
Avaliação de Performance de Contratos de Identidade Digital
Descentralizada em Redes Blockchain Baseada em Ethereum

Jeffson Celeiro Sousa1,2, Bruno Evaristo1,2,
Antonio Mateus de Sousa1, Ismael Ávila1

1 Centro de Pesquisa e Desenvolvimento em Telecomunicações (CPQD)
Campinas – SP – Brasil

2Universidade Federal do Pará (UFPA)
Belém – PA – Brasil

{jcsousa, elderb, amateus, avila_an}@cpqd.com.br

Resumo. Este artigo apresenta uma avaliação de performance de contratos in-
teligentes voltados à gestão de identidades digitais descentralizadas em redes
blockchain baseadas em Ethereum. A análise foca em operações fundamen-
tais do ciclo de vida de identidades, como criação, atualização, definição de
esquemas de credenciais e controle de revogação, implementadas em contra-
tos Solidity. Foram considerados dois contextos de execução: um ambiente
com Hyperledger Besu operando em modo permissionado, e uma referência
ao modelo tradicional Hyperledger Indy. Os testes foram conduzidos em rede
privada simulando diferentes níveis de carga e configurações de consenso. As
métricas avaliadas incluem tempo de resposta, vazão, uso de recursos (CPU e
memória) e escalabilidade. Os resultados fornecem subsídios para a escolha
de arquiteturas eficientes para soluções de identidade digital baseadas em SSI
(Self-Sovereign Identity) e Ethereum, especialmente em cenários corporativos
ou regulados.

Abstract. This paper presents a performance evaluation of smart contracts de-
signed for managing decentralized digital identities on Ethereum-based block-
chain networks. The analysis focuses on core identity lifecycle operations such
as creation, update, credential schema definition, and revocation control, all
implemented through Solidity smart contracts. Two execution contexts were
considered: an environment using Hyperledger Besu operating in permissio-
ned mode, and a reference to the traditional Hyperledger Indy model. The tests
were conducted in a private network simulating different load levels and con-
sensus configurations. The evaluated metrics include response time, through-
put, resource usage, and scalability. The results provide insights to support the
selection of efficient architectures for digital identity solutions based on Self-
Sovereign Identity (SSI) and Ethereum, particularly in enterprise or regulated
environments.

1. Introdução

A Identidade Digital Descentralizada (IDD) ou Identidade Autossoberana (SSI) surgiu
como uma resposta aos modelos tradicionais de gerenciamento de identidade digital, que
frequentemente dependem de autoridades centralizadas e expõem os usuários a riscos de



2

privacidade, vazamentos de dados e falta de portabilidade [Allen 2016]. Com o apoio de
iniciativas como o W3C DID [W3C 2022a] e W3C Verifiable Credentials [W3C 2022b],
a SSI busca empoderar indivíduos e organizações por meio de identificadores descentra-
lizados e credenciais verificáveis.

O Hyperledger Indy foi uma das primeiras plataformas a implementar os princí-
pios da SSI de forma prática, oferecendo um ledger público permissionado baseado em
um protocolo de consenso tolerante a falhas bizantinas (RBFT) [Hyperledger Foundation 2019].
Sua adoção foi impulsionada por redes como Sovrin e frameworks como Hyperledger
Aries, que utilizam o Indy como backend para resoluções de DIDs, publicação de esque-
mas de credenciais e controle de revogação [Foundation 2020].

Com o tempo, desafios relacionados à escalabilidade, interoperabilidade e evolu-
ção dos padrões motivaram o surgimento de propostas alternativas. Entre elas, destaca-se
o Indy Besu, uma iniciativa que visa migrar a lógica de identidade do Indy para uma nova
infraestrutura baseada no Hyperledger Besu, um cliente Ethereum com suporte nativo a
contratos inteligentes em Solidity [Community 2024a].

O uso de contratos inteligentes para identidade descentralizada já é explorado em
métodos como did:ethr, baseado no padrão ERC-1056, permitindo a gestão de DIDs
autônomos na Ethereum [Thorstensson 2018]. Contudo, avaliações sistemáticas da per-
formance dos contratos DID em redes permissionadas, especialmente no contexto do Indy
Besu, ainda são escassas na literatura. Este artigo busca preencher essa lacuna, propondo
um estudo comparativo da execução de contratos DID na rede Besu em diferentes ce-
nários. A avaliação de desempenho foi feita por meio de experimentos numa rede Hy-
perledger Besu permissionada, configurada com diferentes parâmetros de rede e carga
transacional.

Este trabalho está organizado da seguinte forma: a Seção 2 apresenta os trabalhos
relacionados à proposta. A Seção 3 apresenta a descrição da proposta. A Seção 4 apre-
senta a metodologia de avaliação do trabalho. A Seção 5 apresenta os resultados. E, por
fim, a Seção 6 apresenta a conclusão e trabalhos futuros acerca deste estudo.

2. Trabalhos Relacionados

Diversos estudos recentes têm se dedicado à avaliação de desempenho de plataformas
blockchain, incluindo Ethereum, Hyperledger Fabric e Hyperledger Indy, refletindo sua
adoção crescente em aplicações empresariais e institucionais. Uma das ferramentas mais
utilizadas nesses estudos é o Hyperledger Caliper, que oferece suporte padronizado e
reprodutível para benchmarking de redes permissionadas e públicas.

[Kaushal e Kumar 2024] utilizaram o Hyperledger Caliper para avaliar uma rede
Fabric simulando um sistema de monitoração remota de pacientes (RPM). A rede incluía
três organizações com suas respectivas autoridades certificadoras e nós ordenadores. O
estudo mediu latência e vazão em operações de leitura e gravação, e concluiu que a Fabric
apresentou bom desempenho sob diferentes taxas de transação, com mínimas variações.

[Kshirsagar e Pachghare 2022] propuseram um novo algoritmo de consenso cha-
mado Proof of Scope, comparando-o com Raft e PoW-Ethash na plataforma Hyperledger.
O mecanismo mostrou ganhos de até 38% na latência e 22% na vazão. O estudo destaca
como mecanismos alternativos de consenso podem impactar o desempenho da rede.



3

[Melo et al. 2024] criaram um modelo de desempenho para a Fabric utilizando
Stochastic Petri Nets, medindo parâmetros como latência, vazão e utilização. A validação
experimental do modelo com alto nível de confiabilidade mostrou que o tamanho do bloco
e as políticas de endosso são fatores críticos para o desempenho.

[Choi e Won-Ki Hong 2021] compararam o desempenho de uma Ethereum Pri-
vate Network com a testnet Ropsten. Utilizando Caliper, mediram latência, vazão e es-
tabilidade da rede. A rede privada obteve desempenho superior, com menor latência e
maior taxa de transações por segundo. O estudo demonstrou que transações simples têm
melhor desempenho, mesmo com limites de gás equivalentes.

[Bastos et al. 2024] apresentaram o MinIndy, uma ferramenta que automatiza a
implantação e gestão de redes Hyperledger Indy. A solução facilita o uso de SSI ao
automatizar tarefas repetitivas com Ansible e Docker. Avaliações mostraram que o de-
sempenho da rede Indy mantém-se equivalente à implantação manual tradicional.

No contexto da Hyperledger Besu, estudos ainda são escassos. Em [Fan et al. 2022],
foi realizada uma avaliação detalhada utilizando Caliper para analisar os algoritmos de
consenso PoA, IBFT 2.0 e QBFT em redes Besu. Os resultados mostraram que o QBFT
escala até 14 validadores sem degradação perceptível e que tempo de bloco e tamanho
afetam significativamente o desempenho.

[Mostarda et al. 2023] propuseram uma ferramenta personalizada de benchmar-
king para redes Besu, superando limitações do Caliper em redes reais operadas por múl-
tiplas organizações. A ferramenta detectou anomalias em validadores que adicionavam
blocos vazios ou com poucas transações, revelando assimetrias na contribuição entre nós.

A Tabela 1 resume os principais aspectos dos trabalhos discutidos. Em geral,
este trabalho se diferencia principalmente em dois pontos: (i) por realizar uma avaliação
de desempenho focada em contratos inteligentes voltados à identidade descentralizada
(DID) na Hyperledger Besu, baseando-se em operações fundamentais do ciclo de vida
de identidades digitais; e (ii) por apresentar um cenário reprodutível com configurações
completas de rede, contratos e benchmarking disponibilizados publicamente.

Trabalho Blockchain Caliper Consenso Avaliado Modelo Reprodutível Avaliação DID Ferramenta Personalizada

[Kaushal e Kumar 2024] Fabric ✓ Solo ✗ ✗ ✗

[Kshirsagar e Pachghare 2022] Fabric ✓ Proof of Scope ✗ ✗ ✗

[Melo et al. 2024] Fabric ✓ Solo ✓ ✗ ✗

[Choi e Won-Ki Hong 2021] Ethereum ✓ PoW ✗ ✗ ✗

[Bastos et al. 2024] Indy ✗ RBFT ✓ ✓ ✗

[Fan et al. 2022] Besu ✓ QBFT, IBFT 2.0, PoA ✗ ✗ ✗

[Mostarda et al. 2023] Besu ✓ QBFT ✓ ✗ ✓

Proposta Besu ✓ QBFT ✓ ✓ ✗

Tabela 1. Resumo dos trabalhos relacionados e suas características principais.

3. Proposta de arquitetura e modelo de avaliação
Esta seção descreve a arquitetura proposta para a realização dos experimentos de avaliação
de desempenho de contratos inteligentes de identidade descentralizada (DID) nas plata-
formas Hyperledger Indy e Indy Besu. O objetivo é permitir uma comparação sistemática
entre as duas abordagens, considerando aspectos como desempenho, complexidade de
operação e escalabilidade.



4

3.1. Hyperledger Besu
A Hyperledger Besu é um cliente Ethereum de código aberto desenvolvido em Java e man-
tida como um projeto graduado pela Hyperledger Foundation desde 2020 [Besu 2023b].
Ela é compatível com a Ethereum Virtual Machine (EVM) e permite a operação em redes
públicas e privadas, com suporte completo a contratos inteligentes escritos em Solidity.
No contexto de redes permissionadas, a Besu oferece suporte a algoritmos de consenso
como Clique (Proof of Authority), QBFT e IBFT 2.0, viabilizando governança controlada
sobre a validação de blocos [Besu 2023a].

Uma das principais vantagens da Besu é sua arquitetura modular, que permite a
integração de plugins, gerenciamento de permissões por conta, canais privados de tran-
sação, e APIs RPC compatíveis com ferramentas Ethereum existentes [Besu 2023c]. Ela
também oferece ferramentas de monitoramento nativas via Prometheus e métricas deta-
lhadas para análise de desempenho. Além disso, sua compatibilidade com bibliotecas
como ethers.js e frameworks como Hardhat facilita o desenvolvimento, teste e auto-
mação de contratos inteligentes.

No contexto de identidade descentralizada, a Besu serve como base para a inicia-
tiva Indy Besu [Community 2024b], que implementa contratos para operações DID como
createDid, updateDid e createCredentialDefinition. Essa abordagem
permite a execução de identidades digitais descentralizadas em um ambiente Ethereum
permissionado, utilizando endereços como identificadores e mantendo compatibilidade
com métodos estabelecidos como did:ethr e extensões como did:indy:besu.
Essa flexibilidade torna a Besu uma alternativa moderna e escalável à ledger tradicional
da Hyperledger Indy.

3.2. Hyperledger Indy
A Hyperledger Indy é um framework especializado de identidade digital descentralizada,
com foco exclusivo na gestão de DIDs e credenciais verificáveis. Lançado originalmente
pela Sovrin Foundation e posteriormente incorporado à Hyperledger como projeto gradu-
ado, a Indy provê uma ledger permissionada pública baseada no protocolo de consenso
RBFT (Redundant Byzantine Fault Tolerance), desenvolvido para suportar confiança dis-
tribuída entre nós validadores [Indy 2022].

A arquitetura da Indy é composta por dois componentes principais: a Indy Ledger,
responsável por armazenar as transações de identidade como NYM (para criação de DIDs),
SCHEMA (para definição de atributos), CRED_DEF (para definição de credenciais) e regis-
tros de revogação [Indy 2023]; e a Indy SDK, um conjunto de bibliotecas escritas em Rust
com wrappers para diversas linguagens, utilizado por agentes Aries para interagir com a
ledger, gerir carteiras e estabelecer conexões peer-to-peer com segurança criptográfica.

Apesar de sua maturidade e adoção em ambientes como a rede Sovrin, a Hyper-
ledger Indy tem limitações de desempenho, interoperabilidade com padrões modernos
(como did:ethr) e dificuldades na evolução da base de código devido à sua arqui-
tetura monolítica [Community 2023]. A iniciativa Indy Besu surge como uma proposta
complementar que busca migrar a lógica de identidade da Indy para contratos inteligentes
em Ethereum, preservando a semântica das transações originais e facilitando a integra-
ção com ferramentas amplamente utilizadas no ecossistema Ethereum. Essa abordagem
também melhora o desempenho da rede e reduz os requisitos computacionais dos nós.



5

Dessa forma, é oportuno comparar as funções utilizadas nas duas tecnologias a
fim de avaliar o desempenho da Indy Besu em termos das operações correspondentes na
Hyperledger Indy, conforme especificadas na Indy DID Method Specification. A Tabela
2 apresenta essa comparação:

Tabela 2. Comparação entre funções da Indy Besu e operações da Hyperledger Indy

Função na Indy Besu Operação Corres-
pondente na Hy-
perledger Indy

Descrição

createDid NYM Cria um novo Identificador Descentralizado
(DID) na rede. Na Indy, a transação NYM é utili-
zada para registrar um novo DID, associando-o
a uma chave pública e outros metadados rele-
vantes.

updateDid NYM Atualiza um DID existente. Na Indy, a transa-
ção NYM também é usada para modificar infor-
mações de um DID já registrado, como atualizar
chaves públicas ou alterar permissões associa-
das.

createRevocation
Registry

REVOC_REG_DEF Cria um Registro de Revogação para gerenciar
o status de revogação de credenciais emitidas.
Na Indy, a transação REVOC_REG_DEF define
um novo registro de revogação vinculado a uma
definição de credencial específica.

createOrUpdate
Entry

REVOC_REG_ENTRY Adiciona ou atualiza entradas em um Re-
gistro de Revogação existente. A transação
REVOC_REG_ENTRY na Indy é usada para
modificar o estado de revogação de credenciais
específicas dentro de um registro de revogação.

createSchema SCHEMA Cria um novo esquema que define a estrutura de
atributos para credenciais. Na Indy, a transação
SCHEMA é utilizada para registrar um esquema
contendo os nomes dos atributos que serão in-
cluídos nas credenciais emitidas.

createCredential
Definition

CRED_DEF Cria uma definição de credencial baseada em
um esquema existente. Na Indy, a transação
CRED_DEF estabelece os parâmetros criptográ-
ficos e associa um esquema a um emissor espe-
cífico para a emissão de credenciais.

As operações na Hyperledger Indy são realizadas por meio de transações especí-
ficas que interagem com a ledger para registrar, atualizar ou consultar os diversos objetos
relacionados à identidade descentralizada.

No contexto da Hyperledger Besu, essas funções são implementadas como con-
tratos inteligentes na rede Hyperledger Besu, aproveitando a flexibilidade e o poder dos
contratos em Solidity para gerenciar identidades descentralizadas e credenciais verificá-
veis.

A transação ATTRIB, anteriormente utilizada na Indy para adicionar atributos
a um DID, foi substituída pelo método did:indy, que permite a inclusão direta de



6

endpoints de serviço e outros dados no documento DID.

Essa comparação destaca como as funcionalidades essenciais para a gestão de
identidades descentralizadas e credenciais são implementadas em ambas as plataformas,
refletindo a evolução das tecnologias de identidade digital no ecossistema Hyperledger.

3.3. Fluxo de operações DID do cenário

O fluxo de operações para ambas as redes segue a mesma lógica funcional, com as se-
guintes etapas:

1. Criação de Identificador (createDid): geração de um par de chaves criptográfi-
cas e registro do DID na ledger.

2. Atualização de Identificador (updateDid): modificação da chave pública ou
metadados do DID.

3. Criação de Esquema (createSchema): definição de um conjunto de atributos
que serão utilizados em credenciais.

4. Criação de Definição de Credencial (createCredentialDefinition): associação
entre o emissor e o esquema definido, incluindo parâmetros criptográficos.

5. Criação do Registro de Revogação (createRevocationRegistry): inicialização
de um conjunto de controle de validade para credenciais emitidas.

6. Entrada de Revogação (createOrUpdateEntry): atualização do status de uma
ou mais credenciais emitidas.

4. Avaliação
Nesta seção, descrevemos a metodologia adotada, a configuração experimental dos ambi-
entes avaliados e os parâmetros de execução utilizados nos testes. Os experimentos foram
conduzidos de forma controlada, variando a taxa de envio de transações — definida como
o número total de requisições de transações enviadas por segundo por todos os workers
(req/s) — de 20 até 120 req/s, com incremento de 10 e duração fixa de 10 segundos por
rodada. Essa configuração foi definida diretamente nos arquivos YAML utilizados pela
ferramenta de benchmark.

Todos os artefatos utilizados neste estudo — incluindo códigos-fonte, arquivos de
configuração, contratos inteligentes, módulos de carga, logs e resultados experimentais
— estão disponíveis publicamente em nosso repositório reprodutível1.

Para efeito de comparação, avaliamos o desempenho de operações relacionadas à
gestão de Identidades Descentralizadas (DID) em dois contextos distintos:

• Cenário 1 — Hyperledger Indy: Em [Bastos et al. 2024], foi avaliada uma rede
Indy, implantada sobre quatro máquinas virtuais com as seguintes especificações:
4 vCPUs (Intel Xeon E312xx a 2.0 GHz), 4 GB de RAM, rodando Ubuntu 20.04.
Esses nós foram configurados como validadores RBFT numa rede permissionada.

• Cenário 2 — Hyperledger Besu: Implantada uma rede blockchain baseada no
Hyperledger Besu em um servidor dedicado com Ubuntu 22.04, 32 GB de RAM e
12 núcleos de CPU. A rede foi configurada com quatro nós validadores utilizando
o consenso QBFT e 2 bootnodes, seguindo as recomendações da documentação
oficial para ambientes de produção.

1https://github.com/jeffsonsousa/evaluation-contracts-indy-besu

https://github.com/jeffsonsousa/evaluation-contracts-indy-besu


7

4.1. Ferramenta de avaliação de desempenho

Para garantir que as medições de desempenho refletissem a lógica dos contratos inteligen-
tes e não fossem afetadas por limitações operacionais de consumo de gás, todas as redes
Besu foram configuradas como gasless. Especificamente, definiu-se:

• gasLimit = 0x1ffffffffffff;
• contractSizeLimit = 2147483647;
• min-gasprice = 0;
• difficulty = 0x1;
• txPoolLimit = 4096 (padrão).

A ferramenta utilizada para execução dos testes foi o Hyperledger Caliper2 na
versão 0.5.0, utilizando o Ethereum SDK v1.4. O Caliper permitiu a orquestração de
chamadas aos contratos inteligentes implementados em Solidity para simular operações
como createDid, createSchema, entre outras.

Ademais, configurou-se a monitoração com Docker para coletar métricas de uso
de CPU e memória dos contêineres dos nós da rede Besu durante cada rodada de teste.
Os resultados foram processados automaticamente e armazenados em relatórios HTML e
CSV, que foram utilizados para gerar os gráficos e análises apresentados neste trabalho.

4.2. Cenários de teste

A Figura 1 apresenta a arquitetura utilizada para a execução do cenário de avaliação de
desempenho dos contratos inteligentes de identidade digital descentralizada implantados
na rede Hyperledger Besu. O processo é conduzido com o auxílio da ferramenta Hy-
perledger Caliper, que permite simular múltiplos clientes (workers) enviando transações
para o ledger por meio de chamadas aos contratos Solidity responsáveis pelas funções de
identidade. A seguir, é detalhada cada etapa numerada da figura.

Figura 1. Arquitetura de avaliação de performance dos contratos de identidade na rede Hyperledger
Besu com Hyperledger Caliper.

Na primeira etapa, o benchmark é configurado por meio de arquivos no for-
mato YAML, os quais especificam: a topologia da rede blockchain (nós, validadores,

2https://www.lfdecentralizedtrust.org/projects/caliper

https://www.lfdecentralizedtrust.org/projects/caliper


8

consenso), os contratos inteligentes a serem avaliados, os módulos de carga (workload-
modules) e o número de workers que irão simular clientes concorrentes. Cada worker será
responsável por executar chamadas independentes e paralelas aos contratos definidos, si-
mulando um ambiente de uso realista.

Em seguida, com os arquivos de configuração prontos, um orquestrador simples
foi criado para gerenciar no Caliper as instâncias dos workers conforme especificado,
ativando as rotinas de teste definidas no plano de carga. Cada worker executa chamadas
específicas às funções do contrato inteligente.

No passo 3, os módulos de carga, escritos em JavaScript, encapsulam a lógica de
envio de transações à rede. Cada worker carrega seu módulo, que realiza a conexão com
a rede Besu, invocando diretamente funções específicas dos contratos inteligentes. No
passo 4, cada módulo conecta-se à rede Besu e chama funções dos contratos, de acordo
com o tipo de operação avaliada.

Após a execução da função, a transação é propagada e registrada no ledger da rede
Besu. Com o uso do mecanismo de consenso QBFT (Quorum Byzantine Fault Tolerance),
os blocos contendo as transações são validados e adicionados à blockchain.

4.3. Métricas de coleta

O principal objetivo de uma aplicação blockchain é tratar uma série de transações envia-
das pelos participantes e proceder ao processo de verificação e requisição, levando à ge-
ração de um bloco e o resultado da transação sendo registrado no livro-razão distribuído
[Hang e Kim 2019, Afraz e Ruffini 2020]. Portanto, o desempenho de nosso aplicativo
blockchain é medido pelas métricas vazão e tempo de resposta da transação.

Vazão da transação (V t): refere-se ao número de transações cujo resultado a
blockchain pode processar e registrar na ledger num dado segundo. Equação 1:

V t =
TotalV alidTransactions

TotalT ime(s)
(1)

Tempo de resposta da transação (Trt): refere-se ao tempo que uma transação
leva do momento em que é chamada pelo cliente até ser salva na ledger. Equação 2:

Trt = ConfirmationT ime ∗ Threshold−SendT ime (2)

5. Resultados

Com base nos gráficos de vazão e latência, as Figuras 3 e 4 mostram que as operações de
escrita na rede Besu, como createDid, createSchema e create Credential
Definition, atingiram picos de vazão de até 37,5 TPS, 58 TPS e 49 TPS, respectiva-
mente. Em contraste a Figura 2 mostra os testes realizados na rede Indy reportaram tetos
significativamente mais baixos: 14 TPS para createDid, 9 TPS para createSchema
e 8 TPS para createOrUpdateEntry (atributo). Isso representa um aumento de apro-
ximadamente 168%, 600% e 511% na vazão para as respectivas funções quando executa-
das no ambiente da Besu, evidenciando o ganho substancial de desempenho viabilizado
pelo modelo baseado em contratos inteligentes.



9

As operações de leitura (e.g., getDid, getSchema) apresentaram latência infe-
rior a 5 segundos em ambos os contextos, sendo um indicativo de que o gargalo está prin-
cipalmente nas transações de escrita e consenso. Durante os experimentos, observou-se
que as leituras mantiveram comportamento estável mesmo sob aumento da carga transa-
cional, sem variações significativas na vazão ou no consumo de recursos computacionais.

Figura 2. Comparação entre latência e vazão das operações de criação e obtenção na rede Indy.
Adaptado de [Bastos et al. 2024] e [Veloso et al. 2024].

Figura 3. Comparação de vazão entre fun-
ções na rede Besu.

Figura 4. Comparação de latência entre
funções na rede Besu.

As Figuras 5 a 8 apresentam a média de uso de CPU e memória para cada função
crítica (e.g., createDid, createOrUpdateEntry, createSchema). Observa-
se que, na rede Besu, a carga computacional é mais bem distribuída entre os nós, com
variações menores de latência mesmo sob aumento gradual de carga.

Podemos observar que as funções create Did, create Schema e create
Credential Definition são as que mais consomem recursos de CPU. Essas fun-
ções são responsáveis por operações críticas de escrita e, como era esperado, impõem
maior carga computacional sobre a rede. Observando especificamente os dados de vazão,
percebemos um ponto de inflexão no consumo de CPU entre 40 e 60 TPS, que coincide
com o momento em que a rede atinge sua vazão máxima para essas operações. A função
createDid, por exemplo, atinge 37,5 TPS no cenário com 100 TPS configurados, en-
quanto createCredentialDefinition chega a 49 TPS e createSchema atinge
58 TPS. Isso indica que createSchema foi a operação com maior capacidade de esca-
labilidade horizontal entre as três.

A partir do momento em que essas funções se aproximam do pico de vazão,
observa-se que o uso de CPU por nó se estabiliza próximo a 100%, ou até mesmo ul-



10

trapassa essa marca virtualmente, considerando múltiplos núcleos. Esse comportamento
é indicativo de saturação da capacidade de processamento, o que reforça a importância de
estratégias de balanceamento ou otimização contratual em cenários de produção.

Figura 5. Média de CPU e memória — ope-
ração createDid.

Figura 6. Média de CPU e memória — ope-
ração updateDid.

Figura 7. Média de CPU e memória — ope-
ração createSchema.

Figura 8. Média de CPU e
memória — operação
createCredentialDefinition.

Figura 9. Média de CPU e
memória — operação
createRevocationRegistry.

Figura 10. Média de CPU e memória —
operação createOrUpdateEntry.

Por outro lado, as demais funções analisadas — como updateDid, createOr
UpdateEntry e createRevocationRegistry — mantêm seu uso de CPU em
níveis significativamente mais baixos, não ultrapassando 50% de uso de CPU mesmo nas
maiores taxas de transações configuradas. Isso demonstra que essas funções são menos
exigentes computacionalmente e podem ser processadas com maior previsibilidade.

Quanto à memória RAM, todas as funções apresentaram um comportamento con-
sistente, com alocação média entre 2 e 3 GB por nó, mesmo sob diferentes níveis de
carga. Esse aspecto é bastante positivo, pois sugere que o gerenciamento interno de heap
e threads do Hyperledger Besu é eficiente, permitindo previsibilidade no consumo de me-
mória, o que é essencial para provisionamento em ambientes com múltiplos validadores.



11

A rede Indy, por outro lado, apresentou picos mais acentuados de latência, espe-
cialmente nas operações de criação de atributos e esquemas. Esse comportamento está
relacionado à sua arquitetura monolítica e ao overhead do protocolo RBFT, que impõe
maior custo computacional para alcançar consenso mesmo em cenários com baixa con-
corrência. Apesar disso, a memória média manteve-se estável em ambos os ambientes.
No caso do Besu, no entanto, observou-se que o consumo de CPU cresce de maneira
mais previsível e linear conforme a carga de transações aumenta, o que é altamente dese-
jável em aplicações com múltiplos validadores ou em redes corporativas que demandam
previsibilidade de desempenho.

É importante observar que, devido às limitações das ferramentas de avaliação dis-
poníveis para a rede Indy, não foi possível obter métricas precisas de uso de CPU e memó-
ria. Por outro lado, a rede Besu foi monitorada com o Hyperledger Caliper, que fornece
essas informações detalhadas. Essa disparidade evidencia uma vantagem metodológica
na escolha do Besu também em termos de observabilidade e controle operacional.

A escalabilidade das plataformas foi testada com cargas crescentes de clientes si-
multâneos. A partir de 50 clientes, observou-se degradação progressiva do desempenho
em ambas as redes. Porém, enquanto a Indy teve quedas de até 60% na vazão e picos
de latência que quadruplicaram, a Besu manteve uma redução inferior a 30% em vazão e
uma elevação de latência mais controlada, inferior a 50%. Esse resultado sugere que a ar-
quitetura baseada em contratos inteligentes da Indy Besu é mais adequada para ambientes
com maiores requisitos de escalabilidade horizontal.

Esses dados reforçam que a modularidade, paralelismo e otimizações no nível
da EVM oferecidas pela rede Besu proporcionam não apenas maior escalabilidade, mas
também maior previsibilidade no uso de recursos computacionais. A arquitetura desaco-
plada dos contratos facilita ajustes finos, reaproveitamento de componentes e aderência
a padrões emergentes como did:ethr, o que torna o Indy Besu uma alternativa tec-
nicamente superior para soluções de identidade digital descentralizada em cenários com
requisitos de desempenho mais exigentes.

6. Conclusão e Trabalhos Futuros
Este artigo apresentou uma análise comparativa entre duas abordagens para operações
de identidade digital descentralizada (DID): a rede tradicional Hyperledger Indy, e a ar-
quitetura baseada em contratos inteligentes na Hyperledger Besu. Os testes realizados
abrangeram métricas de consumo de recursos, vazão e latência, utilizando um conjunto
comum de funções-chave do ciclo de vida de identidades e credenciais verificáveis.

Os resultados demonstraram que a implementação baseada na Besu apresenta van-
tagens significativas em termos de desempenho e escalabilidade. As operações de escrita,
que exigem consenso distribuído, foram executadas com menor latência e maior taxa de
transações por segundo, enquanto que o uso de recursos como CPU e memória perma-
neceu estável e previsível. A modularidade proporcionada pela execução das regras de
negócio em contratos Solidity também facilita a integração com ecossistemas Ethereum e
a adoção de métodos DID compatíveis.

Como extensão deste trabalho, são propostos os seguintes direcionamentos:
• Avaliação de segurança e privacidade: Estender os testes para considerar ce-

nários com transações maliciosas, análise de resistência à censura, e controle de



12

revogação em massa.
• Cenários multi-organizacionais: Implementar casos de uso com múltiplas en-

tidades emissoras e verificadoras distribuídas, incluindo interoperabilidade entre
diferentes redes permissionadas.

• Análise de custo: Estimar o custo computacional e energético das operações em
cada arquitetura, considerando cenários de produção com larga escala.

• Simulação de falhas: Avaliar o comportamento das redes diante de falhas de nós
validadores, particionamento de rede ou sobrecarga de transações.

Esses caminhos complementares poderão ampliar a compreensão sobre as arqui-
teturas analisadas e apoiar a tomada de decisão no desenvolvimento de soluções de iden-
tidade digital descentralizada mais robustas, interoperáveis e eficientes.

7. Agradecimentos
Os autores agradecem o apoio dado a este trabalho, pelo MCTI-Ministério da Ciência,
Tecnologia e Inovação, com recursos financeiros do FUNTTEL e administrados pela FI-
NEP, no âmbito especificamente dos projetos AERF - Ações Estratégicas para Redes
Futuras, Contrato 01.22.0471.00, Referência 1508/22 e TECSEG - Desenvolvimento de
tecnologias e metodologia de avaliação e investigação de segurança para redes e aplica-
ções de governo digital, Contrato 01.21.0163.01, Referência 1196/21.

Referências
Afraz, N. and Ruffini, M. (2020). 5g network slice brokering: A distributed blockchain-

based market. In 2020 European Conference on Networks and Communications
(EuCNC), pages 23–27.

Allen, C. (2016). The path to self-sovereign identity. Life with Alacrity Blog.

Bastos, M., Veloso, A., Sousa, J., Evaristo, B., Abreu, D., and Abelém, A. (2024). Mi-
nindy: Automating the deployment and management of hyperledger indy networks. In
11th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO).

Besu, H. (2023a). Consensus protocols overview. https://besu.hyperledger.
org/how-to/configure/consensus/.

Besu, H. (2023b). Hyperledger besu documentation. https://besu.
hyperledger.org.

Besu, H. (2023c). Privacy and permissioning features. https://besu.
hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/.

Choi, W. and Won-Ki Hong, J. (2021). Performance evaluation of ethereum private and
testnet networks using hyperledger caliper. In 22nd Asia-Pacific Network Operations
and Management Symposium (APNOMS).

Community, H. (2023). Challenges and limitations in hyperledger indy. https://
wiki.hyperledger.org/display/indy.

Community, H. (2024a). Indy-besu: An experimental vdr implementation for self-
sovereign identity. https://github.com/hyperledger/indy-besu.

https://besu.hyperledger.org/how-to/configure/consensus/
https://besu.hyperledger.org/how-to/configure/consensus/
https://besu.hyperledger.org
https://besu.hyperledger.org
https://besu.hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/
https://besu.hyperledger.org/HowTo/Use-Privacy/Privacy-Overview/
https://wiki.hyperledger.org/display/indy
https://wiki.hyperledger.org/display/indy
https://github.com/hyperledger/indy-besu


13

Community, H. (2024b). Indy besu experimental project. https://github.com/
hyperledger/indy-besu.

Fan, C., Lin, C., Khazaei, H., and Musilek, P. (2022). Performance analysis of hyperled-
ger besu in private blockchain. In 2022 IEEE International Conference on Decentrali-
zed Applications and Infrastructures (DAPPS), pages 64–73.

Foundation, S. (2020). Sovrin network. https://sovrin.org/.

Hang, L. and Kim, D.-H. (2019). Sla-based sharing economy service with smart contract
for resource integrity in the internet of things. Applied Sciences, 9(17).

Hyperledger Foundation (2019). Hyperledger indy. https://www.hyperledger.
org/use/hyperledger-indy.

Indy, H. (2022). Hyperledger indy documentation. https://hyperledger-indy.
readthedocs.io.

Indy, H. (2023). Indy vdr specification. https://hyperledger.github.io/
indy-did-method/.

Kaushal, R. K. and Kumar, N. (2024). Exploring hyperledger caliper benchmarking tool
to measure the performance of blockchain based solutions. In 11th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends and Future Di-
rections) (ICRITO).

Kshirsagar, A. and Pachghare, V. (2022). Performance evaluation of proof of scope con-
sensus mechanisms on hyperledger. In IEEE International Conference on Blockchain
and Distributed Systems Security (ICBDS).

Melo, C., Gonçalves, G., Silva, A. S., and Soares, A. (2024). Performance modeling and
evaluation of hyperledger fabric: An analysis based on transaction flow and endorse-
ment policies. In IEEE Symposium on Computers and Communications (ISCC).

Mostarda, L., Pinna, A., Sestili, D., and Tonelli, R. (2023). Performance analysis of a
besu permissioned blockchain. In Advanced Information Networking and Applications,
pages 279–291.

Thorstensson, J. (2018). Erc-1056: Ethereum did registry. https://eips.
ethereum.org/EIPS/eip-1056. Ethereum Improvement Proposal.

Veloso, A., Sousa, J., Evaristo, B., Abreu, D., Saraiva, F., and Abelém, A. (2024). Mi-
nindy: Um framework para automatizar a implantação e o gerenciamento de redes
blockchain hyperledger indy. In Anais do VII Workshop em Blockchain: Teoria, Tec-
nologias e Aplicações, pages 55–68, Porto Alegre, RS, Brasil. SBC.

W3C (2022a). Decentralized identifiers (dids) v1.0. https://www.w3.org/TR/
did-core/. W3C Recommendation.

W3C (2022b). Verifiable credentials data model 1.1. https://www.w3.org/TR/
vc-data-model/. W3C Recommendation.

https://github.com/hyperledger/indy-besu
https://github.com/hyperledger/indy-besu
https://sovrin.org/
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://hyperledger-indy.readthedocs.io
https://hyperledger-indy.readthedocs.io
https://hyperledger.github.io/indy-did-method/
https://hyperledger.github.io/indy-did-method/
https://eips.ethereum.org/EIPS/eip-1056
https://eips.ethereum.org/EIPS/eip-1056
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

	Introdução
	Trabalhos Relacionados
	Proposta de arquitetura e modelo de avaliação
	Hyperledger Besu
	Hyperledger Indy
	Fluxo de operações DID do cenário

	Avaliação
	Ferramenta de avaliação de desempenho
	Cenários de teste
	Métricas de coleta

	Resultados
	Conclusão e Trabalhos Futuros
	Agradecimentos

