Avaliacao de Performance de Contratos de Identidade Digital
Descentralizada em Redes Blockchain Baseada em Ethereum

Jeffson Celeiro Sousa'?, Bruno Evaristo'?,
Antonio Mateus de Sousa’, Ismael Avila

! Centro de Pesquisa e Desenvolvimento em Telecomunicagdes (CPQD)
Campinas — SP — Brasil

2Universidade Federal do Pard (UFPA)
Belém — PA — Brasil

{jcsousa, elderb, amateus, avila_an}@cpgd.com.br

Resumo. Este artigo apresenta uma avaliagdo de performance de contratos in-
teligentes voltados a gestdo de identidades digitais descentralizadas em redes
blockchain baseadas em Ethereum. A andlise foca em operacoes fundamen-
tais do ciclo de vida de identidades, como criagdo, atualizacdo, definicdo de
esquemas de credenciais e controle de revogacdo, implementadas em contra-
tos Solidity. Foram considerados dois contextos de execucdo: um ambiente
com Hyperledger Besu operando em modo permissionado, e uma referéncia
ao modelo tradicional Hyperledger Indy. Os testes foram conduzidos em rede
privada simulando diferentes niveis de carga e configuracoes de consenso. As
métricas avaliadas incluem tempo de resposta, vazdo, uso de recursos (CPU e
memoria) e escalabilidade. Os resultados fornecem subsidios para a escolha
de arquiteturas eficientes para solucoes de identidade digital baseadas em SSI
(Self-Sovereign Identity) e Ethereum, especialmente em cendrios corporativos
ou regulados.

Abstract. This paper presents a performance evaluation of smart contracts de-
signed for managing decentralized digital identities on Ethereum-based block-
chain networks. The analysis focuses on core identity lifecycle operations such
as creation, update, credential schema definition, and revocation control, all
implemented through Solidity smart contracts. Two execution contexts were
considered: an environment using Hyperledger Besu operating in permissio-
ned mode, and a reference to the traditional Hyperledger Indy model. The tests
were conducted in a private network simulating different load levels and con-
sensus configurations. The evaluated metrics include response time, through-
put, resource usage, and scalability. The results provide insights to support the
selection of efficient architectures for digital identity solutions based on Self-
Sovereign Identity (SSI) and Ethereum, particularly in enterprise or regulated
environments.

1. Introducao

A Identidade Digital Descentralizada (IDD) ou Identidade Autossoberana (SSI) surgiu
como uma resposta aos modelos tradicionais de gerenciamento de identidade digital, que
frequentemente dependem de autoridades centralizadas e expdem os usudrios a riscos de

privacidade, vazamentos de dados e falta de portabilidade [Allen 2016]]. Com o apoio de
iniciativas como o W3C DID [W3C 2022a] e W3C Verifiable Credentials [W3C 2022b],
a SSI busca empoderar individuos e organiza¢des por meio de identificadores descentra-
lizados e credenciais verificdveis.

O Hyperledger Indy foi uma das primeiras plataformas a implementar os princi-
pios da SSI de forma prética, oferecendo um ledger publico permissionado baseado em
um protocolo de consenso tolerante a falhas bizantinas (RBFT) [Hyperledger Foundation 2019]].
Sua adogdo foi impulsionada por redes como Sovrin e frameworks como Hyperledger
Aries, que utilizam o Indy como backend para resolucdes de DIDs, publicacao de esque-
mas de credenciais e controle de revogacdo [Foundation 2020)]].

Com o tempo, desafios relacionados a escalabilidade, interoperabilidade e evolu-
cdo dos padrdes motivaram o surgimento de propostas alternativas. Entre elas, destaca-se
o Indy Besu, uma iniciativa que visa migrar a l6gica de identidade do Indy para uma nova
infraestrutura baseada no Hyperledger Besu, um cliente Ethereum com suporte nativo a
contratos inteligentes em Solidity [Community 2024a].

O uso de contratos inteligentes para identidade descentralizada j4 é explorado em
métodos como did:ethr, baseado no padrao ERC-1056, permitindo a gestdo de DIDs
autonomos na Ethereum [Thorstensson 2018]]. Contudo, avaliagdes sistemdticas da per-
formance dos contratos DID em redes permissionadas, especialmente no contexto do Indy
Besu, ainda sdo escassas na literatura. Este artigo busca preencher essa lacuna, propondo
um estudo comparativo da execucdo de contratos DID na rede Besu em diferentes ce-
ndrios. A avaliacdo de desempenho foi feita por meio de experimentos numa rede Hy-
perledger Besu permissionada, configurada com diferentes parametros de rede e carga
transacional.

Este trabalho estd organizado da seguinte forma: a apresenta os trabalhos
relacionados a proposta. A apresenta a descri¢do da proposta. A apre-
senta a metodologia de avaliacdo do trabalho. A apresenta os resultados. E, por
fim, a apresenta a conclusdo e trabalhos futuros acerca deste estudo.

2. Trabalhos Relacionados

Diversos estudos recentes tém se dedicado a avaliagdo de desempenho de plataformas
blockchain, incluindo Ethereum, Hyperledger Fabric e Hyperledger Indy, refletindo sua
adoc@o crescente em aplicagdes empresariais e institucionais. Uma das ferramentas mais
utilizadas nesses estudos € o Hyperledger Caliper, que oferece suporte padronizado e
reprodutivel para benchmarking de redes permissionadas e publicas.

[Kaushal e Kumar 2024 utilizaram o Hyperledger Caliper para avaliar uma rede
Fabric simulando um sistema de monitoracdo remota de pacientes (RPM). A rede incluia
trés organizagdes com suas respectivas autoridades certificadoras e nds ordenadores. O
estudo mediu laténcia e vazao em operagdes de leitura e gravagdo, e concluiu que a Fabric
apresentou bom desempenho sob diferentes taxas de transa¢do, com minimas variagoes.

[Kshirsagar e Pachghare 2022] propuseram um novo algoritmo de consenso cha-
mado Proof of Scope, comparando-o com Raft e PoW-Ethash na plataforma Hyperledger.
O mecanismo mostrou ganhos de até 38% na laténcia e 22% na vazdo. O estudo destaca
como mecanismos alternativos de consenso podem impactar o desempenho da rede.

[Melo et al. 2024] criaram um modelo de desempenho para a Fabric utilizando
Stochastic Petri Nets, medindo parametros como laténcia, vazao e utilizacao. A validacio
experimental do modelo com alto nivel de confiabilidade mostrou que o tamanho do bloco
e as politicas de endosso sdo fatores criticos para o desempenho.

[Cho1 e Won-Ki1 Hong 2021]] compararam o desempenho de uma Ethereum Pri-
vate Network com a testnet Ropsten. Utilizando Caliper, mediram laténcia, vazdo e es-
tabilidade da rede. A rede privada obteve desempenho superior, com menor laténcia e
maior taxa de transacdes por segundo. O estudo demonstrou que transagdes simples tém
melhor desempenho, mesmo com limites de gés equivalentes.

[Bastos et al. 2024] apresentaram o Minlndy, uma ferramenta que automatiza a
implantacdo e gestdo de redes Hyperledger Indy. A solucdo facilita o uso de SSI ao
automatizar tarefas repetitivas com Ansible e Docker. Avaliacdes mostraram que o de-
sempenho da rede Indy mantém-se equivalente a implantagao manual tradicional.

No contexto da Hyperledger Besu, estudos ainda sao escassos. Em [Fan et al. 2022],
foi realizada uma avalia¢do detalhada utilizando Caliper para analisar os algoritmos de
consenso PoA, IBFT 2.0 e QBFT em redes Besu. Os resultados mostraram que o QBFT
escala até 14 validadores sem degradagdo perceptivel e que tempo de bloco e tamanho
afetam significativamente o desempenho.

[Mostarda et al. 2023|] propuseram uma ferramenta personalizada de benchmar-
king para redes Besu, superando limita¢des do Caliper em redes reais operadas por mul-
tiplas organizacdes. A ferramenta detectou anomalias em validadores que adicionavam
blocos vazios ou com poucas transagdes, revelando assimetrias na contribui¢c@o entre nés.

A Tabela |l| resume os principais aspectos dos trabalhos discutidos. Em geral,
este trabalho se diferencia principalmente em dois pontos: (i) por realizar uma avaliacao
de desempenho focada em contratos inteligentes voltados a identidade descentralizada
(DID) na Hyperledger Besu, baseando-se em operagdes fundamentais do ciclo de vida
de identidades digitais; e (i) por apresentar um cendério reprodutivel com configuracdes
completas de rede, contratos e benchmarking disponibilizados publicamente.

Trabalho Blockchain Caliper Consenso Avaliado Modelo Reprodutivel Avaliacio DID Ferramenta Personalizada
[Kaushal e Kumar 2024] Fabric v Solo X X X
[Kshirsagar e Pachghare 2022} Fabric v Proof of Scope X X X
[Melo et al. 2024 Fabric v Solo v X X
[Choi e Won-Ki Hong 2021] Ethereum v PoW X X X
[Bastos et al, 2024 Indy X RBFT v v X
[Fan et al. 2022] Besu v QBFT, IBFT 2.0, PoA X X X
|Mostarda et al. 2023] Besu v QBFT v X v
Proposta Besu v QBFT v v X

Tabela 1. Resumo dos trabalhos relacionados e suas caracteristicas principais.

3. Proposta de arquitetura e modelo de avaliacao

Esta sec@o descreve a arquitetura proposta para a realizacao dos experimentos de avaliacao
de desempenho de contratos inteligentes de identidade descentralizada (DID) nas plata-
formas Hyperledger Indy e Indy Besu. O objetivo € permitir uma comparagao sistematica
entre as duas abordagens, considerando aspectos como desempenho, complexidade de
operacgdo e escalabilidade.

3.1. Hyperledger Besu

A Hyperledger Besu é um cliente Ethereum de c6digo aberto desenvolvido em Java e man-
tida como um projeto graduado pela Hyperledger Foundation desde 2020 [Besu 2023b].
Ela € compativel com a Ethereum Virtual Machine (EVM) e permite a operacao em redes
publicas e privadas, com suporte completo a contratos inteligentes escritos em Solidity.
No contexto de redes permissionadas, a Besu oferece suporte a algoritmos de consenso
como Clique (Proof of Authority), OQBFT e IBFT 2.0, viabilizando governanga controlada
sobre a validac@o de blocos [Besu 2023a].

Uma das principais vantagens da Besu € sua arquitetura modular, que permite a
integracdo de plugins, gerenciamento de permissdes por conta, canais privados de tran-
sacdo, e APIs RPC compativeis com ferramentas Ethereum existentes [Besu 2023c]. Ela
também oferece ferramentas de monitoramento nativas via Prometheus e métricas deta-
lhadas para andlise de desempenho. Além disso, sua compatibilidade com bibliotecas
como ethers. Js e frameworks como Hardhat facilita o desenvolvimento, teste e auto-
macao de contratos inteligentes.

No contexto de identidade descentralizada, a Besu serve como base para a inicia-
tiva Indy Besu [[Community 2024b]], que implementa contratos para operacdes DID como
createDid, updateDid e createCredentialDefinition. Essa abordagem
permite a execucdo de identidades digitais descentralizadas em um ambiente Ethereum
permissionado, utilizando enderecos como identificadores e mantendo compatibilidade
com métodos estabelecidos como did:ethr e extensdes como did:indy:besu.
Essa flexibilidade torna a Besu uma alternativa moderna e escaldvel a ledger tradicional
da Hyperledger Indy.

3.2. Hyperledger Indy

A Hyperledger Indy é um framework especializado de identidade digital descentralizada,
com foco exclusivo na gestdo de DIDs e credenciais verificdveis. Langado originalmente
pela Sovrin Foundation e posteriormente incorporado a Hyperledger como projeto gradu-
ado, a Indy prové uma ledger permissionada publica baseada no protocolo de consenso
RBFT (Redundant Byzantine Fault Tolerance), desenvolvido para suportar confianga dis-
tribuida entre n6s validadores [Indy 2022].

A arquitetura da Indy € composta por dois componentes principais: a Indy Ledger,
responsdvel por armazenar as transagdes de identidade como NYM (para criacdo de DIDs),
SCHEMA (para defini¢@o de atributos), CRED_DEF (para definicao de credenciais) e regis-
tros de revogacdo [Indy 2023]]; e a Indy SDK, um conjunto de bibliotecas escritas em Rust
com wrappers para diversas linguagens, utilizado por agentes Aries para interagir com a
ledger, gerir carteiras e estabelecer conexdes peer-to-peer com seguranga criptografica.

Apesar de sua maturidade e adocdo em ambientes como a rede Sovrin, a Hyper-
ledger Indy tem limitacdes de desempenho, interoperabilidade com padrdes modernos
(como did:ethr) e dificuldades na evolugdo da base de cddigo devido a sua arqui-
tetura monolitica [Community 2023]]. A iniciativa Indy Besu surge como uma proposta
complementar que busca migrar a 16gica de identidade da Indy para contratos inteligentes
em Ethereum, preservando a semantica das transacdes originais e facilitando a integra-
cdo com ferramentas amplamente utilizadas no ecossistema Ethereum. Essa abordagem
também melhora o desempenho da rede e reduz os requisitos computacionais dos nos.

Dessa forma, € oportuno comparar as funcdes utilizadas nas duas tecnologias a
fim de avaliar o desempenho da Indy Besu em termos das operacdes correspondentes na
Hyperledger Indy, conforme especificadas na Indy DID Method Specification. A Tabela
2 apresenta essa comparagao:

Tabela 2. Comparacao entre func6es da Indy Besu e operagoes da Hyperledger Indy

Funcao na Indy Besu Operacao Corres- Descricio
pondente na Hy-
perledger Indy

createDid NYM Cria um novo Identificador Descentralizado
(DID) narede. Na Indy, a transagdo NYM € utili-
zada para registrar um novo DID, associando-o
a uma chave publica e outros metadados rele-
vantes.

updateDid NYM Atualiza um DID existente. Na Indy, a transa-
¢80 NYM também é usada para modificar infor-
macdes de um DID ja registrado, como atualizar
chaves publicas ou alterar permissdes associa-
das.

createRevocation REVOC_REG_DEF Cria um Registro de Revogagdo para gerenciar

Registry o status de revogacdo de credenciais emitidas.
Na Indy, a transagdo REVOC_REG_DEF define
um novo registro de revogacdo vinculado a uma
definicdo de credencial especifica.

createOrUpdate REVOC_REG_ENTRY Adiciona ou atualiza entradas em um Re-

Entry gistro de Revogacdo existente. A transacdo
REVOC_REG_ENTRY na Indy € usada para
modificar o estado de revogacdo de credenciais
especificas dentro de um registro de revogacao.

createSchema SCHEMA Cria um novo esquema que define a estrutura de
atributos para credenciais. Na Indy, a transacgdo
SCHEMA ¢ utilizada para registrar um esquema
contendo os nomes dos atributos que serdo in-
cluidos nas credenciais emitidas.

createCredential CRED_DEF Cria uma definicdo de credencial baseada em

Definition um esquema existente. Na Indy, a transacdo
CRED_DEF estabelece os parametros criptogra-
ficos e associa um esquema a um emissor espe-
cifico para a emissdo de credenciais.

As operacdes na Hyperledger Indy sdo realizadas por meio de transagdes especi-
ficas que interagem com a ledger para registrar, atualizar ou consultar os diversos objetos
relacionados a identidade descentralizada.

No contexto da Hyperledger Besu, essas fun¢des sdo implementadas como con-
tratos inteligentes na rede Hyperledger Besu, aproveitando a flexibilidade e o poder dos
contratos em Solidity para gerenciar identidades descentralizadas e credenciais verifica-
veis.

A transacdo ATTRIB, anteriormente utilizada na Indy para adicionar atributos
a um DID, foi substituida pelo método did:indy, que permite a inclusdo direta de

endpoints de servigo e outros dados no documento DID.

Essa comparacdo destaca como as funcionalidades essenciais para a gestdo de
identidades descentralizadas e credenciais sdo implementadas em ambas as plataformas,
refletindo a evolugdo das tecnologias de identidade digital no ecossistema Hyperledger.

3.3. Fluxo de operacoes DID do cenario

O fluxo de operacdes para ambas as redes segue a mesma légica funcional, com as se-
guintes etapas:

1. Criacao de Identificador (createDid): geracdo de um par de chaves criptogrifi-
cas e registro do DID na ledger.

2. Atualizacao de Identificador (updateDid): modificacio da chave publica ou
metadados do DID.

3. Criacao de Esquema (createSchema): definicio de um conjunto de atributos
que serdo utilizados em credenciais.

4. Criacao de Definicao de Credencial (createCredentialDefinition): associacao
entre o emissor e o esquema definido, incluindo parametros criptograficos.

5. Criacao do Registro de Revogacao (createRevocationRegistry): inicializacio
de um conjunto de controle de validade para credenciais emitidas.

6. Entrada de Revogacao (createOrUpdateEntry): atualizacido do status de uma
ou mais credenciais emitidas.

4. Avaliacao

Nesta secao, descrevemos a metodologia adotada, a configuracdo experimental dos ambi-
entes avaliados e os parametros de execucao utilizados nos testes. Os experimentos foram
conduzidos de forma controlada, variando a taxa de envio de transa¢des — definida como
o numero total de requisicdes de transagdes enviadas por segundo por todos os workers
(req/s) — de 20 até 120 req/s, com incremento de 10 e duragdo fixa de 10 segundos por
rodada. Essa configuracdo foi definida diretamente nos arquivos YAML utilizados pela
ferramenta de benchmark.

Todos os artefatos utilizados neste estudo — incluindo c6digos-fonte, arquivos de
configuracdo, contratos inteligentes, modulos de carga, logs e resultados experimentais
— estdo disponiveis publicamente em nosso repositorio reprodutl’ve]ﬂ

Para efeito de comparacao, avaliamos o desempenho de operacdes relacionadas a
gestdo de Identidades Descentralizadas (DID) em dois contextos distintos:

* Cenario 1 — Hyperledger Indy: Em [Bastos et al. 2024], foi avaliada uma rede
Indy, implantada sobre quatro maquinas virtuais com as seguintes especificacdes:
4 vCPUs (Intel Xeon E312xx a 2.0 GHz), 4 GB de RAM, rodando Ubuntu 20.04.
Esses nés foram configurados como validadores RBFT numa rede permissionada.

* Cenario 2 — Hyperledger Besu: Implantada uma rede blockchain baseada no
Hyperledger Besu em um servidor dedicado com Ubuntu 22.04, 32 GB de RAM e
12 nucleos de CPU. A rede foi configurada com quatro nds validadores utilizando
o consenso QBFT e 2 bootnodes, seguindo as recomendagdes da documentagdo
oficial para ambientes de producao.

'https://github.com/jeffsonsousa/evaluation-contracts-indy-besu

https://github.com/jeffsonsousa/evaluation-contracts-indy-besu

4.1. Ferramenta de avaliacao de desempenho

Para garantir que as medicdes de desempenho refletissem a 16gica dos contratos inteligen-
tes e ndo fossem afetadas por limitagcdes operacionais de consumo de gés, todas as redes
Besu foram configuradas como gasless. Especificamente, definiu-se:

e gasLimit =0x1ffffffffffff;

e contractSizelLimit =2147483647;
* min-gasprice =0;

e difficulty=0x1;

* txPoolLimit =4096 (padrdo).

A ferramenta utilizada para execucao dos testes foi o Hyperledger Caliperﬂ na
versdao 0.5.0, utilizando o Ethereum SDK v1.4. O Caliper permitiu a orquestracio de
chamadas aos contratos inteligentes implementados em Solidity para simular operacdes
como createDid, createSchema, entre outras.

Ademais, configurou-se a monitoracdo com Docker para coletar métricas de uso
de CPU e memoria dos contéineres dos nds da rede Besu durante cada rodada de teste.
Os resultados foram processados automaticamente e armazenados em relatérios HTML e
CSYV, que foram utilizados para gerar os graficos e analises apresentados neste trabalho.

4.2. Cenarios de teste

A Figura [I] apresenta a arquitetura utilizada para a execugdo do cendrio de avaliacdo de
desempenho dos contratos inteligentes de identidade digital descentralizada implantados
na rede Hyperledger Besu. O processo é conduzido com o auxilio da ferramenta Hy-
perledger Caliper, que permite simular multiplos clientes (workers) enviando transagdes
para o ledger por meio de chamadas aos contratos Solidity responsaveis pelas funcoes de
identidade. A seguir, € detalhada cada etapa numerada da figura.

IndydidRegistry 5) Tx registrada na
HYPERLEDGER createDi
—>
updateDid @ HYPERLEDGER .
. BESU
Caliper
[H @ HYPERLEDGER
' H 5| CredentialDefinitionRegist BESU —
% : Worker 1 H 4) contrato chama fungé&o para registro il
Benchmark ! | na ledger =Y
! ' | createCredentialDefinition }——) @ HYPERLEDGER
T ' | Worker2 | i BESU]
_ 5 : = : _ _
éiffnczat,iiéf Iee : H - workload-modules SchemaRegistry nBszgLGDesn |
smart contract i | Worker3 |
| H H 3) modulo conecta com >
2) inicia rodada de | H rede blockchain | createSchema HYPERLEDGER
teste com worker E E atraves do smart contract @ BESU]
| Worker4 | .
et Revocation Registry HYPERLEDGER
BT —

Bl
createRevocation
> Registn T
createOrUp itry

Figura 1. Arquitetura de avaliacao de performance dos contratos de identidade na rede Hyperledger
Besu com Hyperledger Caliper.

Na primeira etapa, o benchmark é configurado por meio de arquivos no for-
mato YAML, os quais especificam: a topologia da rede blockchain (nds, validadores,

Zhttps://www.lfdecentralizedtrust.org/projects/caliper

https://www.lfdecentralizedtrust.org/projects/caliper

consenso), os contratos inteligentes a serem avaliados, os mddulos de carga (workload-
modules) e o nimero de workers que irdao simular clientes concorrentes. Cada worker seréa
responsdvel por executar chamadas independentes e paralelas aos contratos definidos, si-
mulando um ambiente de uso realista.

Em seguida, com os arquivos de configuracdo prontos, um orquestrador simples
foi criado para gerenciar no Caliper as instincias dos workers conforme especificado,
ativando as rotinas de teste definidas no plano de carga. Cada worker executa chamadas
especificas as funcdes do contrato inteligente.

No passo 3, os modulos de carga, escritos em JavaScript, encapsulam a 16gica de
envio de transacgdes a rede. Cada worker carrega seu médulo, que realiza a conex@o com
a rede Besu, invocando diretamente fungdes especificas dos contratos inteligentes. No
passo 4, cada médulo conecta-se a rede Besu e chama fungdes dos contratos, de acordo
com o tipo de operagdo avaliada.

ApOs a execucao da funcdo, a transagdo € propagada e registrada no ledger da rede
Besu. Com o uso do mecanismo de consenso QBFT (Quorum Byzantine Fault Tolerance),
os blocos contendo as transagdes sdo validados e adicionados a blockchain.

4.3. Métricas de coleta

O principal objetivo de uma aplicacio blockchain € tratar uma série de transacoes envia-
das pelos participantes e proceder ao processo de verificacdo e requisi¢ao, levando a ge-
racdo de um bloco e o resultado da transacdo sendo registrado no livro-razao distribuido
[Hang e Kim 2019, |Afraz e Ruffini 2020]. Portanto, o desempenho de nosso aplicativo
blockchain é medido pelas métricas vazao e tempo de resposta da transagao.

Vazao da transacio (V't): refere-se ao nimero de transacdes cujo resultado a
blockchain pode processar e registrar na ledger num dado segundo.

Vi— TotalValidTransactions
B TotalTime(s)

oY)

Tempo de resposta da transacao (7'rt): refere-se ao tempo que uma transacao
leva do momento em que é chamada pelo cliente até ser salva na ledger.

Trt = ConfirmationTime x Threshold—SendTime 2)

5. Resultados

Com base nos graficos de vazao e laténcia, as Figuras [3]e 4| mostram que as operagdes de
escrita na rede Besu, como createDid, createSchema e create Credential
Definition, atingiram picos de vazdo de até 37,5 TPS, 58 TPS e 49 TPS, respectiva-
mente. Em contraste a[Figura 2| mostra os testes realizados na rede Indy reportaram tetos
significativamente mais baixos: 14 TPS para createDid, 9 TPS para createSchema
e 8 TPS para createOrUpdateEnt ry (atributo). Isso representa um aumento de apro-
ximadamente 168%, 600% e 511% na vazao para as respectivas funcdes quando executa-
das no ambiente da Besu, evidenciando o ganho substancial de desempenho viabilizado
pelo modelo baseado em contratos inteligentes.

As operagdes de leitura (e.g., getDid, get Schema) apresentaram laténcia infe-
rior a 5 segundos em ambos os contextos, sendo um indicativo de que o gargalo esta prin-
cipalmente nas transa¢des de escrita e consenso. Durante os experimentos, observou-se
que as leituras mantiveram comportamento estidvel mesmo sob aumento da carga transa-
cional, sem variacOes significativas na vazao ou no consumo de recursos computacionais.

5 -100
30 1 44 -80
e w O m
© 20 19: © 31 -60 g
S ° o o
c S s O
& T g, 40 3
5 s 8 3
101
1A 20
0 T r T r — 0.0 0+ T T T T T 0
0 50 100 150 200 250 0 50 100 150 200 250
TPS estimado TPS estimado
—e— Laténcia Criacéo de DID & Vazéo Criacéo de DID —e— Laténcia Obtencéo de DID -8 Vazéo Obtencéo de DID
—— Laténcia Criagao de Schema - Vazdo Criacdo de Schema —e— Laténcia Obtencéo de Schema =@ Vazdo Obtencéo de Schema
—e— Laténcia Criacao de Atributo ~ —#= Vazéo Criacao de Atributo —e— Laténcia Obtencdo de Atributo =M Vaz&o Obtencdo de Atributo

Figura 2. Comparacao entre laténcia e vazao das operacoes de criacao e obtencao na rede Indy.
Adaptado de [Bastos et al. 2024] e [Veloso et al. 2024].

Vazao por TPS Configurado Laténcia Média por TPS Configurado

Pt

Vazio (TPS)
Laténcia Média (s)

TPS Configurado TPS Configurado

Figura 3. Comparacao de vazao entre fun- Figura 4. Comparacao de laténcia entre
coes na rede Besu. funcoes na rede Besu.

As Figuras [5|a[§|apresentam a média de uso de CPU e memdria para cada fungdo
critica (e.g., createDid, createOrUpdateEntry, createSchema). Observa-
se que, na rede Besu, a carga computacional € mais bem distribuida entre os nds, com
variagdes menores de lat€éncia mesmo sob aumento gradual de carga.

Podemos observar que as fungdes create Did, create Schemae create
Credential Definition sdo as que mais consomem recursos de CPU. Essas fun-
coes sdo responsdveis por operacdes criticas de escrita e, como era esperado, impdem
maior carga computacional sobre a rede. Observando especificamente os dados de vazao,
percebemos um ponto de inflexdo no consumo de CPU entre 40 e 60 TPS, que coincide
com 0 momento em que a rede atinge sua vazdo maxima para essas operacoes. A fungdo
createDid, por exemplo, atinge 37,5 TPS no cendrio com 100 TPS configurados, en-
quanto createCredentialDefinitionchegaad49 TPSe createSchema atinge
58 TPS. Isso indica que createSchema foi a operagdo com maior capacidade de esca-
labilidade horizontal entre as trés.

A partir do momento em que essas funcdes se aproximam do pico de vazdo,
observa-se que o uso de CPU por né se estabiliza préximo a 100%, ou até mesmo ul-

10

trapassa essa marca virtualmente, considerando multiplos nicleos. Esse comportamento
€ indicativo de saturacdo da capacidade de processamento, o que reforca a importancia de
estratégias de balanceamento ou otimizagao contratual em cendrios de produgao.

createDid — Uso de CPU e Meméria por TPS Ci

~e— CPUMédia (%)
-m- Membria Médi

— Uso de CPU e Meméria por TPS C —e= CPU Média (%)
Membria Média (¢

600 80 1000 1200
TS Configurado

Figura 5. Média de CPU e memoria — ope-
racao createDid.

— Uso de CPU e Meméria por TPS C¢

~e— CPUMédia (%)
-m- Meméria Média

édia (G8)

600 800 1000 1200
TPS Configurado

Figura 6. Média de CPU e memoria — ope-
racao updateDid.

createC: ialDefinition — Uso de CPU e Meméria por TPS Configurade >~ CPUMédi (%)
-~ Meméria Média (G5)

e
. B

-
-
i
i+
Hi8
i

200 00 & 50 1000 1200

)
TPs Configurado

600 80
TS Configurado

Figura 8. Média de CPU e
memoria — operacao
createCredentialDefinition.

Figura 7. Média de CPU e memoria — ope-
racao createSchema.

y — Uso de CPU e Meméria por TPS C e~ CPUMédia (%)
-m- Membria Média (GB)

createOrUpdateEntry — Uso de CPU e Memoria por TPS Confi —e— CRU Média (%)
B~ Meméria Média (GB)

0 0 .
TPS Configurado B 200 400 E 800 1000 1200
TPS Configurado

Figura 9. Média de CPU e
memoria — operacao
createRevocationRegistry.

Figura 10. Média de CPU e memoria —
operacao createOrUpdateEntry.

Por outro lado, as demais fun¢des analisadas — como updateDid, createOr
UpdateEntry e createRevocationRegistry — mantém seu uso de CPU em
niveis significativamente mais baixos, nao ultrapassando 50% de uso de CPU mesmo nas
maiores taxas de transacdes configuradas. Isso demonstra que essas funcdes sio menos
exigentes computacionalmente e podem ser processadas com maior previsibilidade.

Quanto a memoéria RAM, todas as fungdes apresentaram um comportamento con-
sistente, com alocagdo média entre 2 e 3 GB por nd, mesmo sob diferentes niveis de
carga. Esse aspecto € bastante positivo, pois sugere que o gerenciamento interno de heap
e threads do Hyperledger Besu € eficiente, permitindo previsibilidade no consumo de me-
moria, o que € essencial para provisionamento em ambientes com multiplos validadores.

11

A rede Indy, por outro lado, apresentou picos mais acentuados de laténcia, espe-
cialmente nas operagdes de criagdo de atributos e esquemas. Esse comportamento estd
relacionado a sua arquitetura monolitica e ao overhead do protocolo RBFT, que impde
maior custo computacional para alcancar consenso mesmo em cendrios com baixa con-
corréncia. Apesar disso, a memoria média manteve-se estavel em ambos os ambientes.
No caso do Besu, no entanto, observou-se que o consumo de CPU cresce de maneira
mais previsivel e linear conforme a carga de transa¢cdes aumenta, o que € altamente dese-
javel em aplicacdes com multiplos validadores ou em redes corporativas que demandam
previsibilidade de desempenho.

E importante observar que, devido as limitacdes das ferramentas de avaliagio dis-
poniveis para a rede Indy, ndo foi possivel obter métricas precisas de uso de CPU e memo-
ria. Por outro lado, a rede Besu foi monitorada com o Hyperledger Caliper, que fornece
essas informagdes detalhadas. Essa disparidade evidencia uma vantagem metodoldgica
na escolha do Besu também em termos de observabilidade e controle operacional.

A escalabilidade das plataformas foi testada com cargas crescentes de clientes si-
multaneos. A partir de 50 clientes, observou-se degradac@o progressiva do desempenho
em ambas as redes. Porém, enquanto a Indy teve quedas de até 60% na vazdo e picos
de laténcia que quadruplicaram, a Besu manteve uma reducao inferior a 30% em vazdo e
uma elevacgdo de laténcia mais controlada, inferior a 50%. Esse resultado sugere que a ar-
quitetura baseada em contratos inteligentes da Indy Besu € mais adequada para ambientes
com maiores requisitos de escalabilidade horizontal.

Esses dados reforcam que a modularidade, paralelismo e otimiza¢des no nivel
da EVM oferecidas pela rede Besu proporcionam ndo apenas maior escalabilidade, mas
também maior previsibilidade no uso de recursos computacionais. A arquitetura desaco-
plada dos contratos facilita ajustes finos, reaproveitamento de componentes e aderéncia
a padrdes emergentes como did:ethr, o que torna o Indy Besu uma alternativa tec-
nicamente superior para solu¢des de identidade digital descentralizada em cendrios com
requisitos de desempenho mais exigentes.

6. Conclusao e Trabalhos Futuros

Este artigo apresentou uma andlise comparativa entre duas abordagens para operagdes
de identidade digital descentralizada (DID): a rede tradicional Hyperledger Indy, e a ar-
quitetura baseada em contratos inteligentes na Hyperledger Besu. Os testes realizados
abrangeram métricas de consumo de recursos, vazdo e laténcia, utilizando um conjunto
comum de fun¢des-chave do ciclo de vida de identidades e credenciais verificaveis.

Os resultados demonstraram que a implementacao baseada na Besu apresenta van-
tagens significativas em termos de desempenho e escalabilidade. As operacdes de escrita,
que exigem consenso distribuido, foram executadas com menor laténcia e maior taxa de
transacOes por segundo, enquanto que o uso de recursos como CPU e memoria perma-
neceu estavel e previsivel. A modularidade proporcionada pela execucao das regras de
negocio em contratos Solidity também facilita a integracdo com ecossistemas Ethereum e
a adocdo de métodos DID compativeis.

Como extensao deste trabalho, sdo propostos os seguintes direcionamentos:

* Avaliacdo de seguranca e privacidade: Estender os testes para considerar ce-
ndrios com transagOes maliciosas, andlise de resisténcia a censura, e controle de

12

revogaciao em massa.

* Cenarios multi-organizacionais: Implementar casos de uso com multiplas en-
tidades emissoras e verificadoras distribuidas, incluindo interoperabilidade entre
diferentes redes permissionadas.

* Anadlise de custo: Estimar o custo computacional e energético das operagdes em
cada arquitetura, considerando cendrios de produgdo com larga escala.

* Simulacao de falhas: Avaliar o comportamento das redes diante de falhas de nds
validadores, particionamento de rede ou sobrecarga de transagdes.

Esses caminhos complementares poderdo ampliar a compreensdo sobre as arqui-
teturas analisadas e apoiar a tomada de decisdo no desenvolvimento de solucdes de iden-
tidade digital descentralizada mais robustas, interoperaveis e eficientes.

7. Agradecimentos

Os autores agradecem o apoio dado a este trabalho, pelo MCTI-Ministério da Ciéncia,
Tecnologia e Inovagdo, com recursos financeiros do FUNTTEL e administrados pela FI-
NEP, no ambito especificamente dos projetos AERF - Ac¢des Estratégicas para Redes
Futuras, Contrato 01.22.0471.00, Referéncia 1508/22 ¢ TECSEG - Desenvolvimento de
tecnologias e metodologia de avaliagdo e investigacdo de seguranca para redes e aplica-
coes de governo digital, Contrato 01.21.0163.01, Referéncia 1196/21.

Referéncias

Afraz, N. and Ruffini, M. (2020). 5g network slice brokering: A distributed blockchain-
based market. In 2020 European Conference on Networks and Communications
(EuCNC), pages 23-27.

Allen, C. (2016). The path to self-sovereign identity. Life with Alacrity Blog.

Bastos, M., Veloso, A., Sousa, J., Evaristo, B., Abreu, D., and Abelém, A. (2024). Mi-
nindy: Automating the deployment and management of hyperledger indy networks. In
11th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO).

Besu, H. (2023a). Consensus protocols overview. https://besu.hyperledger.
org/how—-to/configure/consensus/.

Besu, H. (2023Db). Hyperledger besu documentation. https://besu.
hyperledger.orgqg.

Besu, H. (2023c). Privacy and permissioning features. https://besu.
hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/.

Choi, W. and Won-Ki Hong, J. (2021). Performance evaluation of ethereum private and
testnet networks using hyperledger caliper. In 22nd Asia-Pacific Network Operations
and Management Symposium (APNOMS).

Community, H. (2023). Challenges and limitations in hyperledger indy. https://
wiki.hyperledger.org/display/indyl

Community, H. (2024a). Indy-besu: An experimental vdr implementation for self-
sovereign identity. https://github.com/hyperledger/indy-besu.

https://besu.hyperledger.org/how-to/configure/consensus/
https://besu.hyperledger.org/how-to/configure/consensus/
https://besu.hyperledger.org
https://besu.hyperledger.org
https://besu.hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/
https://besu.hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/
https://wiki.hyperledger.org/display/indy
https://wiki.hyperledger.org/display/indy
https://github.com/hyperledger/indy-besu

13

Community, H. (2024b). Indy besu experimental project. https://github.com/
hyperledger/indy-besu.

Fan, C., Lin, C., Khazaei, H., and Musilek, P. (2022). Performance analysis of hyperled-
ger besu in private blockchain. In 2022 IEEE International Conference on Decentrali-
zed Applications and Infrastructures (DAPPS), pages 64-73.

Foundation, S. (2020). Sovrin network. https://sovrin.org/.

Hang, L. and Kim, D.-H. (2019). Sla-based sharing economy service with smart contract
for resource integrity in the internet of things. Applied Sciences, 9(17).

Hyperledger Foundation (2019). Hyperledger indy. https://www.hyperledger.
org/use/hyperledger—indy.

Indy, H. (2022). Hyperledger indy documentation. https://hyperledger—indy.
readthedocs.io.

Indy, H. (2023). Indy vdr specification. https://hyperledger.github.io/
indy-did-method/\

Kaushal, R. K. and Kumar, N. (2024). Exploring hyperledger caliper benchmarking tool
to measure the performance of blockchain based solutions. In /1th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends and Future Di-
rections) (ICRITO).

Kshirsagar, A. and Pachghare, V. (2022). Performance evaluation of proof of scope con-
sensus mechanisms on hyperledger. In /IEEE International Conference on Blockchain
and Distributed Systems Security (ICBDS).

Melo, C., Gongalves, G., Silva, A. S., and Soares, A. (2024). Performance modeling and
evaluation of hyperledger fabric: An analysis based on transaction flow and endorse-
ment policies. In IEEE Symposium on Computers and Communications (ISCC).

Mostarda, L., Pinna, A., Sestili, D., and Tonelli, R. (2023). Performance analysis of a
besu permissioned blockchain. In Advanced Information Networking and Applications,
pages 279-291.

Thorstensson, J. (2018). Erc-1056: Ethereum did registry. |https://eips.
ethereum.org/EIPS/eip-1056. Ethereum Improvement Proposal.

Veloso, A., Sousa, J., Evaristo, B., Abreu, D., Saraiva, F., and Abelém, A. (2024). Mi-
nindy: Um framework para automatizar a implantacdo e o gerenciamento de redes
blockchain hyperledger indy. In Anais do VII Workshop em Blockchain: Teoria, Tec-
nologias e Aplicagoes, pages 55-68, Porto Alegre, RS, Brasil. SBC.

W3C (2022a). Decentralized identifiers (dids) v1.0. https://www.w3.0rg/TR/
did-core/. W3C Recommendation.

W3C (2022b). Verifiable credentials data model 1.1. https://www.w3.0rg/TR/
vc—-data-model /. W3C Recommendation.

https://github.com/hyperledger/indy-besu
https://github.com/hyperledger/indy-besu
https://sovrin.org/
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://hyperledger-indy.readthedocs.io
https://hyperledger-indy.readthedocs.io
https://hyperledger.github.io/indy-did-method/
https://hyperledger.github.io/indy-did-method/
https://eips.ethereum.org/EIPS/eip-1056
https://eips.ethereum.org/EIPS/eip-1056
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

	Introdução
	Trabalhos Relacionados
	Proposta de arquitetura e modelo de avaliação
	Hyperledger Besu
	Hyperledger Indy
	Fluxo de operações DID do cenário

	Avaliação
	Ferramenta de avaliação de desempenho
	Cenários de teste
	Métricas de coleta

	Resultados
	Conclusão e Trabalhos Futuros
	Agradecimentos

