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Abstract. Smart contracts have introduced security challenges due to their com-
plexity in creating programmable financial transactions and the immutable na-
ture of blockchain networks. During the last few years, several automated vul-
nerability detection tools targeted mitigating these risks. However, the effec-
tiveness of these tools varies significantly, and detection capabilities remain a
critical area of research. This paper presents a comparative study of the leading
open-source tools from previous works. Using a curated benchmark, we evalu-
ate the performance of these tools against the OWASP security vulnerabilities
for smart contracts in 2025. Our results show that the tools have high variabi-
lity in their vulnerability detection capabilities, opening opportunities for future
research.

Resumo. Os contratos inteligentes introduziram desafios de segurança devido
à sua liberdade para criar operações financeiras programáveis e devido à natu-
reza imutável das redes blockchain. Para mitigar estes riscos, várias ferramen-
tas de verificação automática de vulnerabilidades foram desenvolvidas. Con-
tudo, a efetividade destas ferramentas varia significativamente e a capacidade
de detecção de vulnerabilidades em contratos inteligentes continua sendo uma
área crı́tica de pesquisa. Neste trabalho, nós apresentamos um estudo compara-
tivo das principais ferramentas de código-aberto da literatura. Por meio de um
benchmark previamente auditado, avaliamos o desempenho destas ferramentas
em relação às vulnerabilidades OWASP para contratos inteligentes em 2025.
Nossos resultados mostram que as ferramentas possuem alta variabilidade em
detectar as vulnerabilidades, abrindo oportunidades para pesquisas futuras.

1. Introdução
O aumento da demanda por soluções financeiras descentralizadas envolvendo as redes
blockchain levou ao surgimento dos contratos inteligentes, programas escritos em uma
linguagem Turing completa que executam operações de gerenciamento de ativos e acor-
dos na blockchain automaticamente [Buterin et al. 2013]. A linguagem de programação



Solidity, a linguagem mais adotada para o desenvolvimento de contratos inteligentes, in-
troduziu desafios de segurança únicos devido à sua liberdade para criar operações finan-
ceiras programáveis e devido à natureza imutável dos contratos inteligentes uma vez que
eles são implantados em redes blockchains [Wohrer and Zdun 2018]. Vulnerabilidades
que podem ser exploradas por agentes maliciosos como reentrada e questões de controle
de acesso de permissões resultaram em perdas financeiras significativas no ecossistema
descentralizado proposto pelas blockchains [Mense and Flatscher 2018].

Para mitigar estes riscos, várias ferramentas automáticas de verificação de vul-
nerabilidades foram desenvolvidas para analisar contratos inteligentes escritos na lin-
guagem Solidity [Khan and Namin 2024]. Estas ferramentas utilizam técnicas como
análise estática e dinâmica para identificar vulnerabilidades de segurança antes da
implantação destes contratos na rede. Contudo, a efetividade destas ferramentas va-
ria significativamente e a capacidade de detecção continua sendo uma área crı́tica
de pesquisa [Ressi et al. 2024]. Os trabalhos da literatura que relacionam estas fer-
ramentas desconsideram que muitas acabam sendo descontinuadas ou passam a ser
incorporadas em empresas de auditoria e deixam de receber suporte em código-
aberto [Kushwaha et al. 2022a].

Neste artigo, nós avaliamos a capacidade de detecção de vulnerabilidades das
principais ferramentas de código-aberto que analisam contratos inteligentes em Solidity.
Nós empiricamente avaliamos o desempenho destas ferramentas por meio de um ben-
chmark da literatura [Di Angelo and Salzer 2023] de contratos inteligentes vulneráveis
previamente auditado manualmente. Este estudo visa destacar o estado-da-arte da análise
automática de segurança de contratos inteligentes, identificar áreas de melhorias, poten-
cializar o desenvolvimento de pesquisas futuras e novas ferramentas.

Nós resumimos as nossas principais contribuições a seguir:

• Constatamos que as ferramentas possuem uma alta variabilidade em identificar as
vulnerabilidades de segurança, atingindo uma faixa de 0 a 92%;

• Observamos que os conjuntos de dados de contratos inteligentes vulneráveis da
literatura possuem versões antigas da linguagem Solidity em sua maioria, com
70% dos contratos descontinuados pelas ferramentas;

• Direcionamos pesquisas futuras a partir da análise da acurácia das ferramentas
e constatando que novas técnicas e ferramentas precisam ser desenvolvidas para
cobrir todas as vulnerabilidades com confiabilidade, robustez e eficiência.

O restante deste artigo está organizado da seguinte maneira: a Seção 2 discute os
principais conceitos associados ao trabalho. A Seção 3 apresenta os trabalhos da literatura
que se relacionam com o nosso. Já a Seção 4, discute a metodologia adotada para obter os
resultados da Seção 5. Por fim, a Seção 6 apresenta nossas considerações finais e direções
futuras.

2. Visão Geral

Esta seção discute os principais conceitos associados ao trabalho, i.e., contratos inteligen-
tes, vulnerabilidades de segurança e as ferramentas de detecção automática de vulnerabi-
lidades.



2.1. Contratos Inteligentes

Um contrato inteligente é um programa desenvolvido em uma linguagem de alto nı́vel.
Em redes blockchains EVM (Ethereum Virtual Machine), os contratos são escritos em
Solidity. Uma blockchain EVM pode ser definida como uma rede que suporta a máquina
virtual da Ethereum, camada responsável por executar o código de um contrato inteli-
gente. Este código é compilado em bytecodes e implantado na blockchain por meio
de uma transação. Nesta transação, o dado enviado corresponde ao bytecode do con-
trato [Wood 2014]. Após a conclusão da transação, o contrato recebe um endereço
único na blockchain, assim como uma conta de usuário, ou seja, a partir disso qual-
quer interação com o contrato inteligente modifica o estado da rede blockchain. Qualquer
usuário pode interagir com o contrato enviando uma transação para este endereço ge-
rado [Harvey et al. 2021].

Os contratos inteligentes executam automaticamente acordos entre partes, elimi-
nando a necessidade de intermediários [Campos et al. 2024]. Além de serem públicos e
imutáveis (o que confere transparência e segurança nas transações), os contratos possuem
regras e condições estabelecidas pela blockchain utilizada para controlar as interações
entre as partes envolvidas [Egelund-Müller et al. 2017].

1 // SPDX-License-Identifier: MIT
2 pragma solidity ˆ0.8.20;
3
4 contract ExemploCarteira {
5 address public dono;
6 constructor() {dono = msg.sender;}
7 receive() external payable {}
8 function saque(uint256 quantidade) external {
9 require(msg.sender == dono, "Somente o dono pode

sacar");
10 require(address(this).balance >= quantidade, "

Saldo insuficiente");
11 payable(dono).transfer(quantidade);
12 }
13 }

Algoritmo 1. Exemplo de código-fonte de um contrato inteligente em Solidity.

O Algoritmo 1 é um exemplo de contrato inteligente escrito na linguagem Solidity
utilizada na rede Ethereum. Neste exemplo, o código do contrato inteligente é responsável
por simular uma carteira capaz de receber e sacar valores em Ether (ETH), criptomoeda
nativa da rede Ethereum. A função receive nativa da linguagem permite o contrato receber
ETH de qualquer endereço e, por sua vez, a função “saque” permite o dono da carteira
retirar os valores depositados no contrato. Soluções como esta e entre outras geraram
oportunidades para a existência de inúmeras aplicações descentralizadas, e.g., tokens e
corretoras de ativos financeiros [Mendonça et al. 2022].

2.2. Vulnerabilidades de Segurança

Em contratos inteligentes, vulnerabilidades surgem quando há uma falha no código que
pode ser explorada de maneira adversa. Tais falhas podem ocorrer devido a erros de



programação, má definição de regras de execução ou interações inseguras com outros
contratos [Nethermind 2025]. Diferente de sistemas tradicionais, onde vulnerabilidades
podem ser corrigidas por meio de atualizações de software, contratos inteligentes implan-
tados na blockchain são imutáveis, o que significa que qualquer erro presente no momento
da implantação pode persistir por tempo indeterminado e ser explorado por agentes mali-
ciosos [Kushwaha et al. 2022b].

Nesse sentido, a padronização de codificação de contratos seguros, bem como a
relação das vulnerabilidades existentes relacionadas à blockchain e contratos inteligentes
continua um desafio em aberto [Ressi et al. 2024]. Uma solução não descontinuada da
literatura é a OWASP (Open Web Application Security Project) [OWASP 2025a], que
desempenha o papel de fornecer diretrizes, práticas recomendadas e classificações de
vulnerabilidades especı́ficas da área de blockchain. O ranque OWASP Smart Contract
Security Top 10 [OWASP 2025b] lista as principais vulnerabilidades encontradas em con-
tratos inteligentes. Essa classificação auxilia desenvolvedores, auditores e pesquisadores
a compreenderem os riscos mais comuns e a implementarem medidas preventivas.

Tabela 1. Top-10 vulnerabilidades de contratos inteligentes em 2025 (Adaptado
de [OWASP 2025b]).

Código Vulnerabilidade Descrição
SC01 Controle de Acesso Permite que usuários não autorizados modifiquem dados ou

funções devido à falta de verificações de permissão.

SC02 Manipulação de Preço de Oráculo Exploração de oráculos de preço para alterar a lógica do
contrato, resultando em perdas financeiras.

SC03 Erros de Lógica Erros na lógica do contrato que levam a comportamento
inesperado, como distribuição incorreta de recompensas.

SC04 Falta de Validação de Entrada Falta de validação de entrada permite que atacantes mani-
pulem a execução do contrato.

SC05 Ataques de Reentrada Permite múltiplas execuções de uma função antes de sua
conclusão, podendo drenar fundos do contrato.

SC06 Chamadas Externas Não Verifica-
das

Falha ao verificar chamadas externas pode levar a execução
incorreta do contrato.

SC07 Ataques de Empréstimos Rápidos Uso de empréstimos rápidos para manipular protocolos,
drenando liquidez ou alterando preços.

SC08 Overflow e Underflow de Inteiros Erros aritméticos que podem levar a cálculos incorretos ou
roubo de tokens.

SC09 Aleatoriedade Insegura Falta de aleatoriedade segura pode permitir previsibilidade
em sorteios e distribuições de tokens.

SC10 Ataques de Negação de Serviço
(DoS)

Exploração de consumo excessivo de recursos para tornar o
contrato inoperante.

A Tabela 1 fornece um panorama das vulnerabilidades mais crı́ticas em contra-
tos inteligentes para o ano de 2025. Essas falhas podem comprometer a segurança de
aplicações descentralizadas, resultando em perdas financeiras e instabilidades em redes
blockchains. Vulnerabilidades como SC01, SC03, SC04, SC05, SC06, SC08 e SC10 são
falhas que estão intimamente ligadas com a maneira de desenvolver as funcionalidades
de um contrato inteligente. Por outro lado, vulnerabilidades como SC02, SC07 e SC09
são falhas que podem afetar a execução de um contrato inteligente, porém a detecção
pode requerer o monitoramento da própria blockchain em que o contrato está implantado,



resultando em ataques mais difı́ceis de serem detectados e mitigados.

2.3. Ferramentas de Detecção de Vulnerabilidades

Em [Khan and Namin 2024] os autores destacam que as ferramentas automatizadas de
detecção de vulnerabilidades são essenciais para impedir ataques e perdas financeiras em
contratos inteligentes. Estas ferramentas são apresentadas como uma resposta ao cres-
cimento de fraudes e ataques que ameaçam o desenvolvimento e a adoção dos contratos
inteligentes no ecossistema de redes blockchains.

As principais técnicas de análise podem ser agrupadas em análise estática e
dinâmica [Praitheeshan et al. 2019]. A análise estática verifica o código sem executá-
lo, e abrange métodos como a execução simbólica. Neste tipo de técnica, o bytecode é
processado de forma abstrata com substituição de variáveis por sı́mbolos, interpretação
sistemática, atualização do estado de execução e verificação das restrições de cami-
nho via solucionadores para identificar padrões de vulnerabilidade [Qian et al. 2022,
Rameder et al. 2022]. A Slither é uma das principais ferramentas que emprega este tipo
de análise ao receber o contrato inteligente como entrada e detectar vulnerabilidades re-
lacionadas às funções implementadas [Feist et al. 2019].

Por outro lado, a análise dinâmica avalia o comportamento de um contrato in-
teligente em tempo real, empregando técnicas como o fuzzing, que submete o código à
condições de entrada diversificadas para revelar vulnerabilidades [Rameder et al. 2022].
Neste tipo de análise, há a possibilidade de identificação de vulnerabilidades que podem
não ser detectadas na análise estática. O processo envolve geração sistemática de casos
de teste, execução, monitoramento de estados e análise de exceções [Li et al. 2023]. Para
este tipo de técnica, a ferramenta ConFuzzius mostra-se como uma das principais ao in-
tegrar a técnica de fuzzing com algoritmos genéticos que melhoram a cobertura de código
[Torres et al. 2021].

Além das técnicas convencionais de análise estática e dinâmica, técnicas como
a verificação formal e aprendizado de máquina também são empregadas no contexto de
contratos inteligentes [Ben Fekih et al. 2025]. Métodos de verificação formal baseiam-se
em resolver equações matemáticas e lógicas baseadas no código do contrato para deter-
minar a ausência ou presença de uma vulnerabilidade, sendo uma técnica eficiente em
eliminar falsos positivos apesar da difı́cil implementação [Almakhour et al. 2020]. Fer-
ramentas como a Mythril emprega a técnica de verificação formal em conjunto com a
execução simbólica para avaliar caminhos de execuções vulneráveis [ConsenSys 2018].
Já as abordagens baseadas em aprendizado de máquina, especialmente o aprendizado pro-
fundo, emergem como métodos promissores para detectar vulnerabilidades que possuem
padrões conhecidos, embora enfrentem desafios quanto à disponibilidade de conjunto de
dados adequados [Qian et al. 2022, Rameder et al. 2022].

3. Trabalhos Relacionados

Nesta seção, nós apresentamos os trabalhos relacionados que abordam a detecção de vul-
nerabilidades em contratos inteligentes e avaliam ferramentas de análise automática. Nós
agrupamos os trabalhos em duas categorias: Revisão de ferramentas e conjunto de dados
e Análises de desempenho.



Revisão de ferramentas e conjuntos de dados. Os trabalhos existentes que
avaliam as ferramentas de detecção de vulnerabilidades abordam uma relação entre as
técnicas que cada ferramenta utiliza e quais vulnerabilidades cada uma é capaz de detec-
tar [Rameder et al. 2022, Zhou et al. 2022, Khan and Namin 2024]. Por meio da análise
sistemática de trabalhos da literatura, os autores destes trabalhos destacam as principais
técnicas que as ferramentas de verificação automática utilizam para identificar vulnerabi-
lidades em contratos inteligentes. Apesar dos autores destacarem diferentes ferramentas
e vulnerabilidades, o nosso trabalho estende essas análises comparando as principais fer-
ramentas de código-aberto ainda em manutenção em relação às principais ameaças de
2025.

Análises de desempenho. Comparar o desempenho entre ferramentas que utili-
zam diferentes técnicas de verificação de vulnerabilidades é um desafio já proposto em
trabalhos como [Parizi et al. 2018, Durieux et al. 2020, Kushwaha et al. 2022a]. Os au-
tores destes trabalhos abordam a capacidade de detecção das ferramentas em relação às
vulnerabilidades de segurança em contratos inteligentes. Nestes trabalhos são apresen-
tadas as acurácias de cada ferramenta para cada vulnerabilidade e, apesar de em nosso
trabalho utilizarmos desta metodologia, nós estendemos essa análise utilizando um con-
junto de dados de contratos inteligentes previamente auditado manualmente, bem como
analisamos somente as ferramentas que ainda são atualizadas em seus repositórios.

Tabela 2. Contribuições em relação aos trabalhos relacionados.

Trabalho Dataset auditado
manualmente

Ferramentas
atualizadas

Top-10
OWASP

[Parizi et al. 2018]
[Durieux et al. 2020]

[Kushwaha et al. 2022a]
[Rameder et al. 2022]

[Zhou et al. 2022]
[Khan and Namin 2024]

Este trabalho

Conforme a Tabela 2, nosso trabalho diferencia dos demais acima apresentando
uma análise das ferramentas ainda atualizadas de acordo com as vulnerabilidades atuais
de contratos inteligentes. Além disso, apresentamos uma análise comparativa em relação
à um conjunto de dados consolidado de contratos inteligentes auditados manualmente.
Dessa maneira, é possı́vel relacionar as vantagens e desvantagens de cada ferramenta,
assim como o estado-da-arte da verificação automática de vulnerabilidades em contratos
inteligentes de blockchains EVM.

4. Metodologia

Nesta seção apresentamos as metodologias aplicadas para compararmos as principais fer-
ramentas de detecção automática de vulnerabilidades, assim como o conjunto de dados
utilizado para validação do nosso estudo.



4.1. Conjunto de Dados

Alguns conjuntos de dados existentes na literatura foram gerados a partir de diagnósticos
automatizados de ferramentas de análise, que, embora úteis, podem conter falsos positi-
vos e falsos negativos, comprometendo a confiabilidade das medições [Ressi et al. 2024].
Este cenário torna desafiadora a avaliação rigorosa de modelos de detecção de vulnerabili-
dades, uma vez que a ausência de rótulos verificados por especialistas impacta diretamente
na qualidade dos benchmarks utilizados.

Entretanto, para este trabalho, nós utilizamos o conjunto de dados construı́do em
[Di Angelo and Salzer 2023]. Os autores descrevem um processo detalhado de unificação
e consolidação dos principais conjuntos de dados da literatura. Em primeiro lugar, os au-
tores coletaram diversos benchmarks contendo contratos inteligentes e suas respectivas
vulnerabilidades e identificaram informações como endereços, código-fonte, bytecode e
classificações de segurança. Em seguida, aplicaram estratégias para mapear entradas du-
plicadas, eliminar falsos positivos e negativos e padronizar as vulnerabilidades. O resul-
tado é um conjunto de dados mais estruturado, abrangente e menos redundante, que pode
ser utilizado para avaliar ferramentas de segurança de forma mais rigorosa.

Nós selecionamos apenas as vulnerabilidades presentes no ranque OWASP da Ta-
bela 1. Esta escolha foi feita com o objetivo de avaliarmos a capacidade das ferramentas
em identificar as falhas mais crı́ticas e atuais na indústria de segurança em blockchain.
Ao restringir o escopo às vulnerabilidades documentadas pela OWASP, nós garantimos
uma avaliação alinhada com as melhores práticas de segurança existentes. A partir deste
filtro, o conjunto de dados utilizado conta com um total de 6.072 contratos verificados
manualmente. A Figura 1 exibe a quantidade de contratos inteligentes para cada tipo de
vulnerabilidade. Observa-se que SC06, SC08 e SC10 são as vulnerabilidades mais fre-
quentes, compondo mais de 50% do conjunto. Já a vulnerabilidade SC04 possui a menor
ocorrência, sendo referenciada em apenas 60 contratos. De qualquer forma, esses da-
dos auxiliam na identificação de quais vulnerabilidades são mais comuns nos contratos
analisados.

SC01 SC02 SC03 SC04 SC05 SC06 SC07 SC08 SC09 SC10
Identificação da Vulnerabilidade (SC)
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Figura 1. Quantidade de contratos inteligentes por vulnerabilidade.



4.2. Ferramentas Selecionadas

Para a condução deste estudo comparativo das ferramentas de detecção de vulnerabilida-
des em contratos inteligentes na blockchain Ethereum, nós selecionamos três ferramentas
representativas que empregam diferentes abordagens de análise: Slither, Mythril, Con-
Fuzzius.

Cada ferramenta foi selecionada por suas caracterı́sticas particulares e aborda-
gens distintas para análise de segurança. O Slither representa as ferramentas de análise
estática baseadas em código-fonte [Feist et al. 2019]. Já o Mythril exemplifica técnicas
de execução simbólica ao nı́vel de bytecode [ConsenSys 2018], e o ConFuzzius ilustra
a abordagem hı́brida com fuzzing evolutivo [Torres et al. 2021]. Esta diversidade meto-
dológica permite uma comparação representativa do estado atual das principais técnicas
de análise de segurança para contratos inteligentes. Além disso, apesar de em traba-
lhos anteriores como [Kushwaha et al. 2022a] serem apresentadas mais ferramentas dis-
ponı́veis na literatura, nós constatamos que ferramentas como Oyente [Luu et al. 2016],
Vandal [Brent et al. 2018], ContractFuzzer [Jiang et al. 2018], foram descontinuadas e
não recebem mais atualizações. Dessa maneira, comparamos as principais ferramentas
que ainda recebem atualizações e lidam com as versões mais atuais da linguagem Soli-
dity.

A ferramenta Slither converte o código Solidity em uma representação inter-
mediária chamada SlithIR, que adota a forma Static Single Assignment (SSA) e um con-
junto reduzido de instruções, a fim de facilitar a implementação de análises mantendo a
semântica do código [Feist et al. 2019]. A ferramenta emprega técnicas de análise de
fluxo de dados e rastreamento de informações sensı́veis (taint tracking) para detectar
vulnerabilidades que dizem respeito às funcionalidades implementadas de um contrato
inteligente.

Já a ferramenta Mythril realiza análises através de três abordagens princi-
pais: execução simbólica, resolução SMT (Satisfiability Modulo Theories) e análise de
propagação de dados sensı́veis (taint analysis) [Kushwaha et al. 2022a]. O módulo de
execução simbólica LASER é responsável por simular o ambiente de execução dos con-
tratos, permitindo que Mythril explore todos os estados possı́veis de execução do contrato
ao longo de múltiplas transações. A ferramenta utiliza também o teorema provador Z3,
desenvolvido pela Microsoft Research, para validar ou refutar a existência de estados
comprometidos [Sharma and Sharma 2022].

O ConFuzzius apresenta uma estrutura composta por três componentes principais:
o módulo de fuzzing evolutivo, a Máquina Virtual Ethereum (EVM) com instrumentação
e o componente de análise de traços de execução [Torres et al. 2021]. O componente
evolutivo da ferramenta utiliza um algoritmo genético para gerar sucessivas populações
de casos de teste e intercala técnicas de fuzzing com execução simbólica quando encontra
ramificações complexas no código.

5. Resultados

Neste estudo analisamos as ferramentas Slither, Mythril e ConFuzzius para a detecção de
vulnerabilidades em contratos inteligentes. A análise considerou os contratos especı́ficos
para cada vulnerabilidade listada na OWASP, conforme a Tabela 1. Nossos resultados



indicam como cada ferramenta possui vantagens e desvantagens dependendo do caso de
uso. A ConFuzzius apresenta-se como a ferramenta mais eficiente em tempo de execução,
porém possui poucos (4) detectores de vulnerabilidades em relação às outras ferramentas.
Por sua vez, a ferramenta Mythril apresenta detectores para todas (10) as vulnerabilidades
estudadas, porém enfrenta desafios de escalabilidade para auditorias de vários contratos
ao atingir tempos de execução altos em relação às outras ferramentas. Por fim, a ferra-
menta Slither apresenta tempos de execução próximos ao do ConFuzzius e cobre quase
todas as vulnerabilidades estudadas (7), mostrando-se como uma ferramenta balanceada
no quesito de escalabilidade versus capacidade de detecção.

5.1. Capacidade de Detecção
Em relação a capacidade de detecção das vulnerabilidades do Top-10 do OWASP, é
possı́vel observar a acurácia das ferramentas na Figura 2. De acordo com o gráfico, as
ferramentas Slither e Mythril possuem a capacidade de detectar uma maior variedade de
vulnerabilidades dentre as ferramentas estudadas. Contudo, em casos como as vulnerabi-
lidade SC06, SC08 e SC10 a ferramenta ConFuzzius possui uma acurácia maior.

SC01 SC02  SC03 SC04 SC05 SC06 SC07 SC08 SC09 SC10 
Smart Contracts

0

10

20

30

40

50

60

70

80

90

100

Ac
ur

ác
ia

 (%
) 58.82

39.72

62.07

97.03

9.13 8.28

86.84
89.80

92.47
89.86

94.16

67.92

50.00

9.09
5.55

33.16

42.30

3.10

8.00

50.00

27.27

Slither
Confuzzius
Mythril

Figura 2. Comparação de Acurácia das ferramentas Slither, ConFuzzius e Mythril.

A ferramenta ConFuzzius não possui detectores para todas as vulnerabilidades
do Top-10, porém possui a melhor acurácia de detecção para as vulnerabilidades que a
ferramenta consegue suportar. É possı́vel observar também que, a vulnerabilidade SC07
possui a menor capacidade de detecção dentre as ferramentas analisadas. Uma justifica-
tiva para este resultado é que esta vulnerabilidade em particular não depende somente do
código do contrato, mas também da ordem de execuções das transações que ocorrem na
blockchain.

Dentre as três ferramentas, a ferramenta Mythril é a que possui um desempenho
menor, que é justificado na Seção 5.2. Para a maioria das vulnerabilidades a acurácia
fica abaixo de 50%. Porém, ela foi a única ferramenta que conseguiu detectar a vulne-
rabilidade SC02, que é uma vulnerabilidade que também depende do fluxo de execução
do contrato na blockchain. A capacidade da Mythril detectar vulnerabilidades deste tipo
baseia-se em seu método de combinar a execução simbólica com a instrumentação de
instruções EVM.



Já a Figura 3 apresenta o gráfico comparativo das três ferramentas em relação a
quantidade de contratos analisados (CA), contratos verificados (CV), i.e. contratos inteli-
gentes analisados que foram encontradas vulnerabilidades, contratos em que a execução
teve erros (E) e, por fim os contratos não-verificados (CNV), que são os contratos ana-
lisados, mas que as vulnerabilidades deles não foram identificadas pelas ferramentas. É
possı́vel observar que a métrica de erros (E) representa mais da metade de todo o conjunto
de dados.
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Figura 3. Análise de métricas das ferramentas Slither, ConFuzzius e Mythril.

Durante as nossas medições, observamos que muitos contratos do conjunto de
dados possuem versões da linguagem Solidity muito antigas, e as ferramentas acabam não
suportando, pois uma das principais boas práticas de codificação de contratos é utilizar
versões atuais da linguagem Solidity. Versões atuais da linguagem podem mitigar certas
vulnerabilidades pelo próprio compilador atualizado. Vale ressaltar que, como o conjunto
de dados utilizado é uma consolidação de outros trabalhos da literatura, destacamos a
criação de conjunto de dados de contratos inteligentes vulneráveis atuais como um desafio
em aberto.

Entretanto, é possı́vel observar pela métrica CV como o ConFuzzius apesar de de-
tectar poucas vulnerabilidades do OWASP, possui a melhor taxa de detecção de contratos,
mostrando a confiabilidade e robustez da ferramenta. Já o Slither, possui mais contratos
não-verificados (CNV), porém mantém uma taxa melhor em CV em vista da Mythril, ou
seja, a ferramenta Slither acaba sendo versátil em cobrir mais vulnerabilidades, forne-
cendo uma visão geral sobre o código de um contrato inteligente. A ferramenta Mythril
não consegue executar todo o conjunto de dados em tempo hábil para gerar resultados, o
que justifica as métricas serem inferiores para esta ferramenta.

5.2. Análise de Desempenho

A análise de desempenho das ferramentas ConFuzzius, Slither e Mythril revelou
diferenças significativas tanto na cobertura de vulnerabilidades quanto na eficiência em
tempo de execução, conforme a Tabela 3. A ferramenta ConFuzzius demonstrou uma
abordagem mais limitada em relação às vulnerabilidades detectadas, cobrindo apenas



quatro das dez listadas no Top-10 da OWASP. No entanto, quando consegue identificar
vulnerabilidades, apresenta uma acurácia alta, chegando a 89%, com um tempo médio de
execução inferior a 2 segundos por contrato. Esse desempenho é reforçado pelos resulta-
dos obtidos ao executar a ferramenta no conjunto de dados analisado: dos 4.511 contratos
testados, 29,7% foram analisados com sucesso e, desses, 92,01% continham vulnerabili-
dades detectadas pela ferramenta. Apenas 7,99% das vulnerabilidades passaram desper-
cebidas. Entretanto, um grande percentual dos contratos (70,3%) não foi testado, devido
à erros de versão da linguagem Solidity.

Por outro lado, a ferramenta Slither se mostrou mais abrangente, detectando sete
das dez vulnerabilidades do Top-10 da OWASP. Apesar dessa vantagem, seu desempenho
em termos de acurácia foi inferior. A acurácia ficou em 18,28%, e o tempo médio de
execução foi inferior a 4 segundos por contrato, ou seja, mais lento que a ferramenta Con-
Fuzzius. A Slither conseguiu analisar 4.114 contratos, dos quais 29% foram analisados
com sucesso. No entanto, a taxa de identificação de vulnerabilidades foi bem menor: ape-
nas 40,65% dos contratos testados apresentaram vulnerabilidades detectadas, enquanto
59,35% passaram despercebidas. Assim como no ConFuzzius, um grande número de
contratos (71%) não foi testado por problemas similares de versão da linguagem.

Tabela 3. Tempo de execução das ferramentas por vulnerabilidades.

SC ConFuzzius Slither Mythril
SC01 - 1,52s 34,49h
SC02 - - 5,52h
SC03 - 3,07s 7,45h
SC04 - 4,09s 5,35h
SC05 1,89s 2,44s 40,48h
SC06 1,9s 1,96s 7,58h
SC07 - - 3,39h
SC08 1,94s 2,09s 9,18h
SC09 - 2,93s 8,24h
SC10 1,99s - 8,33h

Os resultados mostram que, enquanto Slither cobre mais tipos de vulnerabilida-
des, sua eficácia na detecção é menor. Por outro lado, ConFuzzius se sai melhor na
identificação das vulnerabilidades que de fato cobre, com uma taxa de sucesso muito
mais alta. No entanto, sua aplicação é mais limitada, pois consegue testar menos tipos
de vulnerabilidades. Já a ferramenta Mythril, os resultados indicam que a ferramenta
possui detectores para todas as dez vulnerabilidades listadas no Top 10 da OWASP. No
entanto, seu desempenho variou significativamente entre as diferentes categorias de vul-
nerabilidades, com tempos de execução extremamente altos e baixa acurácia de detecção.
A ferramenta apresentou uma cobertura média de apenas 12,79% em relação ao conjunto
de dados utilizado, com tempos de execução que variaram de 3,39 horas (SC07) a 40,48
horas (SC05). Em algumas vulnerabilidades, como SC01 (38,97% de cobertura) e SC05
(27,64%), a Mythril demonstrou eficiência moderada, enquanto em outras, como SC10
(0,92%) e SC03 (2,28%), sua detecção foi limitada.

Os resultados indicam que, em média, apenas 12,79% dos contratos foram analisa-



dos com sucesso para a ferramenta Mythril. Dentre esses, a taxa de contratos vulneráveis
detectados variou amplamente. Para os contratos que não foram testados, alguns dos
fatores que interferiram nessas medições incluem: Erros devido às versões antigas da lin-
guagem Solidity e o tempo alto para análise do contrato. Em uma análise de segurança,
a Mythril demonstra que apesar de possuir uma variedade de detectores, não consegue
finalizar a verificação de um contrato em tempo hábil, dificultando a usabilidade da ferra-
menta.

6. Considerações Finais
Este trabalho apresenta um estudo comparativo as ferramentas ConFuzzius, Slither e
Mythril para a detecção automática de vulnerabilidades em contratos inteligentes. Nas
análises realizadas, foi utilizado um conjunto de dados com contratos inteligentes audi-
tados manualmente por pesquisadores e especialistas, considerando as vulnerabilidades
mais comuns de acordo com a OWASP para o ano de 2025.

A ferramenta ConFuzzius teve um tempo médio inferior a 2 segundos por vulne-
rabilidade e, apesar de testar apenas uma fração pequena do conjunto de dados, obteve
alta taxa de detecção (92,01%). Por outro lado, a ferramenta Slither testou uma quanti-
dade maior de contratos, dos quais 29% foram analisados com sucesso, porém sua taxa de
identificação de vulnerabilidades foi de apenas 40,65%, mantendo um tempo de execução
semelhante. Já a ferramenta Mythril, embora ofereça detectores para todas as vulnerabili-
dades listadas, apresentou uma cobertura média de apenas 12,79% do conjunto de dados
devido aos tempos de execução que aumentaram significativamente em comparação as
outras duas (podendo chegar até 40,48 horas ao analisar determinada vulnerabilidade) e
variações de cobertura que vão de 0,92% a 38,97%.

Para análises que exigem maior precisão dentro de um escopo limitado, o ConFuz-
zius se mostra mais confiável e robusto, enquanto o Slither pode ser utilizado para uma
abordagem mais abrangente, apesar de sua menor eficácia. Para análises em larga es-
cala, a ferramenta Mythril demonstra como sendo inutilizável pelo fato de não conseguir
retornar resultados em tempos satisfatórios, porém possui versatilidade em identificar vul-
nerabilidades que saem do escopo do código do contrato. Desafios comuns, como erros de
versão e incompatibilidades, apontam para a necessidade de conjunto de dados com con-
tratos inteligentes vulneráveis mais atuais, assim como há a necessidade por ferramentas
de código-aberto com diferentes técnicas e que sejam mantidas continuamente. De modo
geral, os resultados evidenciam que cada ferramenta apresenta vantagens e limitações,
exigindo pesquisas e a resolução destes desafios em aberto na área de análise automática
de contratos inteligentes. Como direções futuras, elencamos a criação de novas ferra-
mentas que combinam diferentes técnicas e vantagens das ferramentas analisadas, assim
como a definição de conjuntos de dados que representam o contexto atual da linguagem
de codificação de contratos inteligentes.
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