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Abstract. Smart contracts have introduced security challenges due to their com-
plexity in creating programmable financial transactions and the immutable na-
ture of blockchain networks. During the last few years, several automated vul-
nerability detection tools targeted mitigating these risks. However, the effec-
tiveness of these tools varies significantly, and detection capabilities remain a
critical area of research. This paper presents a comparative study of the leading
open-source tools from previous works. Using a curated benchmark, we evalu-
ate the performance of these tools against the OWASP security vulnerabilities
for smart contracts in 2025. Our results show that the tools have high variabi-
lity in their vulnerability detection capabilities, opening opportunities for future
research.

Resumo. Os contratos inteligentes introduziram desafios de seguranga devido
a sua liberdade para criar operacoes financeiras programdveis e devido a natu-
reza imutdvel das redes blockchain. Para mitigar estes riscos, vdrias ferramen-
tas de verificacdo automdtica de vulnerabilidades foram desenvolvidas. Con-
tudo, a efetividade destas ferramentas varia significativamente e a capacidade
de deteccdo de vulnerabilidades em contratos inteligentes continua sendo uma
drea critica de pesquisa. Neste trabalho, nés apresentamos um estudo compara-
tivo das principais ferramentas de codigo-aberto da literatura. Por meio de um
benchmark previamente auditado, avaliamos o desempenho destas ferramentas
em relacdo as vulnerabilidades OWASP para contratos inteligentes em 2025.
Nossos resultados mostram que as ferramentas possuem alta variabilidade em
detectar as vulnerabilidades, abrindo oportunidades para pesquisas futuras.

1. Introducao

O aumento da demanda por solug¢des financeiras descentralizadas envolvendo as redes
blockchain levou ao surgimento dos contratos inteligentes, programas escritos em uma
linguagem Turing completa que executam operacdes de gerenciamento de ativos e acor-
dos na blockchain automaticamente [Buterin et al. 2013]. A linguagem de programacao



Solidity, a linguagem mais adotada para o desenvolvimento de contratos inteligentes, in-
troduziu desafios de seguranca unicos devido a sua liberdade para criar operagdes finan-
ceiras programdveis e devido a natureza imutdvel dos contratos inteligentes uma vez que
eles sdo implantados em redes blockchains [Wohrer and Zdun 2018]. Vulnerabilidades
que podem ser exploradas por agentes maliciosos como reentrada e questdes de controle
de acesso de permissdes resultaram em perdas financeiras significativas no ecossistema
descentralizado proposto pelas blockchains [Mense and Flatscher 2018].

Para mitigar estes riscos, varias ferramentas automaticas de verificacdo de vul-
nerabilidades foram desenvolvidas para analisar contratos inteligentes escritos na lin-
guagem Solidity [Khan and Namin 2024]. Estas ferramentas utilizam técnicas como
andlise estatica e dinamica para identificar vulnerabilidades de seguranca antes da
implantacido destes contratos na rede. Contudo, a efetividade destas ferramentas va-
ria significativamente e a capacidade de detec¢do continua sendo uma &rea critica
de pesquisa [Ressi et al. 2024]. Os trabalhos da literatura que relacionam estas fer-
ramentas desconsideram que muitas acabam sendo descontinuadas ou passam a ser
incorporadas em empresas de auditoria e deixam de receber suporte em codigo-
aberto [Kushwaha et al. 2022a].

Neste artigo, nds avaliamos a capacidade de deteccdo de vulnerabilidades das
principais ferramentas de codigo-aberto que analisam contratos inteligentes em Solidity.
No6s empiricamente avaliamos o desempenho destas ferramentas por meio de um ben-
chmark da literatura [Di Angelo and Salzer 2023] de contratos inteligentes vulneraveis
previamente auditado manualmente. Este estudo visa destacar o estado-da-arte da andlise
automadtica de seguranca de contratos inteligentes, identificar dreas de melhorias, poten-
cializar o desenvolvimento de pesquisas futuras e novas ferramentas.

Noés resumimos as nossas principais contribuicdes a seguir:

» Constatamos que as ferramentas possuem uma alta variabilidade em identificar as
vulnerabilidades de seguranca, atingindo uma faixa de 0 a 92%;

* Observamos que os conjuntos de dados de contratos inteligentes vulneraveis da
literatura possuem versdes antigas da linguagem Solidity em sua maioria, com
70% dos contratos descontinuados pelas ferramentas;

* Direcionamos pesquisas futuras a partir da andlise da acurdcia das ferramentas
e constatando que novas técnicas e ferramentas precisam ser desenvolvidas para
cobrir todas as vulnerabilidades com confiabilidade, robustez e eficiéncia.

O restante deste artigo estd organizado da seguinte maneira: a Secdo 2 discute os
principais conceitos associados ao trabalho. A Se¢do 3 apresenta os trabalhos da literatura
que se relacionam com o nosso. Ja a Secdo 4, discute a metodologia adotada para obter os
resultados da Secao 5. Por fim, a Sec@o 6 apresenta nossas consideracdes finais e dire¢oes
futuras.

2. Visao Geral

Esta secdo discute os principais conceitos associados ao trabalho, i.e., contratos inteligen-
tes, vulnerabilidades de seguranca e as ferramentas de detec¢do automética de vulnerabi-
lidades.



2.1. Contratos Inteligentes

Um contrato inteligente € um programa desenvolvido em uma linguagem de alto nivel.
Em redes blockchains EVM (Ethereum Virtual Machine), os contratos sio escritos em
Solidity. Uma blockchain EVM pode ser definida como uma rede que suporta a maquina
virtual da Ethereum, camada responsdvel por executar o cddigo de um contrato inteli-
gente. Este codigo é compilado em bytecodes e implantado na blockchain por meio
de uma transacdo. Nesta transac¢do, o dado enviado corresponde ao bytecode do con-
trato [Wood 2014]. Apés a conclusdo da transagdo, o contrato recebe um endereco
unico na blockchain, assim como uma conta de usudrio, ou seja, a partir disso qual-
quer interagdo com o contrato inteligente modifica o estado da rede blockchain. Qualquer
usudrio pode interagir com o contrato enviando uma transacio para este endereco ge-
rado [Harvey et al. 2021].

Os contratos inteligentes executam automaticamente acordos entre partes, elimi-
nando a necessidade de intermediarios [Campos et al. 2024]. Além de serem publicos e
imutaveis (0 que confere transparéncia e seguranca nas transacoes), 0s contratos possuem
regras e condicOes estabelecidas pela blockchain utilizada para controlar as interagdes
entre as partes envolvidas [Egelund-Miiller et al. 2017].

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.20;

3

4 contract ExemploCarteira {

5 address public dono;

6 constructor () {dono = msg.sender; }

7 receive () external payable {}

8 function saque (uint256 quantidade) external ({

9 require (msg.sender == dono, "Somente o dono pode
sacar");

10 require (address (this) .balance >= quantidade, "
Saldo insuficiente™);

11 payable (dono) .transfer (quantidade) ;

12 }

13 }

Algoritmo 1. Exemplo de codigo-fonte de um contrato inteligente em Solidity.

O Algoritmo 1 € um exemplo de contrato inteligente escrito na linguagem Solidity
utilizada na rede Ethereum. Neste exemplo, o cddigo do contrato inteligente € responsavel
por simular uma carteira capaz de receber e sacar valores em Ether (ETH), criptomoeda
nativa da rede Ethereum. A func¢ao receive nativa da linguagem permite o contrato receber
ETH de qualquer endereco e, por sua vez, a fun¢do “saque” permite o dono da carteira
retirar os valores depositados no contrato. Solugdes como esta e entre outras geraram
oportunidades para a existéncia de inumeras aplicacOes descentralizadas, e.g., tokens e
corretoras de ativos financeiros [Mendonga et al. 2022].

2.2. Vulnerabilidades de Seguranca

Em contratos inteligentes, vulnerabilidades surgem quando hd uma falha no cddigo que
pode ser explorada de maneira adversa. Tais falhas podem ocorrer devido a erros de



programacgdo, mé definicdo de regras de execugdo ou interagdes inseguras com outros
contratos [Nethermind 2025]. Diferente de sistemas tradicionais, onde vulnerabilidades
podem ser corrigidas por meio de atualizacdes de software, contratos inteligentes implan-
tados na blockchain sao imutéveis, o que significa que qualquer erro presente no momento
da implantacao pode persistir por tempo indeterminado e ser explorado por agentes mali-
ciosos [Kushwaha et al. 2022b].

Nesse sentido, a padronizacio de codificacdo de contratos seguros, bem como a
relacdo das vulnerabilidades existentes relacionadas a blockchain e contratos inteligentes
continua um desafio em aberto [Ressi et al. 2024]. Uma soluc¢do ndo descontinuada da
literatura é a OWASP (Open Web Application Security Project) [OWASP 2025a], que
desempenha o papel de fornecer diretrizes, praticas recomendadas e classificacoes de
vulnerabilidades especificas da area de blockchain. O ranque OWASP Smart Contract
Security Top 10 [OWASP 2025b] lista as principais vulnerabilidades encontradas em con-
tratos inteligentes. Essa classificacdo auxilia desenvolvedores, auditores e pesquisadores
a compreenderem os riscos mais comuns € a implementarem medidas preventivas.

Tabela 1. Top-10 vulnerabilidades de contratos inteligentes em 2025 (Adaptado

de [OWASP 2025b]).
Cédigo | Vulnerabilidade Descricao
SCo1 Controle de Acesso Permite que usudrios nao autorizados modifiquem dados ou
funcdes devido a falta de verificacdes de permissao.
SC02 Manipulagdo de Preco de Oriculo Exploracdo de ordculos de preco para alterar a légica do
contrato, resultando em perdas financeiras.
SC03 Erros de Légica Erros na légica do contrato que levam a comportamento
inesperado, como distribui¢@o incorreta de recompensas.
SC04 Falta de Valida¢ao de Entrada Falta de validacdo de entrada permite que atacantes mani-
pulem a execug¢do do contrato.
SCO05 Ataques de Reentrada Permite multiplas execucdes de uma funcdo antes de sua
conclusido, podendo drenar fundos do contrato.
SC06 Chamadas Externas Ndo Verifica- | Falha ao verificar chamadas externas pode levar a execuc¢do
das incorreta do contrato.
SC07 Ataques de Empréstimos Réapidos Uso de empréstimos rdpidos para manipular protocolos,
drenando liquidez ou alterando pregos.
SC08 Overflow e Underflow de Inteiros Erros aritméticos que podem levar a cdlculos incorretos ou
roubo de fokens.
SC09 Aleatoriedade Insegura Falta de aleatoriedade segura pode permitir previsibilidade
em sorteios e distribuicdes de tokens.
SC10 Ataques de Negagdo de Servico | Exploragdo de consumo excessivo de recursos para tornar o
(DoS) contrato inoperante.

A Tabela 1 fornece um panorama das vulnerabilidades mais criticas em contra-
tos inteligentes para o ano de 2025. Essas falhas podem comprometer a seguranca de
aplicacdes descentralizadas, resultando em perdas financeiras e instabilidades em redes
blockchains. Vulnerabilidades como SC01, SC03, SC04, SC05, SC06, SCO8 e SC10 sdo
falhas que estdo intimamente ligadas com a maneira de desenvolver as funcionalidades
de um contrato inteligente. Por outro lado, vulnerabilidades como SC02, SC07 e SC09
sdo falhas que podem afetar a execucdo de um contrato inteligente, porém a deteccdo
pode requerer o monitoramento da prépria blockchain em que o contrato estd implantado,



resultando em ataques mais dificeis de serem detectados e mitigados.

2.3. Ferramentas de Deteccao de Vulnerabilidades

Em [Khan and Namin 2024] os autores destacam que as ferramentas automatizadas de
deteccao de vulnerabilidades sdo essenciais para impedir ataques e perdas financeiras em
contratos inteligentes. Estas ferramentas sdo apresentadas como uma resposta ao cres-
cimento de fraudes e ataques que ameacam o desenvolvimento e a ado¢do dos contratos
inteligentes no ecossistema de redes blockchains.

As principais técnicas de andlise podem ser agrupadas em andlise estitica e
dindmica [Praitheeshan et al. 2019]. A andlise estdtica verifica o c6digo sem executa-
lo, e abrange métodos como a execugdo simbdlica. Neste tipo de técnica, o bytecode €
processado de forma abstrata com substituicdo de varidveis por simbolos, interpretacao
sistematica, atualizacdo do estado de execucdo e verificacdo das restricdes de cami-
nho via solucionadores para identificar padroes de vulnerabilidade [Qian et al. 2022,
Rameder et al. 2022]. A Slither € uma das principais ferramentas que emprega este tipo
de andlise ao receber o contrato inteligente como entrada e detectar vulnerabilidades re-
lacionadas as funcdes implementadas [Feist et al. 2019].

Por outro lado, a andlise dindmica avalia o comportamento de um contrato in-
teligente em tempo real, empregando técnicas como o fuzzing, que submete o codigo a
condicdes de entrada diversificadas para revelar vulnerabilidades [Rameder et al. 2022].
Neste tipo de andlise, hd a possibilidade de identificacdo de vulnerabilidades que podem
nao ser detectadas na andlise estdtica. O processo envolve geracdo sistematica de casos
de teste, execugdo, monitoramento de estados e analise de excegdes [Li et al. 2023]. Para
este tipo de técnica, a ferramenta ConFuzzius mostra-se como uma das principais ao in-
tegrar a técnica de fuzzing com algoritmos genéticos que melhoram a cobertura de c6digo
[Torres et al. 2021].

Além das técnicas convencionais de analise estatica e dinimica, técnicas como
a verificacdo formal e aprendizado de maquina também sdo empregadas no contexto de
contratos inteligentes [Ben Fekih et al. 2025]. Métodos de verificacdo formal baseiam-se
em resolver equacdes matemadticas e 1ogicas baseadas no cédigo do contrato para deter-
minar a auséncia ou presenga de uma vulnerabilidade, sendo uma técnica eficiente em
eliminar falsos positivos apesar da dificil implementacdo [Almakhour et al. 2020]. Fer-
ramentas como a Mythril emprega a técnica de verificagcdo formal em conjunto com a
execugdo simbolica para avaliar caminhos de execucdes vulnerdveis [ConsenSys 2018].
Ja as abordagens baseadas em aprendizado de mdquina, especialmente o aprendizado pro-
fundo, emergem como métodos promissores para detectar vulnerabilidades que possuem
padrdes conhecidos, embora enfrentem desafios quanto a disponibilidade de conjunto de
dados adequados [Qian et al. 2022, Rameder et al. 2022].

3. Trabalhos Relacionados

Nesta secdo, nds apresentamos os trabalhos relacionados que abordam a detec¢ao de vul-
nerabilidades em contratos inteligentes e avaliam ferramentas de analise automatica. NGs
agrupamos os trabalhos em duas categorias: Revisdo de ferramentas e conjunto de dados
e Andlises de desempenho.



Revisao de ferramentas e conjuntos de dados. Os trabalhos existentes que
avaliam as ferramentas de detec¢do de vulnerabilidades abordam uma relacdo entre as
técnicas que cada ferramenta utiliza e quais vulnerabilidades cada uma € capaz de detec-
tar [Rameder et al. 2022, Zhou et al. 2022, Khan and Namin 2024]. Por meio da analise
sistemadtica de trabalhos da literatura, os autores destes trabalhos destacam as principais
técnicas que as ferramentas de verificacdo automdtica utilizam para identificar vulnerabi-
lidades em contratos inteligentes. Apesar dos autores destacarem diferentes ferramentas
e vulnerabilidades, o nosso trabalho estende essas andlises comparando as principais fer-
ramentas de cédigo-aberto ainda em manutencdo em relagdo as principais ameacas de
2025.

Analises de desempenho. Comparar o desempenho entre ferramentas que utili-
zam diferentes técnicas de verificagdo de vulnerabilidades € um desafio ja proposto em
trabalhos como [Parizi et al. 2018, Durieux et al. 2020, Kushwaha et al. 2022a]. Os au-
tores destes trabalhos abordam a capacidade de deteccdo das ferramentas em relacao as
vulnerabilidades de seguranga em contratos inteligentes. Nestes trabalhos sdo apresen-
tadas as acuricias de cada ferramenta para cada vulnerabilidade e, apesar de em nosso
trabalho utilizarmos desta metodologia, nds estendemos essa anélise utilizando um con-
junto de dados de contratos inteligentes previamente auditado manualmente, bem como
analisamos somente as ferramentas que ainda sdo atualizadas em seus repositorios.

Tabela 2. Contribuicoes em relacao aos trabalhos relacionados.

Trabalho Dataset auditado | Ferramentas | Top-10

manualmente atualizadas | QWASP
[Parizi et al. 2018] o © ©
[Durieux et al. 2020] O [ ) [ )
[Kushwaha et al. 2022a] O [ ) [ )
[Rameder et al. 2022] [ ) [ ) [ )
[Zhou et al. 2022] O O [ )
[Khan and Namin 2024] O o [ )
Este trabalho o o [ ]

Conforme a Tabela 2, nosso trabalho diferencia dos demais acima apresentando
uma andlise das ferramentas ainda atualizadas de acordo com as vulnerabilidades atuais
de contratos inteligentes. Além disso, apresentamos uma analise comparativa em relagdo
a um conjunto de dados consolidado de contratos inteligentes auditados manualmente.
Dessa maneira, € possivel relacionar as vantagens e desvantagens de cada ferramenta,
assim como o estado-da-arte da verificacdo automatica de vulnerabilidades em contratos
inteligentes de blockchains EVM.

4. Metodologia

Nesta secao apresentamos as metodologias aplicadas para compararmos as principais fer-
ramentas de detec¢do automadtica de vulnerabilidades, assim como o conjunto de dados
utilizado para validacao do nosso estudo.



4.1. Conjunto de Dados

Alguns conjuntos de dados existentes na literatura foram gerados a partir de diagndsticos
automatizados de ferramentas de andlise, que, embora tteis, podem conter falsos positi-
vos e falsos negativos, comprometendo a confiabilidade das medicdes [Ressi et al. 2024].
Este cendrio torna desafiadora a avaliagao rigorosa de modelos de detecc¢ao de vulnerabili-
dades, uma vez que a auséncia de rétulos verificados por especialistas impacta diretamente
na qualidade dos benchmarks utilizados.

Entretanto, para este trabalho, nos utilizamos o conjunto de dados construido em
[Di Angelo and Salzer 2023]. Os autores descrevem um processo detalhado de unificacao
e consolidag@o dos principais conjuntos de dados da literatura. Em primeiro lugar, os au-
tores coletaram diversos benchmarks contendo contratos inteligentes e suas respectivas
vulnerabilidades e identificaram informagdes como enderegos, codigo-fonte, bytecode e
classificagdes de seguranca. Em seguida, aplicaram estratégias para mapear entradas du-
plicadas, eliminar falsos positivos e negativos e padronizar as vulnerabilidades. O resul-
tado é um conjunto de dados mais estruturado, abrangente e menos redundante, que pode
ser utilizado para avaliar ferramentas de seguranca de forma mais rigorosa.

Nos selecionamos apenas as vulnerabilidades presentes no ranque OWASP da Ta-
bela 1. Esta escolha foi feita com o objetivo de avaliarmos a capacidade das ferramentas
em identificar as falhas mais criticas e atuais na industria de seguranca em blockchain.
Ao restringir o escopo as vulnerabilidades documentadas pela OWASP, nds garantimos
uma avaliacdo alinhada com as melhores praticas de seguranca existentes. A partir deste
filtro, o conjunto de dados utilizado conta com um total de 6.072 contratos verificados
manualmente. A Figura 1 exibe a quantidade de contratos inteligentes para cada tipo de
vulnerabilidade. Observa-se que SC06, SCO8 e SC10 sdo as vulnerabilidades mais fre-
quentes, compondo mais de 50% do conjunto. Ja a vulnerabilidade SC04 possui a menor
ocorréncia, sendo referenciada em apenas 60 contratos. De qualquer forma, esses da-
dos auxiliam na identificacdo de quais vulnerabilidades sao mais comuns nos contratos
analisados.
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Figura 1. Quantidade de contratos inteligentes por vulnerabilidade.



4.2. Ferramentas Selecionadas

Para a condugao deste estudo comparativo das ferramentas de detec¢do de vulnerabilida-
des em contratos inteligentes na blockchain Ethereum, nés selecionamos trés ferramentas
representativas que empregam diferentes abordagens de andlise: Slither, Mythril, Con-
Fuzzius.

Cada ferramenta foi selecionada por suas caracteristicas particulares e aborda-
gens distintas para andlise de seguranca. O Slither representa as ferramentas de anélise
estdtica baseadas em cddigo-fonte [Feist et al. 2019]. Ja o Mythril exemplifica técnicas
de execucdo simbdlica ao nivel de bytecode [ConsenSys 2018], e o ConFuzzius ilustra
a abordagem hibrida com fuzzing evolutivo [Torres et al. 2021]. Esta diversidade meto-
doldgica permite uma comparagao representativa do estado atual das principais técnicas
de andlise de seguranca para contratos inteligentes. Além disso, apesar de em traba-
lhos anteriores como [Kushwaha et al. 2022a] serem apresentadas mais ferramentas dis-
poniveis na literatura, nés constatamos que ferramentas como Oyente [Luu et al. 2016],
Vandal [Brent et al. 2018], ContractFuzzer [Jiang et al. 2018], foram descontinuadas e
ndo recebem mais atualizagdes. Dessa maneira, comparamos as principais ferramentas
que ainda recebem atualizagdes e lidam com as versdes mais atuais da linguagem Soli-
dity.

A ferramenta Slither converte o cédigo Solidity em uma representagdo inter-
medidria chamada SlithIR, que adota a forma Static Single Assignment (SSA) e um con-
junto reduzido de instrugdes, a fim de facilitar a implementa¢do de andlises mantendo a
semantica do cddigo [Feist et al. 2019]. A ferramenta emprega técnicas de andlise de
fluxo de dados e rastreamento de informacdes sensiveis (faint tracking) para detectar
vulnerabilidades que dizem respeito as funcionalidades implementadas de um contrato
inteligente.

J4 a ferramenta Mythril realiza analises através de trés abordagens princi-
pais: execucao simbdlica, resolucdo SMT (Satisfiability Modulo Theories) e anélise de
propagacao de dados sensiveis (taint analysis) [Kushwaha et al. 2022a]. O médulo de
execucao simbodlica LASER € responsavel por simular o ambiente de execugdo dos con-
tratos, permitindo que Mythril explore todos os estados possiveis de execugdo do contrato
ao longo de multiplas transacOes. A ferramenta utiliza também o teorema provador Z3,
desenvolvido pela Microsoft Research, para validar ou refutar a existéncia de estados
comprometidos [Sharma and Sharma 2022].

O ConFuzzius apresenta uma estrutura composta por trés componentes principais:
o modulo de fuzzing evolutivo, a Maquina Virtual Ethereum (EVM) com instrumentagdo
e o componente de andlise de tracos de execucdo [Torres et al. 2021]. O componente
evolutivo da ferramenta utiliza um algoritmo genético para gerar sucessivas populacoes
de casos de teste e intercala técnicas de fuzzing com execugao simbodlica quando encontra
ramificagdes complexas no codigo.

5. Resultados

Neste estudo analisamos as ferramentas Slither, Mythril e ConFuzzius para a detec¢do de
vulnerabilidades em contratos inteligentes. A andlise considerou os contratos especificos
para cada vulnerabilidade listada na OWASP, conforme a Tabela 1. Nossos resultados



indicam como cada ferramenta possui vantagens e desvantagens dependendo do caso de
uso. A ConFuzzius apresenta-se como a ferramenta mais eficiente em tempo de execucao,
porém possui poucos (4) detectores de vulnerabilidades em relacao as outras ferramentas.
Por sua vez, a ferramenta Mythril apresenta detectores para todas (10) as vulnerabilidades
estudadas, porém enfrenta desafios de escalabilidade para auditorias de vérios contratos
ao atingir tempos de execugdo altos em relacdo as outras ferramentas. Por fim, a ferra-
menta Slither apresenta tempos de execu¢do proximos ao do ConFuzzius e cobre quase
todas as vulnerabilidades estudadas (7), mostrando-se como uma ferramenta balanceada
no quesito de escalabilidade versus capacidade de detecc¢ao.

5.1. Capacidade de Deteccao

Em relacdo a capacidade de detec¢do das vulnerabilidades do Top-10 do OWASP, é
possivel observar a acurdcia das ferramentas na Figura 2. De acordo com o gréfico, as
ferramentas Slither e Mythril possuem a capacidade de detectar uma maior variedade de
vulnerabilidades dentre as ferramentas estudadas. Contudo, em casos como as vulnerabi-
lidade SC06, SC0O8 e SC10 a ferramenta ConFuzzius possui uma acuracia maior.
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Figura 2. Comparacao de Acuracia das ferramentas Slither, ConFuzzius e Mythril.

A ferramenta ConFuzzius ndo possui detectores para todas as vulnerabilidades
do Top-10, porém possui a melhor acurdcia de deteccdo para as vulnerabilidades que a
ferramenta consegue suportar. E possivel observar também que, a vulnerabilidade SC07
possui a menor capacidade de detec¢do dentre as ferramentas analisadas. Uma justifica-
tiva para este resultado é que esta vulnerabilidade em particular ndo depende somente do

codigo do contrato, mas também da ordem de execugdes das transacdes que ocorrem na
blockchain.

Dentre as trés ferramentas, a ferramenta Mythril € a que possui um desempenho
menor, que € justificado na Secdo 5.2. Para a maioria das vulnerabilidades a acuricia
fica abaixo de 50%. Porém, ela foi a tunica ferramenta que conseguiu detectar a vulne-
rabilidade SC02, que é uma vulnerabilidade que também depende do fluxo de execucao
do contrato na blockchain. A capacidade da Mythril detectar vulnerabilidades deste tipo
baseia-se em seu método de combinar a execu¢do simbdlica com a instrumentacdo de
instru¢des EVM.



Ja a Figura 3 apresenta o grafico comparativo das trés ferramentas em relacdo a
quantidade de contratos analisados (CA), contratos verificados (CV), i.e. contratos inteli-
gentes analisados que foram encontradas vulnerabilidades, contratos em que a execugdo
teve erros (E) e, por fim os contratos ndo-verificados (CNV), que sdo os contratos ana-
lisados, mas que as vulnerabilidades deles nio foram identificadas pelas ferramentas. E
possivel observar que a métrica de erros (E) representa mais da metade de todo o conjunto

de dados.
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Figura 3. Analise de métricas das ferramentas Slither, ConFuzzius e Mythril.

Durante as nossas medicdes, observamos que muitos contratos do conjunto de
dados possuem versoes da linguagem Solidity muito antigas, e as ferramentas acabam nao
suportando, pois uma das principais boas préticas de codificacdo de contratos é utilizar
versoes atuais da linguagem Solidity. Versdes atuais da linguagem podem mitigar certas
vulnerabilidades pelo préprio compilador atualizado. Vale ressaltar que, como o conjunto
de dados utilizado ¢ uma consolidacao de outros trabalhos da literatura, destacamos a
criacao de conjunto de dados de contratos inteligentes vulneraveis atuais como um desafio
em aberto.

Entretanto, € possivel observar pela métrica CV como o ConFuzzius apesar de de-
tectar poucas vulnerabilidades do OWASP, possui a melhor taxa de deteccdo de contratos,
mostrando a confiabilidade e robustez da ferramenta. J4 o Slither, possui mais contratos
nao-verificados (CNV), porém mantém uma taxa melhor em CV em vista da Mythril, ou
seja, a ferramenta Slither acaba sendo versatil em cobrir mais vulnerabilidades, forne-
cendo uma visdo geral sobre o cddigo de um contrato inteligente. A ferramenta Mythril
nao consegue executar todo o conjunto de dados em tempo habil para gerar resultados, o
que justifica as métricas serem inferiores para esta ferramenta.

5.2. Analise de Desempenho

A andlise de desempenho das ferramentas ConFuzzius, Slither e Mythril revelou
diferencas significativas tanto na cobertura de vulnerabilidades quanto na eficiéncia em
tempo de execucdo, conforme a Tabela 3. A ferramenta ConFuzzius demonstrou uma
abordagem mais limitada em relagdo as vulnerabilidades detectadas, cobrindo apenas



quatro das dez listadas no Top-10 da OWASP. No entanto, quando consegue identificar
vulnerabilidades, apresenta uma acurdcia alta, chegando a 89%, com um tempo médio de
execucao inferior a 2 segundos por contrato. Esse desempenho é refor¢ado pelos resulta-
dos obtidos ao executar a ferramenta no conjunto de dados analisado: dos 4.511 contratos
testados, 29,7% foram analisados com sucesso e, desses, 92,01% continham vulnerabili-
dades detectadas pela ferramenta. Apenas 7,99% das vulnerabilidades passaram desper-
cebidas. Entretanto, um grande percentual dos contratos (70,3%) ndo foi testado, devido
a erros de versdo da linguagem Solidity.

Por outro lado, a ferramenta Slither se mostrou mais abrangente, detectando sete
das dez vulnerabilidades do Top-10 da OWASP. Apesar dessa vantagem, seu desempenho
em termos de acurdcia foi inferior. A acurdcia ficou em 18,28%, e o tempo médio de
execucao foi inferior a 4 segundos por contrato, ou seja, mais lento que a ferramenta Con-
Fuzzius. A Slither conseguiu analisar 4.114 contratos, dos quais 29% foram analisados
com sucesso. No entanto, a taxa de identificacdo de vulnerabilidades foi bem menor: ape-
nas 40,65% dos contratos testados apresentaram vulnerabilidades detectadas, enquanto
59,35% passaram despercebidas. Assim como no ConFuzzius, um grande numero de
contratos (71%) nao foi testado por problemas similares de versao da linguagem.

Tabela 3. Tempo de execucao das ferramentas por vulnerabilidades.

SC | ConFuzzius | Slither | Mythril
SCO1 - 1,52s | 34,4%h
SC02 - - 5,52h
SCO03 - 3,07s 7,45h
SC04 - 4,09s 5,35h
SCO05 1,89s 2,44s | 40,48h
SC06 1,9s 1,96s 7,58h
SCO07 - - 3,3%h
SCO08 1,94s 2,09s 9,18h
SC09 - 2,93s 8,24h
SC10 1,99s - 8,33h

Os resultados mostram que, enquanto Slither cobre mais tipos de vulnerabilida-
des, sua eficdcia na deteccdo € menor. Por outro lado, ConFuzzius se sai melhor na
identificacdo das vulnerabilidades que de fato cobre, com uma taxa de sucesso muito
mais alta. No entanto, sua aplicagdo € mais limitada, pois consegue testar menos tipos
de vulnerabilidades. J4 a ferramenta Mythril, os resultados indicam que a ferramenta
possui detectores para todas as dez vulnerabilidades listadas no Top 10 da OWASP. No
entanto, seu desempenho variou significativamente entre as diferentes categorias de vul-
nerabilidades, com tempos de execu¢do extremamente altos e baixa acuricia de deteccao.
A ferramenta apresentou uma cobertura média de apenas 12,79% em relacao ao conjunto
de dados utilizado, com tempos de execu¢do que variaram de 3,39 horas (SC07) a 40,48
horas (SC05). Em algumas vulnerabilidades, como SCO1 (38,97% de cobertura) e SC05
(27,64%), a Mythril demonstrou eficiéncia moderada, enquanto em outras, como SC10
(0,92%) e SCO3 (2,28%), sua deteccao foi limitada.

Os resultados indicam que, em média, apenas 12,79% dos contratos foram analisa-



dos com sucesso para a ferramenta Mythril. Dentre esses, a taxa de contratos vulneraveis
detectados variou amplamente. Para os contratos que ndo foram testados, alguns dos
fatores que interferiram nessas medigdes incluem: Erros devido as versdes antigas da lin-
guagem Solidity e o tempo alto para andlise do contrato. Em uma andlise de seguranca,
a Mythril demonstra que apesar de possuir uma variedade de detectores, ndo consegue
finalizar a verificacdo de um contrato em tempo habil, dificultando a usabilidade da ferra-
menta.

6. Consideracoes Finais

Este trabalho apresenta um estudo comparativo as ferramentas ConFuzzius, Slither e
Mythril para a detec¢do automatica de vulnerabilidades em contratos inteligentes. Nas
andlises realizadas, foi utilizado um conjunto de dados com contratos inteligentes audi-
tados manualmente por pesquisadores e especialistas, considerando as vulnerabilidades
mais comuns de acordo com a OWASP para o ano de 2025.

A ferramenta ConFuzzius teve um tempo médio inferior a 2 segundos por vulne-
rabilidade e, apesar de testar apenas uma fracdo pequena do conjunto de dados, obteve
alta taxa de deteccao (92,01%). Por outro lado, a ferramenta Slither testou uma quanti-
dade maior de contratos, dos quais 29% foram analisados com sucesso, porém sua taxa de
identificagdo de vulnerabilidades foi de apenas 40,65%, mantendo um tempo de execugao
semelhante. Ja a ferramenta Mythril, embora ofereca detectores para todas as vulnerabili-
dades listadas, apresentou uma cobertura média de apenas 12,79% do conjunto de dados
devido aos tempos de execu¢cdo que aumentaram significativamente em comparacdo as
outras duas (podendo chegar até 40,48 horas ao analisar determinada vulnerabilidade) e
variacoes de cobertura que vao de 0,92% a 38,97%.

Para andlises que exigem maior precisao dentro de um escopo limitado, o ConFuz-
zius se mostra mais confidvel e robusto, enquanto o Slither pode ser utilizado para uma
abordagem mais abrangente, apesar de sua menor eficicia. Para andlises em larga es-
cala, a ferramenta Mythril demonstra como sendo inutilizdvel pelo fato de nao conseguir
retornar resultados em tempos satisfatorios, porém possui versatilidade em identificar vul-
nerabilidades que saem do escopo do c6digo do contrato. Desafios comuns, como erros de
versdo e incompatibilidades, apontam para a necessidade de conjunto de dados com con-
tratos inteligentes vulnerdveis mais atuais, assim como ha a necessidade por ferramentas
de cédigo-aberto com diferentes técnicas e que sejam mantidas continuamente. De modo
geral, os resultados evidenciam que cada ferramenta apresenta vantagens e limitagdes,
exigindo pesquisas e a resolucdo destes desafios em aberto na drea de andlise automatica
de contratos inteligentes. Como dire¢Oes futuras, elencamos a criacdo de novas ferra-
mentas que combinam diferentes técnicas e vantagens das ferramentas analisadas, assim
como a defini¢do de conjuntos de dados que representam o contexto atual da linguagem
de codificacdo de contratos inteligentes.
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