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Abstract. DThis study describes an approach to mitigating the slippage issue
in RFQ services. Slippage refers to the difference between the expected price
and the executed price in a quote for buying or selling a certain amount of a
currency pair. The two main strategies considered were spread adjustment and
quote cancellation. The study involves collecting and processing data to statis-
tically infer the optimal spread, which simultaneously maintains a competitive
price, reduces company losses, and complies with the SLA. The result is the es-
tablishment of a simple and reasonable heuristic for approaching the problem
and a webapp for visualizing the proposed heuristic.

Resumo. O presente trabalho descreve um estudo voltado para a mitigação do
problema de slippage em serviços RFQ. Slippage refere-se à diferença entre o
preço esperado e o preço executado em uma cotação de compra ou venda de
uma determinada quantia em um par de moedas. As duas principais estratégias
consideradas foram o ajuste do spread e o cancelamento de cotações. O es-
tudo envolve a coleta e o processamento de dados para inferir estatisticamente
o spread ideal que, simultaneamente, mantém um preço competitivo, reduz os
prejuı́zos da empresa e respeita o SLA. O resultado é o estabelecimento de uma
heurı́stica simples e razoável para abordar o problema e um webapp para visu-
alizar a heurı́stica proposta.

1. Introdução
Desde sua criação, o mercado de criptomoedas tem se destacado por sua natureza inova-
dora e dinâmica, sendo a volatilidade de preços uma manifestação da constante adaptação
às transformações, tanto tecnológicas quanto econômicas. Especificamente, serviços
Web3 que atuam sob o modelo RFQ (Request For Quote), no qual são oferecidas cotações
de câmbio de moedas e criptomoedas com validade limitada aos usuários, são diretamente
impactados por essa volatilidade, resultando em slippage — a diferença entre o preço es-
perado, prometido ao usuário, e o preço executado, pago pelo serviço. Apesar de pequeno
em transações individuais, o slippage pode ter impacto significativo em volumes diários
de centenas de milhões de dólares, tornando sua mitigação essencial. Este estudo busca
desenvolver uma heurı́stica simples e razoável para mitigar esse problema e atingir essa
economia.

Nosso objetivo é desenvolver uma heurı́stica capaz de mitigar o impacto do slip-
page para empresas que oferecem serviços RFQ. A proposta é estabelecer um ponto de



partida que possa ser testado, validado e aprimorado como uma prova de conceito para
implementação em serviços reais. Dada a complexidade do mercado financeiro e do pro-
blema em questão, esta abordagem simplificada foi escolhida como um primeiro passo
rumo a uma solução mais elaborada. Embora este estudo seja motivado por um serviço
da Parfin [Parfin 2025], suas estratégias são aplicáveis a qualquer serviço RFQ.

A literatura existente concentra-se principalmente em outro modelo de mercado,
o AMM (Automated Market Makers, vide Seção 3): [Aldridge 2022] analisa a diferença
entre trading tradicional e cripto, investigando como melhor estimar slippage para maxi-
mizar lucros; [Lim 2022] propõe um novo protocolo baseado no Uniswap V3, utilizando
aprendizado de máquina para reduzir o slippage enfrentado por traders de criptomoedas;
[Shah et al. 2020] apresenta a Slipswap, uma aplicação web (também disponı́vel via API)
que otimiza a conversão entre criptomoedas, reduzindo perdas por slippage em merca-
dos altamente voláteis. Até onde sabemos, não há estudos que abordem a mitigação do
slippage no modelo RFQ.

Roteiro. O restante deste artigo está organizado da seguinte forma. Na Seção 2,
abordamos a literatura e o estado da arte vigente. Na Seção 3, aprofundamos o funciona-
mento de serviços RFQ e propomos estratégias para mitigar o slippage. Em seguida, na
Seção 4 descrevemos a coleta e o processamento dos dados necessários para inferir esta-
tisticamente o spread ideal. Após isso, na Seção 5 elaboramos, analisamos e validamos
a estratégia obtida com base nas amostras coletadas. Na Seção 6, desenvolvemos sobre
a implementação do WebApp. A Seção 7 conclui com reflexões sobre desenvolvimentos
futuros para aprimorar esta abordagem.

2. Trabalhos Relacionados e Estado da Arte
A literatura acadêmica que trata diretamente da mitigação de slippage em serviços basea-
dos no modelo RFQ ainda é incipiente. Até onde temos conhecimento, este é o primeiro
estudo que se dedica especificamente à análise quantitativa do slippage em plataformas
RFQ no mercado de criptoativos, tendo como principal motivação um serviço real ofe-
recido pela Parfin. Embora este artigo se baseie no trabalho de conclusão de curso do
primeiro autor [Martins 2023], ele o expande significativamente, tanto na coleta de dados
quanto na formalização das estratégias propostas.

Por outro lado, o problema de slippage tem sido abordado com mais frequência
no contexto dos Automated Market Makers, modelo dominante em protocolos de finança
descentralizada (DeFi). Aldridge [Aldridge 2022] discute as limitações do modelo AMM
em termos de perdas por slippage e propõe formas de estimar essa variável de forma
mais precisa. Lim [Lim 2022] vai além, ao utilizar aprendizado de máquina com reforço
profundo para antecipar movimentos de mercado e adaptar dinamicamente a arquitetura
do AMM, buscando reduzir o impacto do slippage em negociações de criptoativos. Shah et
al. [Shah et al. 2020] apresentam o SlipSwap, um serviço que otimiza a conversão entre
tokens em ambientes altamente voláteis, também com o objetivo de mitigar perdas por
slippage.

Contudo, o cenário é notavelmente distinto no modelo RFQ. Em vez de
negociações contı́nuas baseadas em curvas de liquidez, o modelo RFQ oferece cotações
com tempo de vida limitado, o que exige estratégias especı́ficas para lidar com oscilações
rápidas de mercado. Diante da ausência de estudos acadêmicos voltados para esse con-



texto, observamos que, na prática, empresas que atuam com RFQ adotam abordagens
empı́ricas centradas na aplicação de spreads fixos. Com frequência, utilizam valores
como 1 basis point (bp) — ou 0,01% — aplicados simetricamente às cotações. Esses va-
lores são calibrados de maneira manual ou semi-automatizada, com base em observações
operacionais como o ı́ndice de rejeição de ordens, lucro médio por transação, flutuações
de volatilidade e até preferências especı́ficas de determinados clientes [Wintermute 2023].

Apesar da simplicidade dessa abordagem, empresas mais sofisticadas vêm ado-
tando soluções técnicas para mitigar os riscos associados à volatilidade e à latência
de execução. Uma dessas estratégias é a utilização de latency buffers, que ajustam o
spread com base na latência esperada entre a cotação e sua execução [Cartea et al. 2015,
Bouchaud et al. 2018]. Essa prática é comum entre instituições de alta frequência como
a Jane Street [Street 2023], que buscam proteger suas cotações contra latency arbitrage.

Outra frente explorada é o uso de modelos de previsão de volatilidade de curto
prazo, comumente baseados em GARCH [Engle 1982] ou técnicas de aprendizado de
máquina [Dixon et al. 2020]. Empresas como a Coinbase relatam o uso de modelos pre-
ditivos para ajustar dinamicamente preços e riscos de execução [Coinbase 2022], o que
se alinha à proposta deste estudo de tornar o spread uma variável responsiva às condições
reais de mercado.

Além disso, alguns market makers institucionais adotam modelos de impacto de
mercado, estimando como a própria execução de ordens pode afetar os preços. A litera-
tura clássica de Almgren e Chriss [Almgren and Chriss 2000] serve de base teórica para
essas abordagens, e empresas como a Paradigm adaptaram esses conceitos ao mercado de
criptoativos [Research 2023].

Também têm ganhado espaço estratégias baseadas em simulações, como
Monte Carlo sobre microestruturas de livros de ordens [Gould et al. 2013,
Aoyagi and Ibuka 2021]. A provedora de dados Kaiko, por exemplo, aplica tais
métodos para estimar slippage e custos de execução em seus relatórios de análise de
mercado [Kaiko 2023].

Por fim, abordagens mais experimentais incluem algoritmos de aprendizado por
reforço e multi-armed bandits, aplicados à calibragem de spreads com base em feedback
contı́nuo de lucro e perda [Spooner et al. 2018, Nevmyvaka et al. 2006]. Embora a litera-
tura acadêmica já aborde essas técnicas, empresas como a Radix Trading vêm explorando
sua aplicação prática para estratégias de market making adaptativo [Trading 2023].

Apesar dessas técnicas promissoras, não identificamos na literatura cientı́fica
atual estudos que documentem ou avaliem quantitativamente essas estratégias no con-
texto de serviços RFQ para criptoativos. Esse cenário reforça o ineditismo e a re-
levância do presente trabalho, que propõe uma heurı́stica estatı́stica sistematizada e de
fácil implementação, capaz de otimizar o spread aplicado em tempo real com base em
dados históricos recentes. Ao preencher essa lacuna, o trabalho não apenas contribui para
o avanço da literatura na área, como também oferece uma solução prática e aplicável ao
ecossistema Web3.



3. Entendendo os serviços RFQ
O modelo RFQ tem ganhado destaque em ambientes de negociação institucional, especi-
almente no contexto de ativos digitais, por combinar rapidez na execução com controle
sobre preços. Ao contrário de modelos como order books ou AMMs, os serviços RFQ
oferecem cotações com validade limitada, exigindo respostas rápidas dos usuários e de-
cisões estratégicas por parte das plataformas. Nesta seção, detalhamos o funcionamento
desses serviços, diferenciando-os dos demais modelos de mercado e estabelecendo os
fundamentos para o desenvolvimento de estratégias de mitigação de slippage.

3.1. Analisando os modelos de mercado

Na Web3, existem três modelos de mercado predominantes: Order Book, AMM (Automa-
ted Market Makers) e RFQ (Request for Quote). O Order Book registra todas as ordens
de compra e venda, permitindo negociações mais precisas, mas exigindo mais liquidez. O
AMM usa um sistema automático para calcular preços com base na oferta e demanda, sem
precisar de compradores e vendedores diretos. Já o modelo RFQ permite que compradores
peçam preços antes de fechar uma negociação, garantindo melhores ofertas. Exchanges
funcionam como casas de câmbio para moedas tradicionais e criptomoedas e geralmente
operam com o modelo de Order Book, permitindo negociações diretas entre compradores
e vendedores. Protocolos de finanças descentralizadas, como Uniswap, utilizam AMMs,
onde os preços são ajustados automaticamente com base na liquidez disponı́vel. Já plata-
formas institucionais e de grandes negociações adotam o modelo RFQ, garantindo melho-
res preços ao permitir que compradores solicitem cotações antes de fechar uma transação.
Esse estudo escolhe focar em serviços de modelo RFQ.

Serviços RFQ são complexos e contam com diversas camadas e estratégias para
melhor atender seus clientes, como múltiplos provedores e pares de moedas. Para o
propósito deste estudo, adotamos uma abordagem simplificada. Consideraremos apenas
um provedor, a corretora Bitstamp (vide Seção 4); trabalharemos com o par BTC/USD;
a vida útil das cotações oferecidas pelo serviço será de 5 segundos; e assumiremos um
acordo de nı́vel de serviço (Service Level Agreement, SLA), no qual cotações podem ser
canceladas, mas não em uma proporção superior a 1%, a fim de preservar a satisfação dos
usuários.

Destacamos três pontos sobre o modelo RFQ. Primeiro, as cotações podem ser
pensadas como ofertas de tempo limitado feitas pelo provedor do serviço ao usuário. Ou
seja, cada cotação representa uma oportunidade de compra ou venda de um par de moedas
por um preço fixo durante uma janela de tempo. Segundo, o serviço age como uma ponte
entre o usuário e o melhor provedor disponı́vel no momento da compra, dependendo da
operação em questão. A transação só é efetivamente realizada quando a cotação é aceita.
Terceiro, durante a janela de tempo da cotação, o preço oferecido permanece fixo, mesmo
que o preço de mercado varie. Denominamos o preço inicialmente oferecido como preço
esperado (Pesp) e o preço no momento em que a cotação foi aceita como preço executado
(Pexec).

3.2. Entendendo slippage

Agora, podemos definir slippage como a diferença entre o preço esperado Pesp e o preço
executado Pexec, isto é, slippage = Pesp − Pexec. O slippage pode ou não ser um problema



para a empresa que oferece serviços RFQ. Por exemplo, em uma cotação de compra, se o
slippage for positivo, o usuário terá comprado a um preço superior ao que o serviço pagou
para executá-la, gerando lucro para a empresa. Já se o slippage for negativo, o usuário
terá comprado a um preço inferior ao pago pela empresa, gerando prejuı́zo. Cenários
análogos se aplicam a cotações de venda. A Tabela 1 evidencia essas situações.

As soluções para mitigar o slippage que exploraremos são o uso de spread e o
cancelamento de cotações. Spread, ou margem, consiste em ajustar o Pesp para reduzir a
discrepância com o Pexec. Por exemplo, em uma cotação de compra, buscamos um valor
M ideal tal que Pesp +M ≥ Pexec. Um valor de M muito alto resultaria em um preço não
competitivo, enquanto um valor muito baixo manteria o prejuı́zo. Já o cancelamento de
cotações refere-se à possibilidade de o serviço cancelar uma cotação aceita pelo usuário.
No entanto, conforme discutido, essa prática não pode exceder 1% das cotações. Para
ilustrar melhor o funcionamento do modelo RFQ, a Figura 1 apresenta fluxos de com-
pra de 1 BTC/USD utilizando o serviço, considerando tanto o cancelamento de cotações
quanto o uso de spread.

Tabela 1. Avaliação dos possı́veis cenários de slippage

Positivo (Pesp ≥ Pexec) Negativo (Pesp < Pexec)

Compra Lucro Prejuı́zo
Vende Prejuı́zo Lucro

Usuário ProvedorServiço Usuário ProvedorServiço

(a) (b)

Figura 1. Fluxos do serviço RFQ, com duas soluções contra slippage: (a) can-
celamento de transações desfavoráveis e (b) margem (spread) para evitar
perdas.

4. Coletando e Processando Dados

4.1. Escolhendo o provedor

Como mencionado anteriormente, escolhemos a Bitstamp [Bitstamp 2025c] como nossa
provedora. A decisão foi baseada na qualidade da documentação e na facilidade de uso
da sua API [Bitstamp 2025b], que fornece acesso ao livro de ordens atualizado em tempo
real via WebSocket. Embora exchanges como Coinbase e Binance também disponibilizem
APIs robustas para consulta de dados de mercado, a API da Bitstamp se destacou pela
simplicidade de integração e pela clareza na estrutura das respostas, reduzindo a comple-
xidade da implementação. Além disso, a Bitstamp fornece um WebApp [Bitstamp 2025a]



que permite visualizar o comportamento do livro de ordens em tempo real, facilitando a
validação dos dados coletados.

4.2. Simulando o serviço
Simularemos o serviço seguindo as restrições definidas anteriormente. Ou seja, gerare-
mos cotações a cada 5 segundos para um usuário que deseja comprar 1 BTC por USD e
analisaremos qual seria o spread necessário para cobrir um possı́vel prejuı́zo, caso este
ocorra, conforme ilustrado na Tabela 1. Devido à alta volatilidade, que pode ser visuali-
zada no WebApp da Bitstamp, assumiremos que, a cada segundo, o slippage variará com
alta probabilidade. Assim, a cada segundo da amostra, calcularemos a diferença entre o
preço naquele segundo e o preço após 5 segundos. Com esse mecanismo, conseguimos
calcular o slippage para qualquer segundo dentro da amostra. Para ilustrar, a Figura 2
apresenta visualizações dos slippages calculados sobre uma amostra ao longo de 20 mi-
nutos.

(a) (b)

Figura 2. Visualização dos slippages de uma amostra de 20 minutos: (a) Ao
longo do tempo e (b) por meio da frequência.

A coleta de dados foi realizada em tempo real, conectando-se ao WebSocket da
Bitstamp e registrando o livro de ordens atualizado continuamente. As informações foram
armazenadas em arquivos JSON, organizados em diferentes tamanhos de amostra, abran-
gendo perı́odos que variam de alguns minutos a várias horas, permitindo uma análise mais
ampla da variação do mercado. Para processamento e visualização dos dados, foi utili-
zado um notebook Jupyter, que contém tanto a geração dos gráficos apresentados neste
estudo quanto as análises realizadas. Embora o notebook não esteja estruturado formal-
mente, ele serve como um rascunho interativo, permitindo a replicação e exploração dos
resultados obtidos. O código fonte pode ser encontrado em [Luan Martins 2025b].

5. Calculando a Margem Ideal
5.1. Definindo o intervalo ideal
Dado que conseguimos uma estratégia para calcular os slippages de forma consistente,
uma primeira abordagem ingênua é utilizar o valor médio desses slippages como mar-
gem e ignorar completamente a possibilidade de cancelamento de cotações. Para calcular
essa média, é necessário definir exatamente o intervalo de tempo sobre o qual ela será
computada. Assim como no intervalo de 1 segundo entre os cálculos de slippages nos da-
dos coletados, a escolha do intervalo ideal para o cálculo das margens é estatisticamente
desafiadora.



Dessa forma, estimamos um intervalo médio com base em observações empı́ricas.
A Figura 2 sugere que a distribuição dos slippages se aproxima de uma normal. Essa
hipótese é plausı́vel, dado que, apesar das oscilações de curto prazo, estudos indicam que
os retornos de ativos financeiros tendem a exibir comportamento aproximadamente es-
tacionário e simétrico no longo prazo (e.g., vide nota de rodapé 2 em [Cont 2001]). No
entanto, para avaliar rigorosamente essa hipótese, realizamos testes formais de normali-
dade sobre os dados, vide Subseção 5.2.

A segunda observação é que, quanto menor o intervalo, mais influenciado pelo
passado imediato o spread será, tornando-se mais volátil. Por outro lado, quanto maior o
intervalo, mais normalizada será a variação da moeda, fazendo com que o spread tenda
a zero. Essa relação pode ser visualizada nas Figuras 5 e 6, que apresentam distorções
significativas, dificultando a modelagem estatı́stica. Assim, um meio-termo adequado,
adotado a tı́tulo de simplificação, é um intervalo de duas horas. Ou seja, para cada ins-
tante t da amostra, utilizamos as duas horas anteriores para calcular o slippage médio,
e a margem será definida por esse valor. Em cenários positivos, há maior lucro para a
empresa; em cenários negativos, a margem cobre o prejuı́zo.

5.2. Analisando a distribuição dos slippages

Aplicamos os testes de Kolmogorov-Smirnov (KS-Test), Anderson-Darling e
D’Agostino-Pearson, e todos rejeitaram a hipótese nula de que os slippages seguem uma
distribuição normal, para todas as amostras coletadas. Apesar disso, ao analisarmos a
Figura 3, que exibe um histograma comparado a uma curva normal teórica e um QQ
Plot para uma amostra de duas horas, percebemos que o comportamento dos slippages
é razoavelmente próximo ao de uma distribuição normal, mesmo que não satisfaça estri-
tamente os critérios estatı́sticos de normalidade. Dado esse comportamento visualmente
semelhante e a tendência dos mercados financeiros a apresentarem padrões estatı́sticos
previsı́veis ao longo do tempo, assumiremos que podemos aplicar estatı́sticas da curva
normal sobre a distribuição dos slippages. Essa aproximação nos permite utilizar métricas
estatı́sticas familiares, como média e desvio padrão, para modelar a variação dos slippa-
ges e definir estratégias baseadas nesse comportamento.

Figura 3. Comparação de uma amostra de 2 horas de slippages com a curva
normal teórica



Por completude, apesar de seguirmos o estudo assumindo a distribuição normal,
realizamos uma investigação sobre qual distribuição estatı́stica melhor se ajusta aos slip-
pages. Para isso, testamos diversas distribuições, incluindo Normal, Log-Normal, Cau-
chy, T-Student, Laplace, Beta, Gumbel, Pareto e Exponencial Generalizada, utilizando o
KS-Test para avaliar a aderência de cada uma. Observamos que os resultados variam con-
forme o tamanho da amostra: amostras pequenas (de minutos) apresentaram melhor ajuste
a uma distribuição Cauchy, enquanto amostras maiores (de horas) mostraram um compor-
tamento mais próximo da distribuição T-Student. A Figura 4 ilustra os testes realizados
para uma amostra de duas horas, onde a T-Student se mostrou a melhor aproximação.

Esse comportamento pode ser explicado pelas caracterı́sticas dessas distribuições.
A distribuição Cauchy é conhecida por suas caudas longas, o que significa que ela aco-
moda melhor eventos extremos, como grandes variações repentinas de preço que ocorrem
em pequenas janelas de tempo. Já a distribuição T-Student, embora também possua cau-
das mais largas do que a normal, converge para uma distribuição normal conforme o
tamanho da amostra aumenta. Isso explica por que, ao analisarmos janelas de tempo mai-
ores, os slippages começam a se comportar mais como uma T-Student, sugerindo que a
volatilidade do mercado tende a suavizar ao longo do tempo.

5.3. Definindo a estratégia final

A abordagem completa considera o cancelamento de cotações. Para isso, precisamos
definir um valor que garanta que apenas 1% das cotações sejam canceladas. Como assu-
mimos que os slippages seguem uma distribuição normal, podemos calcular a média µ e
o desvio padrão σ para modelar sua distribuição estatı́stica. A distribuição normal é uma
das mais importantes na estatı́stica, pois modela uma ampla gama de fenômenos naturais,
incluindo variações de preços no mercado financeiro. Sua forma caracterı́stica é a de um
sino simétrico, onde a média µ define o centro da distribuição e o desvio padrão σ de-
termina sua dispersão. Em uma distribuição normal padronizada, aproximadamente 68%
dos valores estão dentro de 1σ da média, 95% dentro de 2σ e 99% dentro de 2.58σ. Isso
significa que, ao escolher z = 2.58, garantimos que apenas 1% dos eventos estão além
desse limite, tornando essa uma escolha adequada para definir um spread que minimize o
cancelamento de cotações.

Dessa forma, podemos determinar o valor ótimo do spread utilizando a fórmula:
Spread = µ + 2.58 · σ. Esse cálculo assegura que as cotações canceladas permanecerão
dentro do limite estipulado de 1%, reduzindo perdas associadas a ajustes excessivos de
preços. Finalmente, ao aplicar essa abordagem sobre as amostras coletadas, os resultados
foram satisfatórios. Por exemplo, a Figura 7 visualiza o impacto dessa estratégia em
termos de lucros e prejuı́zos para a empresa. Nesse cenário, com 1 BTC sendo comprado
a cada segundo, isso totalizaria um volume de centenas de milhões de dólares. Aplicando
a heurı́stica, a empresa manteria a taxa de rejeição em 0.75% e lucraria cerca de cem mil
dólares, utilizando um spread médio de 9.78 dólares.

Além das análises realizadas, desenvolvemos um webapp [Luan Martins 2025a]
que permite visualizar, em tempo real, o comportamento do slippage médio e simular
pedidos de cotação de compra e venda. O código fonte da aplicação pode ser encontrado
em [Luan Martins 2025c]. Os dados ao vivo da Bitstamp são consumidos para calcular
a média e o desvio padrão dos slippages, possibilitando a estimativa do spread que seria



Figura 4. Testes de aderência de diferentes distribuições com uma amostra de 2
horas de slippages

aplicado pela nossa solução conforme descrito anteriormente. A Seção 6 aprofunda sobre
a construção do WebApp.

Figura 5. Comparação de uma amostra de 20 minutos de slippages com a curva
normal teórica

6. Implementando o WebApp
Para complementar a análise estatı́stica apresentada neste estudo, desenvolvemos um We-
bApp que permite visualizar em tempo real o comportamento do slippage e simular pedi-
dos de cotação de compra e venda. A aplicação serve como uma ferramenta prática para
demonstrar os conceitos discutidos, permitindo que usuários interajam diretamente com
os dados da Bitstamp e observem o impacto da estratégia de mitigação de slippage. Além
de calcular a média e o desvio padrão dos slippages com base na janela de tempo em que
a aplicação permanece aberta, o WebApp também estima o spread aplicado de acordo
com a heurı́stica proposta, tornando o processo mais intuitivo e acessı́vel.



Figura 6. Comparação de uma amostra de 8 horas de slippages com a curva
normal teórica

O WebApp foi desenvolvido como uma aplicação simples baseada em HTML,
CSS e JavaScript, garantindo leveza e acessibilidade. O frontend é responsável por exibir
as informações em tempo real, utilizando JavaScript para consumir os dados da API da
Bitstamp e atualizar dinamicamente os valores de slippage e spread. Como não há neces-
sidade de um backend dedicado, a aplicação é hospedada no GitHub Pages, permitindo
fácil acesso sem configuração de servidores.

Figura 7. Lucros e prejuı́zos da empresa ao longo de 2 horas de uma amostra

Vamos descrever a estrutura do WebApp, visualizada na Figura 8. No topo, exibe-
se a data da última atualização do livro de ordens da Bitstamp, garantindo que os dados
estejam sempre sincronizados com o mercado. Abaixo, a interface é dividida em duas
colunas: à esquerda, informações relacionadas às ordens de compra de BTC, e à direita,
informações sobre as ordens de venda. Cada coluna começa com uma lista das 10 melho-
res ofertas do livro de ordens naquele momento. Em seguida, cada coluna exibe o preço
atual para comprar ou vender 1 BTC, calculado dinamicamente com base no livro de or-
dens. Vale notar que a compra é realizada a partir das ordens de venda, enquanto a venda
ocorre para as ordens de compra. Logo abaixo, são apresentados os preços médios para



compra e venda, considerando todas as cotações registradas enquanto a aplicação esteve
aberta. Além disso, os slippages são calculados com base nesses preços armazenados em
memória, permitindo acompanhar a variação do mercado em tempo real. Utilizando es-
ses valores, o spread aplicado segue a heurı́stica proposta, sendo calculado como a média
somada a 2.58 vezes o desvio padrão, conforme discutido anteriormente. Na sequência,
botões permitem simular cotações de compra e venda, aplicando o modelo desenvolvido.
Por fim, no rodapé de cada coluna, uma lista exibe o histórico de preços de compra e
venda do BTC armazenados em memória, registrando os valores a cada segundo desde a
abertura da aplicação.

Figura 8. Captura de tela do Webapp

Para visualizar uma simulação de cotação de compra realizada no WebApp, uti-
lizaremos um exemplo: Às 13:31:05, foi feito o pedido de cotação, exibindo o preço
esperado para a compra de 1 BTC naquele momento: 87004.54. Simultaneamente, foi
calculado o spread ideal para essa transação, resultando em um valor de 23.79. Cinco
segundos depois, às 13:31:10, o preço executado foi registrado em 87012.43, resultando



em um slippage de −7.89, ou seja, um prejuı́zo para o serviço caso não houvesse ajuste
de margem. No entanto, ao aplicar o spread calculado, o slippage ajustado passou a
ser 15.90, garantindo lucro na operação. Vale destacar que o valor da margem aplicada,
equivalente a apenas 0.027% do preço da transação, é insignificante do ponto de vista da
competitividade, mas suficiente para mitigar o risco de perdas e estabilizar os resultados
do serviço.

As Listings 1 e 2 ilustram trechos-chave do código do WebApp, responsáveis
pelo consumo dos dados da Bitstamp e pelo cálculo do spread. A Listing 1 mostra a
inicialização da conexão com a API WebSocket da Bitstamp, onde a aplicação assina o
canal order book btcusd para receber atualizações em tempo real do livro de or-
dens. Já a Listing 2 apresenta a lógica para calcular o spread com base nos slippages
registrados. Para isso, é definida uma janela de tempo de 5 segundos (TIME WINDOW),
sobre a qual os slippages são calculados e armazenados em um array. Com esses valores,
são computadas a média e o desvio padrão, e o spread final é determinado aplicando a
heurı́stica baseada na tabela z, com z = 2.58 para cobrir 99% dos casos. Esses trechos de
código ilustram a implementação prática da metodologia discutida ao longo do artigo, e
o código completo pode ser encontrado em [Luan Martins 2025c].

1 const bitstamp = new WebSocket("wss://ws.bitstamp.net/");
2
3 bitstamp.onopen = () => {
4 const data = {
5 event: "bts:subscribe",
6 data: {
7 channel: "order_book_btcusd",
8 },
9 };

10
11 bitstamp.send(JSON.stringify(data));
12 };

Listing 1. Inscrevendo no canal WebSocket da Bitstamp

1 const TIME_WINDOW = 5;
2 const slippages = [];
3 for (let i = 0; i < prices.length - TIME_WINDOW; i++) {
4 const slippage = prices[i] - prices[i + TIME_WINDOW];
5 slippages.push(slippage);
6 }
7
8 const slippageAverage = average(slippages);
9 const slippageVariance = variance(slippages);

10 const slippageSd = Math.sqrt(slippageVariance);
11 const z = 2.58;
12 const spread = slippageAverage + z * slippageSd;

Listing 2. Calculando as estatı́sticas e o spread



7. Conclusão

Por meio de uma extensa coleta e processamento de dados, além da aplicação de di-
versas heurı́sticas simples e razoáveis, conseguimos estabelecer uma prova de conceito
capaz de determinar, em tempo real, um spread razoável para uma cotação, respeitando
todas as restrições estabelecidas: A escolha do par BTC/USD, da corretora Bitstamp, da
janela de 5 segundos e, principalmente, das premissas baseadas em observações, como
a segmentação das amostras e a suposição de que os slippages seguem uma distribuição
normal. Apesar das simplificações, o estudo atingiu seu objetivo ao propor uma heurı́stica
simples e razoável, validada com dados reais.

Trabalhos futuros podem explorar três principais vertentes: Primeiro, utilizar al-
goritmos ou técnicas como aprendizado de máquina para determinar o intervalo de tempo
mais adequado para o cálculo do slippage médio. Segundo, muitos dos parâmetros fixa-
dos devem ser flexibilizados. Entre os aspectos a serem explorados estão: testar diferentes
pares de moedas, coletar dados de diferentes corretoras e avaliar o impacto de distintas ja-
nelas de tempo nas cotações. Terceiro, integrar a solução ao serviço, permitindo o cálculo
dinâmico do spread ideal em tempo real, e avaliar os resultados.
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Luan Martins (2025b). Repositório do notebook jupyter. https://muanlartins.
github.io/slippage-problem. [Online; accessed 26-March-2025].
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