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Abstract. The development of smart contracts presents significant challenges
compared to traditional software development, such as the immutability of the
blockchain and the limitation of program size. These challenges can lead to
human errors and the existence of vulnerabilities that may be exploited by mali-
cious individuals, resulting in substantial financial losses. Contract developers
face language and infrastructure constraints and insufficient information on in-
terface patterns and implementation specifications. Existing proposals are often
challenging to understand, with complex formal verifications requiring exper-
tise in this approach. This article proposes using Model-Driven Engineering
(MDE), employing a metamodel for contract development and code generation
for the corresponding platform. The metamodel proposed in this study referred
to as the High-Level Metamodel for Smart Contract (HLM-SC), is an abstrac-
tion applicable to contract development in various contexts. HLM-SC consists
of a set of metaclasses allowing the declaration of essential elements for con-
structing a contract on the Ethereum Virtual Machine (EVM). A graphical tool
has been developed to facilitate contract modeling following HLM-SC speci-
fications. Additionally, the model generated from the tool is transformed into
Solidity code. This approach aims to overcome developers’ limitations, offering
a more understandable and efficient approach to building smart contracts on the
blockchain.

1. Introduction

The emergence of smart contracts has facilitated the development of innovative decentral-
ized applications that exploit attributes such as immutability, traceability, transparency,
and privacy [Angelis and Ribeiro da Silva 2019, Khan et al. 2019]. The ability to cre-
ate these applications is ascribed to blockchain technology, specifically focusing on the
Ethereum Virtual Machine (EVM). The EVM facilitates the composition of high-level
code instructions and guarantees their self-execution. Consequently, this phenomenon
has given rise to novel methodologies in application development, employing contracts
and capitalizing on the inherent characteristics of the blockchain.

The immutability inherent in blockchain technology holds significant implications
for developing Decentralized Applications (DApps), necessitating software developers to
embrace a novel programming paradigm. This challenge arises because any subsequent



modifications are impossible once a contract is deployed. Consequently, this charac-
teristic mandates a more rigorous development process, requiring a distinct approach
to the composition, validation, and implementation of applications [Zeng et al. 2022,
Feist et al. 2019, Li et al. 2021, Dharanikota et al. 2021, Jiao et al. 2020].

The conception of a DApp requires all parties involved in the process to under-
stand the selected blockchain’s data flow and functional requirements. Consequently,
contract developers face a series of challenges, making the activity complex and prone
to errors for both experienced and novice developers alike [Jurgelaitis et al. 2022a,
Ferreira et al. 2020]. Additionally, the steep learning curve can pose a significant barrier
to onboarding new developers in the field [Garamvölgyi et al. 2018a, Jiao et al. 2020].

In addition to requiring developers to possess knowledge for creating a DApp, the
EVM platform also necessitates understanding its state machine and the high-level lan-
guage used for contract writing. However, commonly used programming languages, such
as Solidity, have deficiencies that lead developers, especially beginners, to make errors
[Garamvölgyi et al. 2018a]. According to Dharanikota et al. [Dharanikota et al. 2021],
the language’s semantics are obscure and only partially understood, even by expe-
rienced programmers. Understanding by non-technical users is a challenging task
[Qasse et al. 2021]. The linkage between elements and available resources is not easily
understandable, as there is no clear presentation of functionalities and their relationships
in a visually accessible manner.

The development of smart contracts presents several challenges, from concep-
tion to implementation. Contract modeling, for instance, remains a constant con-
cern in the field of contract development [Santiago et al. 2021, Chirtoaca et al. 2020,
Guida and Daniel 2019, Hamdaqa et al. 2020, Ben Slama Souei et al. 2021]. To mini-
mize human errors in creation, various authors have emphasized the importance of em-
ploying software engineering techniques, such as Model-Driven Engineering (MDE), as
an alternative to aid in the contract development process [Ait Hsain et al. 2021]. MDE is
a software development methodology that utilizes models as primary artifacts to repre-
sent system requirements, behaviors, and functionalities [Seidewitz 2003]. This approach
enables technical and non-technical professionals to share knowledge and communicate
more efficiently during software development. Models serve as abstractions of the sys-
tem under study and can be employed to guide the specification, design, analysis, and
implementation of software [Rodrigues da Silva 2015, Seidewitz 2003].

In this context, an alternative is the utilization of metamodels to specify the
modeling language and guide the creation of models. A metamodel describes a
model’s elements, structure, constraints, and semantics, ensuring the consistency, cor-
rectness, and reusability of generated models. The use of metamodels is evident in
some works employing the MDE approach [Kudo et al. 2020, Boubeta-Puig et al. 2021,
Hamdaqa et al. 2022]. Employing metamodels allows for the standardization and com-
prehensibility of developed models and ensures the consistency, accuracy, and reusability
of these models. The MDE approach utilizes techniques and tools to transform metamod-
els into executable code, including code generation, validation, and model transforma-
tions [Seidewitz 2003, Iovino et al. 2012]. Additionally, graphical tools can be created to
assist in system modeling, enabling users to develop models visually without the need for
advanced programming knowledge.



Faced with these challenges, this paper aims to present a solution that utilizes
MDE to minimize human errors during the development process, provide a better under-
standing of artifacts, and enhance communication among stakeholders. A model-driven
approach is introduced, enabling developers to create high-level contracts using meta-
models and other MDE techniques.

The structure of the paper is organized as follows: in Section 2, related works on
the addressed theme are concisely presented. Subsequently, in Section 3, the metamodel is
introduced along with an overview, while Section 4 provides detailed presentations of the
main metaclasses. Section 5 outlines the transformation flow from the metamodel to the
Solidity code. Section 6 introduces the graphical tool for metamodel manipulation. The
paper concludes in Section 7, summarizing its contributions and providing suggestions
for future work.

2. Related Works

Several authors have employed techniques for modeling contracts at a high
level [Ben Slama Souei et al. 2021, Chirtoaca et al. 2020, Guida and Daniel 2019,
Hamdaqa et al. 2020, Santiago et al. 2021]. The main identified approaches in-
clude Business Process Model and Notation (BPMN) [Corradini et al. 2022],
Unified Modeling Language (UML), block programming [Guida and Daniel 2019,
Achour et al. 2021, Garamvölgyi et al. 2018b, Jurgelaitis et al. 2022b], and metamodel
[Hamdaqa et al. 2020, Ben Slama Souei et al. 2021, Jurgelaitis et al. 2022b].

In the work of Hamdapa et al. [Hamdaqa et al. 2020], IContractML is proposed
for contract modeling, accompanied by a graphical tool for manipulation using Sirius.
However, the metamodel has some limitations in constructing smart contracts as it is
specific to a particular domain. It has a reference model in which it is only possible to
model contracts according to the available components (Participants, Assets, Transac-
tions, Relationship), and their interactions, which does not allow for the generic modeling
of contracts as proposed in this paper. Additionally, this work proposes a tool that enables
high-level modeling of smart contracts for the EVM in a generic manner.

Jurgelaitis et al. [Jurgelaitis et al. 2022b] address the development of contracts
on Ethereum based on the principles of Model-Driven Architecture (MDA) and UML
models. They validated their proposal by implementing three examples of contracts from
the Solidity language documentation, in contrast to our work, which utilizes a metamodel
to achieve the same goal of producing implementation code for Ethereum contracts.

3. Metamodel

The High-Level Metamodel for Smart Contract (HLM-SC) incorporates essential ele-
ments for contract development. The basic structure of a contract in Solidity inspires its
modeling. Figure 1 depicts the main metaclasses of HLM-SC, encompassing state vari-
ables, functions, constructors, complex data structures, events, errors, and modifiers. The
primary class in HLM-SC is named Contract, representing a contract as an abstraction of
immutable and traceable code.

State variables are crucial elements in contracts as they enable the representation
of contextual properties. They are defined within the contract scope and can be initialized



Figure 1. Proposed metamodel for modeling smart contracts in the EVM.

when the contract is instantiated or through specific functions. Variables are declared
alongside their basic type and assume an initial value, which varies based on the type. For
instance, an integer has a default value of zero. The type of a variable may be associated
with a complex structure. Modifications to variables can only be carried out through
transactions, ensuring the security and validation of business rules. Depending on their
visibility, variable values can be externally visible, allowing verification and validation by
external callers.

Functions enable the representation of agreed-upon rules among the involved par-
ties. They can exhibit simple behaviors, such as meeting the conditions defined in state
variables (deterministic), or be dependent on received inputs. When a contract rule is
fulfilled, notification can be made through events, indicating that a specific action has
occurred, allowing interested DApps to execute their rules. These events may have a dif-
ferent structure from state variables and are often employed for auditing purposes. In
failure, the function can trigger custom errors defined within the contract scope.

4. The metaclasses of HLM-SC
This section details the metaclasses of HLM-SC (Figure 1). All metaclasses adhere to the
following properties: the name must start with a letter or (underscore) and should not
contain spaces1; names must be unique within the scope they are used, and no reserved
keywords (address, function, int, contract, modifier, struct, bool) should be used.

1Names may follow the Lower Camel Case convention, for example, lowerCamelCase.



4.1. Types

The abstract metaclass Types represents the supported types in the metamodel. These
types are used in the composition of other metaclasses. The metamodel supports the
following types:

• Integer: Represents integers. The unsigned property represents only positive num-
bers, and bit represents the variable size, ranging from 8 to 256 bits.

• Boolean: Represents true or false values.
• Address: A special type representing cryptographic addresses. These addresses

can correspond to contract addresses or user account addresses. The payable
property represents addresses capable of receiving the native cryptocurrency of
the blockchain.

• String: Used to store literal values. Its content consists only of ASCII characters.
• Mapping: A data structure in the form of a table with a key and value. Mappings

are used for quick lookups. However, it is not possible to iterate over a Mapping.
In such cases, using an array for that purpose is advisable. All values assume
the default value of the used type and can use user-defined types, such as Structs.
Additionally, they can only be used as state variables and are not supported as
function input or output parameters.

4.2. Contract

The main metaclass of HLM-SC is Contract, from which other metaclasses are instanti-
ated to model the contract. The contract must have a symbolic name used to identify it
during development, particularly in inheritance cases.

The contract represented in HLM-SC is a concrete contract with business logic
implemented during the development stage. Abstract contracts or interfaces can also be
represented using HLM-SC. However, during the metamodel-to-text transformation stage,
the generated code must be adapted to become an abstract contract.

4.3. Structs

Figure 2. The metaclass representing Structs and their relationships.

Structs (Figure 2) are more complex structures declared at the contract level. They
can be used as a type in the declaration of a state variable, within the scope of a function,
or as an event member. To be considered a struct, it must have at least one member,
defined through composition with the abstract class Types. Each member must have a
unique name, defined as a list.



4.4. State Variables
State variables (Figure 3) represent the contract’s state, and their values are permanently
stored. Immutable or constant variables (represented by the attributes immutable and
constant, respectively) cannot be altered after initialization. On the other hand, other
types of variables can be modified after initialization through Remote Procedure Call
(RPC) invocations.

Figure 3. The metaclass representing State Variables and their relationships.

The variables within a contract consist of a unique identifier (name), visibility, and
type. The variable’s visibility can be defined as internal, public, or private. The type can
be basic (integer, address, string) or a key-value structure, such as mapping, or even a
data structure (struct) specified within the contract’s scope.

One uses composition with the abstract class Types to define variable types. Data
structures, on the other hand, are specified through a relationship with the Structs element.
The variable type will be exclusively determined by composition with Types or by the
relationship with Structs, but never both simultaneously. Additionally, it is possible to
represent a variable as a list through the list property. In the case of mapping, only the
value can be represented as a list.

4.5. Errors

Figure 4. The metaclass representing Errors and their relationships.

Errors in contracts (Figure 4) are a more sophisticated way of notifying callers
about the occurrence of an action, providing more precise and detailed information rather



than a simple message. Additionally, regarding gas costs, errors are more efficient than
messages. In HLM-SC, errors can be employed by both functions and modifiers. When
an error occurs during an RPC call, the caller can identify the context of the error.

4.6. Events
Events (Figure 5) record information that can be consumed for traceability purposes. A
structured recording of a state change in a contract characterizes an event. An event
is defined within the contract scope, with a name and at least one member. An event
member must have a name whose type follows the same characteristics as a type in a state
variable. Additionally, it is possible to index up to three members of an event, enabling
more efficient searches within a contract.

Figure 5. The metaclass representing Events and their relationships.

4.7. Modifiers
Modifiers (Figure 6) are used as a special function. Their execution always occurs before
the function’s logic, and the developer chooses which part of the modifier the function’s
logic will be embedded through the special character (underscore).

Figure 6. The metaclass representing Modifiers and their relationships.

In HLM-SC, adding a code snippet incorporated into the modifier through com-
position with the metaclass Behavior is possible. The code needs to be written in the
Solidity language.



4.8. Functions
Functions (Figure 7) are crucial in building a contract, responsible for verifying conditions
and executing when true. Otherwise, their execution fails, and the contract state remains
unchanged. The execution of a function can fail using customizable errors defined within
the contract scope using the revert keyword. A successfully executed function can emit
various events using the emit keyword. In HLM-SC, these two mentioned elements are
represented by the derivation relationships revert and emit, respectively.

Figure 7. The metaclass representing Functions and their relationships.

Contract functions can be divided into two groups: view and mutative. View func-
tions are represented by the view attribute. If the view attribute is not used, the function
is considered mutative and may receive currency transfers, represented by the payable
attribute.

Functions can receive input parameters and return a sequence of variables. Every
input parameter must be used within the function’s scope. The visibility of the function
can take on external, public, internal, and private visibility scopes. Lastly, functions can
add behavior through composition with the Behavior class.

4.9. Constructor

Figure 8. The metaclass representing Constructor.

The Constructor (Figure 8) is responsible for initializing the state variables of the
contract in HLM-SC. Each constructor parameter represents a state variable that will be



initialized with the value passed as an argument. Additionally, behavior can be added
when the contract is instantiated through composition with the Behavior class.

5. Transformation of the metamodel into Solidity code

The MDE approach enables the transformation of elements, such as metamodels or mod-
els, into other artifacts, such as text or other models. This mechanism allows the defini-
tion of high-level elements that can be converted into various artifacts. To facilitate this
activity, specialized tools, such as Acceleo2, are employed. Acceleo is a model-to-text
transformation tool that implements the MOFM2T specification3 defined by the Object
Management Group (OMG).

Figure 9. Flowchart for transforming HLM-SC into a Solidity interface.

To illustrate the transformation process, two flowcharts were created. The first
flowchart (Figure 9) depicts the creation of the contract interface, while the second one
(Figure 10) represents the definition of the contract, encompassing the implementation
logic of the contract itself.

In our context, the definition of the contract interface has been added. When a
contract interacts with another, it is sufficient to know only the signature. Thus, the code
generation process begins with the creation of the interface (Figure 9), which contains the
declaration of structures and signatures (functions, events, and errors). By convention, the
interface starts with an uppercase ’I’, followed by the contract name, indicating it is an
interface. For example, if the contract is named MyContract, the corresponding interface
would be named IMyContract.

The Figure 10 illustrates the contract creation process. The flow begins with gen-
erating the contract code file, utilizing the previously defined interface. State variables, the
contract constructor, modifiers, and functions are declared. State variables are declared
according to their type and are not initialized. The constructor, modifiers, and functions
are declared with pseudo-implementation. For modifiers and functions, a list of errors
that may occur during their execution is specified. Functions also declare the events that
can be emitted during their processing.

After this process, two files are made available for implementation on the

2https://www.eclipse.org/acceleo/
3https://www.omg.org/spec/MOFM2T



Figure 10. Flowchart for transforming HLM-SC into a Solidity contract.

blockchain. If there is a need for subsequent modifications, it is possible to modify both
files.

6. Graphical Tool
The graphical tool, named Smart Contract Modeling Tool (SCMTool), allows for contract
modeling simply by dragging and dropping components. SCMTool was developed us-
ing Sirius, a comprehensive framework that provides resources for building a graphical
modeling environment.

Figure 11. SCMTool.

Figure 11 illustrates the SCMTool and its main elements. The contract is modeled
in the central area (A), where users can drag the components available in the palette (B).
The palette contains all the components that make up the contract. When a rectangular
shape is selected, it is possible to modify its properties (C). If the modeled contract does
not comply with the HLM-SC specifications, errors are presented in this area (D). The
SCMTool has validation rules according to the HLM-SC specifications, ensuring that it
is only possible to drag a component onto one of the rectangular shapes when there is a
match with the HLM-SC specification.



Figure 12 illustrates the graphical components of the diploma certification con-
tract. Rectangular shapes represent the main components of the HLM-SC, and edges de-
pict relationships. In the SCMTool, each file represents an instance of the Contract. State
variables are represented by rectangular shapes, such as certificate (blue color). The
certificate variable utilizes the complex data structure represented by Certificate (green

color). The shape labeled as mint represents a function (white color) that employs the
onlyAuthorizedAddress modifier (orange color). This modifier throws a NotAuthorized
error if the calling address is not authorized (red color). Upon success, the mint function
emits the event represented by the CertificateIssued shape (yellow color). Finally, the
constructor (purple color) initializes the institutionName state variable.

Figure 12. The main graphical components and their relationships.

The SCMTool employed the graphical representation of a Sirius diagram. The
graphical elements utilized include nodes, containers, and edges. Containers can repre-
sent various types of graphical components and may contain others, unlike nodes, which
represent only one component. Edges, in turn, represent the relationships between them.
The components represent the metaclasses of HLM-SC, and the domain class defines their
association.

Figure 13. Example of the graphical representation of an event (Transfer ) and a
function (transferFrom).

A use of graphical representations to compose components is illustrated in Figure
13. The Transfer event is depicted by a yellow rectangular shape, modeled through a con-
tainer. Within this container, additional containers representing the event members (from,
to, and tokenId) can be added, each represented by white rectangular shapes. Within these
containers, components denoting types (address and string), exemplified here through a



node, can be utilized. The white rectangular shape corresponds to a function (transfer-
From) that has a relationship with the event, depicted by a blue edge with the keyword
≪emit≫.

One way to make the model editable for the user is by defining a tool palette to
manipulate previously established graphical components. The absence of a tool palette
would limit the model’s functionality to visualization only, preventing any form of editing
by the user. Components have been organized into groups based on their dependency
relationships to facilitate the use of the tool palette. For instance, variable types used in
various metaclasses have been grouped into a single category. Additionally, relationships
between metaclasses have also been grouped, such as the ≪useStruct≫ relationship. Figure
14 illustrates, on the left, a snippet of the tool palette component development process,
and on the right, how it is presented to the end user.

Figure 14. Example of a tool palette component during development (left) and its
presentation to the end user (right).

After completing the contract modeling, it is possible to transform the model into
code directly in the editor, following the workflow described in Section 5. The generated
files are stored in the src-gen folder. If the user wishes to model another contract, initiating
a new project using the SCMTool is necessary.

7. Conclusion
This paper proposes using Model-Driven Engineering (MDE) for contract development
using a metamodel, a graphical modeling tool, and a code generation mechanism for
Solidity. With the adoption of this approach, it is anticipated that both technical and non-
technical individuals can create contracts more easily, regardless of their prior modeling
knowledge.

The High-Level Metamodel for Smart Contract (HLM-SC) is an abstraction ap-
plicable in various contexts for developing contracts on the Ethereum Virtual Machine
(EVM) platform. It comprises a set of metaclasses that enable the declaration of es-
sential elements for constructing a contract, such as state variables, functions, complex
data structures, events, and custom errors. The HLM-SC was initially crafted based on
the fundamental structure of a Solidity contract and subsequently refined and adapted
to facilitate contract development across diverse application domains. Consequently, the
HLM-SC adeptly represents information and business rules inherent in a contract in a



more precise and structured manner. The Smart Contract Modeling Tool (SCMTool) is a
graphical tool designed to facilitate intuitive contract modeling by allowing users to drag
and drop graphical components within the SCMTool for contract creation.

A potential avenue for future research involves integrating machine learning tech-
niques to assess the presence of vulnerabilities and error verification in contracts, thereby
enhancing the contract creation process with HLM-SC. Furthermore, external assessors
could evaluate the SCMTool to assess its usability. This evaluation could lead to im-
provements in the user interface, subsequently fostering increased adoption and utilization
within the contract development industry.
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