it is essential to monitor and improve the metamodel over time to ensure its effec-
tiveness and efficiency. It is also important to consider the suggestions and feedback from
the evaluators to make improvements and updates to the metamodel, in order to make
it increasingly useful and applicable to contract developers. Continuous evaluation and
improvement are necessary to maintain the metamodel’s relevance and usefulness for the
development of smart contracts, especially considering the rapid evolution and changes
in the blockchain technology field.

6.4. Threats to validity
Threats to validity refer to factors that may compromise the accuracy of the results ob-
tained in research. Regarding this evaluation, it is important to consider possible issues
that may affect the validity of the results.

The sample used in the evaluation was not stratified, resulting in an unbalanced
distribution between evaluators who have and do not have experience in contract devel-
opment. Such an imbalance may impact the results of the evaluation, as each group may
have a distinct perspective on the concepts incorporated into the metamodel.

Additionally, it is essential to implement a way of measuring to evaluate the weight
of each specified concept that has been incorporated into the metamodel. Currently, the
technique used is summation, but it does not ensure that any concept may be consid-
ered more important than others. This lack of weighting can result in undervaluation or
overvaluation of the modeled concepts.

7. Conclusion
This paper evaluated the HLM-SC, a metamodel for modeling smart contracts based on
the EVM platform. The HLM-SC is an abstraction that allows for the declaration of es-
sential elements for building a contract, making it a primary artifact for contract modeling
on the EVM platform. Additionally, a usage guide was proposed to facilitate the adoption
of the HLM-SC by developers. The metamodel was evaluated based on quality criteria
established by the evaluation method used, and the results showed indications of accep-
tance of the metamodel. However, further studies are needed to confirm its effectiveness

and efficiency in other contexts and to constantly monitor the metamodel to ensure its
relevance and adequacy for new demands and decentralized applications.

References

Angelis, J. and Ribeiro da Silva, E. (2019). Blockchain adoption: A value driver perspec-
tive. Business Horizons, 62(3):307–314.

Annenkov, D., Nielsen, J. B., and Spitters, B. (2020). Concert: A smart contract certi-
fication framework in coq. In Proceedings of the 9th ACM SIGPLAN, page 215–228.
Association for Computing Machinery.

Buterin, V. et al. (2014). A next-generation smart contract and decentralized application
platform. white paper, 3(37):2–1.

Cai, W., Wang, Z., Ernst, J. B., Hong, Z., Feng, C., and Leung, V. C. M. (2018). De-
centralized applications: The blockchain-empowered software system. IEEE Access,
6:53019–53033.

Chirtoaca, D., Ellul, J., and Azzopardi, G. (2020). A framework for creating deployable
smart contracts for non-fungible tokens on the ethereum blockchain. In 2020 IEEE
DAPPS, pages 100–105.

Dharanikota, S., Mukherjee, S., Bhardwaj, C., Rastogi, A., and Lal, A. (2021). Celestial:
A smart contracts verification framework. In 2021 FMCAD, pages 133–142.

Feist, J., Grieco, G., and Groce, A. (2019). Slither: A static analysis framework for smart
contracts. In 2019 IEEE/ACM 2nd WETSEB, pages 8–15.

Ferreira, J. F., Cruz, P., Durieux, T., and Abreu, R. (2020). Smartbugs: A framework to
analyze solidity smart contracts. In 2020 35th IEEE/ACM ASE, pages 1349–1352.

Garamvölgyi, P., Kocsis, I., Gehl, B., and Klenik, A. (2018). Towards model-driven engi-
neering of smart contracts for cyber-physical systems. In 2018 48th Annual IEEE/IFIP
DSN-W, pages 134–139.

Grigg, I. (2017). Eos-an introduction. White paper. https://whitepaperdatabase. com/eos-
whitepaper.

Hamdaqa, M., Metz, L. A. P., and Qasse, I. (2020). IContractML: A domain-specific lan-
guage for modeling and deploying smart contracts onto multiple blockchain platforms.
In Proceedings of the 12th SAM, page 34–43. Association for Computing Machinery.

Jiao, J., Lin, S.-W., and Sun, J. (2020a). A generalized formal semantic framework for
smart contracts. In Fundamental Approaches to Software Engineering: 23rd Inter-
national Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020,
Proceedings, page 75–96, Berlin, Heidelberg. Springer-Verlag.

Jiao, J., Lin, S.-W., and Sun, J. (2020b). A generalized formal semantic framework for
smart contracts. In Fundamental Approaches to Software Engineering: 23rd Inter-
national Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020,
Proceedings, page 75–96, Berlin, Heidelberg. Springer-Verlag.

Jurgelaitis, M., čeponienė, L., and Butkienė, R. (2022). Solidity code generation from uml
state machines in model-driven smart contract development. IEEE Access, 10:33465–
33481.

Kaleem, M., Kasichainula, K., Karanjai, R., Xu, L., Gao, Z., Chen, L., and Shi, W. (2021).
An event driven framework for smart contract execution. DEBS ’21, page 78–89, New
York, NY, USA. Association for Computing Machinery.

Khan, A. G., Zahid, A. H., Hussain, M., Farooq, M., Riaz, U., and Alam, T. M. (2019).
A journey of web and blockchain towards the industry 4.0: An overview. In 2019
International Conference on Innovative Computing (ICIC), pages 1–7.

Kudo, T. N., Bulcão Neto, R. F., and Vincenzi, A. M. R. (2020a). Toward a metamodel
quality evaluation framework: Requirements, model, measures, and process. In Pro-
ceedings of the XXXIV SBES, page 102–107. Association for Computing Machinery.

Kudo, T. N., Bulcão-Neto, R. d. F., Neto, V. V. G., and Vincenzi, A. M. R. (2022). Align-
ing requirements and testing through metamodeling and patterns: design and evalua-
tion. Requirements Engineering, pages 1–19.

Kudo, T. N., Bulcão-Neto, R. F., and Vincenzi, A. M. R. (2020b). Metamodel quality
requirements and evaluation (mquare). arXiv preprint arXiv:2008.09459.

Li, Z., Zhou, Y., Guo, S., and Xiao, B. (2021). Solsaviour: A defending framework for
deployed defective smart contracts. In Annual ACSAC, page 748–760, New York, NY,
USA. Association for Computing Machinery.

Qasse, I., Mishra, S., and Hamdaqa, M. (2021). iContractBot: A chatbot for smart con-
tracts’ specification and code generation. In 2021 IEEE/ACM 3rd BotSE, pages 35–38.

Rajasekaran, A. S., Azees, M., and Al-Turjman, F. (2022). A comprehensive survey on
blockchain technology. Sustainable Energy Technologies and Assessments, 52:102039.

Rodrigues da Silva, A. (2015). Model-driven engineering: A survey supported by the
unified conceptual model. Computer Languages, Systems Structures, 43:139–155.

Schmidt, D. C. (2006). Guest editorx27;s introduction: Model-driven engineering. Com-
puter, 39(02):25–31.

Seidewitz, E. (2003). What models mean. IEEE Software, 20(5):26–32.

Velasco, G. (2023). A model-driven approach for smart contract development (in-
progress). In Programa de Pós–Graduação do Instituto de Informática da Univer-
sidade Federal de Goiás, Goiânia, GO, Brazil.

Velasco, G. and Carvalho, S. (2022). A model-driven approach to developing smart con-
tracts on the ethereum virtual machine (in portuguese). In Proceedings of the X ERI-
GO, pages 106–117. SBC.

Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., and Wang, F.-Y. (2019). Blockchain-
enabled smart contracts: Architecture, applications, and future trends. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 49(11):2266–2277.

Zeng, Q., He, J., Zhao, G., Li, S., Yang, J., Tang, H., and Luo, H. (2022). Ethergis: A vul-
nerability detection framework for ethereum smart contracts based on graph learning
features. In 2022 IEEE 46th COMPSAC, pages 1742–1749.

