
Análise de Viabilidade na Utilização de Algoritmos
Meta-heurı́sticos como Mineradores em Redes Blockchain

Luiz Felipe Fonseca Rosa, Luiz Antonio Rodrigues, André Luiz Brun

1Universidade Estadual do Oeste do Paraná - UNIOESTE
Cascavel – PR – Brasil

{luiz.rosa8, luiz.rodrigues, andre.brun}@unioeste.br

Abstract. Proof-of-Work (PoW) mining in blockchains consumes large amounts
of energy on intensive hash computations without generating practical value. As
an alternative, this study investigates the use of metaheuristics — Genetic Al-
gorithm, Simulated Annealing, and Particle Swarm Optimization (PSO) — in a
mining model that solves useful computational problems, such as the Traveling
Salesman Problem, where valid hashes represent solutions. Results indicate
that Simulated Annealing efficiently found good solutions. The Genetic Algo-
rithm was functional but incurred high computational costs, while PSO showed
inferior performance. Despite its potential, metaheuristic-based mining still fa-
ces challenges regarding its feasibility and practical application in blockchain
systems.

Resumo. A mineração baseada em Proof-of-Work (PoW) em blockchains con-
some grandes quantidades de energia em cálculos hash intensivos, sem ge-
rar valor prático. Como alternativa, esta pesquisa investiga o uso de meta-
heurı́sticas — Algoritmo Genético, Simulated Annealing e Particle Swarm Opti-
mization (PSO) — em um modelo de mineração que resolve problemas com-
putacionais úteis, como o do Caixeiro Viajante, utilizando soluções válidas
como hashes. Os resultados indicam que o Simulated Annealing encontrou
boas soluções de forma mais eficiente. O Algoritmo Genético foi funcional,
mas com alto custo computacional, enquanto o PSO apresentou desempenho
inferior. Apesar do potencial, a mineração via meta-heurı́sticas ainda enfrenta
desafios quanto à sua viabilidade e aplicação prática em blockchains.

1. Introdução
A tecnologia blockchain tem se consolidado como uma solução inovadora, segura e
confiável para a realização de transações entre participantes em um modelo peer-to-peer,
mesmo na ausência de confiança mútua entre os nós da rede [Belotti et al. 2019]. Trata-
se de uma estrutura de dados descentralizada, organizada como uma lista encadeada de
blocos, na qual cada bloco contém um conjunto de dados [Miah et al. 2019]. Esses da-
dos variam conforme a aplicação e podem incluir transações financeiras, certificados de
posse, registros de saúde, entre outros. As blockchains desempenham um papel crucial
em diversos setores, como finanças, artes, saúde, Internet das Coisas (IoT), computação
em nuvem, entre muitos outros [Greve et al. 2018].

Para garantir a confiabilidade das transações entre dois nós, as blockchains utili-
zam protocolos de validação de blocos. O mecanismo de consenso do Bitcoin, conhecido

como Prova de Trabalho (PoW - Proof-of-Work), baseia-se em um oráculo randômico
que seleciona um lı́der responsável por coordenar o consenso em cada rodada. Esse lı́der
é escolhido por meio de um desafio criptográfico altamente complexo, cuja resolução
exige grande poder computacional. O processo é denominado mineração, e os parti-
cipantes dispostos a competir para encontrar a solução são chamados de mineradores
[Antonopoulos 2014, Greve et al. 2018].

Embora o PoW proporcione elevados nı́veis de segurança à rede, seu custo
energético é significativo [Lashkari and Musilek 2021]. A crescente dificuldade dos de-
safios criptográficos torna inviável a resolução por um único nó, exigindo a atuação
coordenada de diversos mineradores para manter a rede operante em tempo hábil
[Asif and Hassan 2023].

Essa robustez, no entanto, tem um custo elevado: o desperdı́cio energético. Em
março de 2018, estimava-se que cerca de 28 quintilhões de hashes eram processados
por segundo na rede Bitcoin, resultando em apenas 2 a 3 blocos válidos por intervalo
de tempo — cerca de 200 mil transações por dia. Isso representa uma razão de apro-
ximadamente 8,7 quintilhões de hashes por transação, mesmo nos melhores cenários
[de Vries 2018]. No mesmo ano, o consumo energético da rede Bitcoin foi estimado
em 2,55 gigawatts — valor comparável ao consumo de paı́ses como a Irlanda, com 3,1
gigawatts [de Vries 2018]. A principal crı́tica ao PoW reside justamente no fato de que
esse esforço computacional não resulta em benefı́cio prático adicional, sendo utilizado
unicamente para encontrar um hash válido [Bizzaro et al. 2020, Shibata 2019].

Em contrapartida, outras blockchains, como Ethereum e Solana, adotam o pro-
tocolo Proof-of-Stake (PoS), ou Prova de Participação. Nesse modelo, a seleção do va-
lidador do bloco é baseada na quantidade de tokens que o participante possui, de modo
que quanto maior esse valor, maior a probabilidade de o nó ser escolhido como oráculo
[Asif and Hassan 2023]. O PoS substitui o gasto energético do PoW por um comprome-
timento financeiro, oferecendo como principal vantagem sua eficiência energética. Se-
gundo a Ethereum Foundation, o PoW consumia cerca de 5,13 gigawatts, enquanto o
PoS consome apenas 2,62 megawatts — uma redução de 99,9% no consumo de energia
[Asif and Hassan 2023].

Nesse contexto, surgem propostas emergentes que visam conciliar a segurança
do PoW com a eficiência energética do PoS, como a utilização de algoritmos meta-
heurı́sticos como mecanismo de mineração. Protocolos como Proof-of-Search e Proof-
of-Evolution propõem o uso de algoritmos de otimização para resolver problemas com-
putacionais úteis durante o processo de mineração [Shibata 2019, Bizzaro et al. 2020].
Embora ainda exijam alto poder computacional, essas abordagens transformam o esforço
em resultados com valor prático, mantendo altos nı́veis de segurança devido à complexi-
dade dos problemas e ao uso de criptografia [Asif and Hassan 2023].

Algoritmos meta-heurı́sticos são estratégias de otimização projetadas para encon-
trar soluções ótimas — ou próximas da ótima — em problemas complexos e com espaços
de busca vastos. Combinando elementos estocásticos e determinı́sticos, esses algorit-
mos exploram o espaço de soluções em busca de máximos ou mı́nimos globais, depen-
dendo do problema [Blum and Roli 2003]. Dentre os principais exemplos, destacam-se
o Algoritmo Genético (AG), Simulated Annealing (SA) e Particle Swarm Optimization

(PSO) [Gaspar-Cunha et al. 2012], que se inspiram em processos naturais como evolução
biológica, comportamento de enxames e fı́sica térmica — caracterı́sticas comuns à cha-
mada computação evolutiva [Kennedy and Eberhart 1995].

Diante desse cenário, o objetivo deste trabalho é investigar e avaliar a viabilidade
do uso de algoritmos meta-heurı́sticos — em especial AG, SA e PSO — como alternativas
viáveis ao modelo tradicional de mineração em redes blockchain. A proposta busca não
apenas mitigar o desperdı́cio de recursos computacionais, como também transformar esse
esforço em resultados úteis e aplicáveis.

Este artigo está organizado da seguinte forma: a Seção 2 apresenta os principais
trabalhos relacionados ao tema e discute suas abordagens. Na Seção 3, é detalhada a
proposta de solução desenvolvida neste trabalho. A Seção 4 discute os experimentos
realizados e os resultados obtidos por meio de simulações. Por fim, a Seção 5 apresenta
as conclusões e aponta direções para trabalhos futuros.

2. Trabalhos Relacionados
O Proof-of-Search [Shibata 2019] combina a formação de consenso em Blockchain com a
solução de Problemas de Otimização propondo um novo consenso, que permite que uma
blockchain seja usada para resolver problemas de busca e otimização. Qualquer usuário
pode submeter um trabalho para encontrar uma solução de um problema de otimização.
Segundo o autor, “Proof of work nada mais é do que um repetitivo cálculo de hashes,
o que acaba sendo um gasto de poder computacional e eletricidade, que poderiam ser
aplicados para resolver problemas úteis”.

Outros consensos tentam resolver ambos os problemas, como o proof-of-useful-
work [Ball et al. 2017], o Grindcore [Halford 2014] e o Primecoin [King 2013], man-
tendo a segurança da rede e transformando o gasto computacional em algo mais útil. O
primeiro, utiliza o poder computacional para resolver problemas de vetores ortogonais,
enquanto o Primecoin utiliza o gasto energético na busca por cadeias de números pri-
mos. Porém, não está claro o quanto de demanda existem para tais problemas. O Grind-
core resolve os problemas implementando uma prova de pesquisa (proof-of-research), re-
compensando mineradores que disponibilizem seus recursos para a pesquisa da Berkeley
Open Infrastructure for Network Computing (BOINC). A desvantagem é que a block-
chain está totalmente associada a uma entidade, o que pode impactar a continuidade da
rede [Shibata 2019].

A principal contribuição do proof-of-search (PoSe) é utilizar o poder computaci-
onal do proof-of-work de forma mais significativa do que o Primecoin e proof-of-useful-
work, não sendo dependente de nenhum terceiro como o Grindcore.

O proof-of-search permite que o poder computacional gasto no PoW seja usado
para encontrar soluções ótimas (ou próximas da ótima) para instâncias de problemas de
otimização. Neste protocolo, um usuário submete um problema de otimização juntamente
com um programada chamada de avaliador, sendo o nonce a concatenação entre a solução
candidata e seu valor resposta avaliado.

A Prova de Evolução (Proof of Evolution - PoE) [Bizzaro et al. 2020] também
deixa claro a importância do consenso de prova de trabalho, sobretudo no quesito de
segurança, afinal, uma quantia muito grande de poder computacional deve ser investida

para realizar a solução do puzzle. Apesar disso, outros modelos de consenso propostos não
possuem as mesmas caracterı́sticas do PoW, tais como a dificuldade inerente do problema,
a facilidade de verificação pública da solução, a homogeneidade na complexidade dos
desafios, a capacidade de ajuste dinâmico da dificuldade, a sensibilidade ao bloco e a
impossibilidade de reutilização, além da independência da distribuição dos cálculos.

O Proof of Evolution é baseado no Proof of Search, no qual a principal
contribuição do consenso é manter todas as propriedades-base do PoW enquanto usa
parte da energia e do poder computacional para resolver algoritmos genéticos, permi-
tindo cooperação entre os mineradores para melhorar a qualidade das soluções dos AGs.
A estrutura de ambos os protocolos é semelhante, sendo a do PoE definida da seguinte
forma: um nonce é uma tripla de valores (solução, fitness e complexidade). Todos os tra-
balhos realizados devem ser um AG com uma API (application program interface) fixa.
Mineradores podem submeter as soluções antes de finalizar a execução do job, permitindo
cooperação.

Diferente dos trabalhos apresentados nesta seção, a solução proposta explora
múltiplas meta-heurı́sticas (AGs, SA, PSO), ampliando o escopo de aplicação. Cada al-
goritmo tem perfis distintos (exploração vs. explotação), permitindo selecionar a técnica
mais adequada ao tipo de problema (por exemplo, SA para espaços de busca contı́nuos,
PSO para otimização colaborativa). Além disso, ao contrário do Grindcore e do PoSe
(que exige submissão de problemas por usuários), a solução proposta pode operar de
forma autônoma, sem depender de terceiros ou infraestrutura externa.

3. A Solução Proposta

Neste trabalho, são implementados três algoritmos meta-heurı́sticos: Algoritmo Genético
(AG), Simulated Annealing (SA) e Particle Swarm Optimization (PSO). Esses métodos
foram escolhidos por sua comprovada eficácia em buscas heurı́sticas por soluções ótimas
ou quase ótimas, especialmente em problemas de alta complexidade e com espaços de
busca extensos. A proposta é empregar tais algoritmos para resolver problemas compu-
tacionais relevantes e aplicáveis na indústria ou em cenários reais, utilizando para isso a
energia computacional do processo de mineração em redes blockchain.

No contexto desta pesquisa, o problema selecionado foi o clássico Problema do
Caixeiro Viajante (PCV), que consiste em encontrar o caminho de menor custo (ou me-
nor distância) para visitar um conjunto de cidades uma única vez e retornar ao ponto de
partida. Este problema é notoriamente difı́cil do ponto de vista computacional, sendo
amplamente utilizado como referência para avaliação de algoritmos de otimização.

A abordagem proposta consiste em minerar blocos utilizando, como nonce, in-
divı́duos gerados pelos algoritmos evolutivos. Cada indivı́duo representa uma possı́vel
solução para o problema em questão — no caso, uma rota candidata no PCV — sendo
validado conforme critérios definidos de dificuldade e estrutura do bloco. O processo
detalhado dessa aplicação encontra-se descrito no pseudocódigo apresentado no Algo-
ritmo 1.

Inicialmente, o algoritmo - AG, PSO ou SA - é inicializado. Esta etapa cria a
população inicial, um conjunto de indivı́duos candidatos a nonce, representados como
sequências de cidades do Problema do Caixeiro Viajante. Enquanto o algoritmo não

Algorithm 1 Mineração do Bloco usando Algoritmos Genéticos
1: procedure MINERARBLOCO()
2: INICIALIZAALGORITMOEVOLUTIVO()
3: while algoritmoNaoConvergiu do
4: if TESTARHASH(melhorIndividuo, i) < DificuldadeDaRede then
5: RETURN(individuo) ▷ Retorna o indivı́duo válido imediatamente
6: EVOLUIRALGORITMO()
7: i← 0
8: while true do
9: if TESTARHASH(melhorIndividuo, i) < DificuldadeDaRede then

10: nonce← melhorIndividuo + i ▷ Combina explicitamente
11: RETURN(nonce) ▷ Retorna o nonce válido
12: i← i+ 1

convergir, cada indivı́duo da população atual é testado como nonce para o bloco em
mineração. Isso envolve verificar que o hash gerado ao combinar o nonce com os da-
dos do bloco é menor que a dificuldade estabelecida pela rede. Se nenhum indivı́duo
for válido, o algoritmo continua a evoluir: novos indivı́duos são gerados, passando por
possı́veis mutações, e o teste se repete. Caso haja algum elemento que retorne um hash
válido para a rede, este elemento é então retornado e o algoritmo para, minerando assim
o bloco.

Quando o algoritmo evolutivo converge - atingindo um critério como número
máximo de iterações ou uma solução aceitável - sem ter um bloco minerado, inicia-se
uma busca por força bruta, similar ao processo de mineração do Bitcoin. Toma-se o me-
lhor indivı́duo encontrado, inicializa-se uma variável i com valor zero e incrementa-se
i iterativamente, concatenando cada valor ao melhor indivı́duo e testando o hash resul-
tante. O processo termina quando um hash válido, menor que a dificuldade da rede, é
encontrado.

O nonce no protocolo proposto se trata de uma tupla de valores: solução encon-
trada e qualidade da solução. Esses dois elementos são essenciais para verificar se o nó
realmente encontrou uma solução válida e o quão boa ela é, sendo simples de ser validada
e verificada por outros nós.

Em todas as implementações, as soluções válidas são submetidas ao processo de
verificação do hash que, no contexto deste trabalho, serão todos os indivı́duos de todas as
populações do AG, todas as soluções testadas pelo SA e todos os elementos componentes
do PSO.

A definição das dificuldades foi baseada em um conceito fundamental das redes
blockchain: o target. Esse valor representa o limite superior que um hash de bloco deve
atingir para ser considerado válido. O target é calculado utilizando a Equação 1.

target = 1≪ (256− Dificuldade) (1)

Essa relação indica que, à medida que a dificuldade aumenta, o target diminui,
reduzindo a quantidade de hashes válidos e, consequentemente, aumentando o esforço

computacional necessário para encontrar uma solução válida. Esse mecanismo é essencial
para o controle da taxa de geração de blocos em sistemas baseados em Proof-of-Work. Nos
testes a seguir,

4. Resultados
Foram definidas três dificuldades para a realização dos testes: a) fácil, definida como
sendo 12; b) intermediária, tendo o valor 15 e c) difı́cil, tendo o valor de 18. Além disso,
foram utilizados três arquivos de entrada contendo diferentes problemas de otimização,
resultando em nove cenários distintos. Cada um destes cenários foi testado utilizando tos
rês algoritmos, totalizando 27 execuções experimentais.

Os três arquivos de entrada utilizados no problema foram escolhidos por
possuı́rem tamanhos variados, permitindo a avaliação do desempenho dos algoritmos em
diferentes escalas do problema de otimização e estão disponı́veis no repositório TSPLIB95
1, um conjunto de instâncias clássicas para o Problema do Caixeiro Viajante. Os arquivos
selecionados foram: a) berlin52.csv, que representa 52 cidades; b) fnl4461.csv, com 4.461
cidades; e d) d15112.csv, com 15.112 cidades.

Os três algoritmos de otimização foram executados 11 vezes para cada conjunto
de dados, correspondente aos diferentes tamanhos de instâncias do problema (52, 4461
e 15.112 cidades) e para cada nı́vel de dificuldade (fácil, intermediária e difı́cil). Para
garantir a precisão das análises, foi considerada a média dos 10 últimos resultados de
cada execução, minimizando o impacto de eventuais flutuações nos valores obtidos nas
primeiras iterações. Esse procedimento visa fornecer uma avaliação mais confiável do
desempenho dos algoritmos em diferentes cenários.

Os resultados são apresentados comparando a frequência das soluções encontradas
pelo algoritmo genético ou por força-bruta, o tempo médio de execução, a quantidade
média de hashes testada e a distância média obtida.

4.1. Frequência de Soluções Encontradas
A primeira análise realizada refere-se ao cômputo do número de vezes que o hash foi ob-
tido pelo método de otimização (Proof of Search - PoSe) e quantas vezes foi determinado
pela busca por força bruta (Proof of Work - PoW).

A Tabela 1 apresenta a frequência com que as soluções foram encontradas através
do PoSe proposto e PoW para cada um dos cenários. Os valores identificados pelo PoSe
são aqueles cujo hash do bloco foi encontrado antes do algoritmo de otimização ter-
minar (ou convergir). Por outro lado, os registros marcados como PoW correspondem
àqueles em que o algoritmo convergiu antes de obter uma hash válido, iniciando, a partir
desse ponto, uma busca por força bruta. Cada célula apresenta a distribuição PoSe/PoW.
Observa-se que, para o cenário fácil, os três algoritmos de otimização encontram soluções
em sua totalidade, exceto no caso do Simulated Annealing para o problema de 52 cidades,
onde o número de soluções encontradas através do PoSe é ligeiramente inferior.

Já no cenário intermediário, o AG e o PSO têm um desempenho robusto, com
a maioria das soluções encontradas sendo obtidas antes da convergência do algoritmo,
exceto no caso de 52 cidades para o AG, onde houve uma divisão entre PoSe (5 casos) e

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

PoW (5 casos). O Simulated Annealing, por outro lado, apresentou um comportamento
mais instável, encontrando mais soluções através do PoW (9 de 10 execuções) em maior
número de cidades.

Para o cenário difı́cil, o PSO teve um desempenho superior aos demais, onde
encontrou a totalidade dos hashes dentro da execução do algoritmo de otimização para
todas as rotas. O Simulated Annealing teve um desempenho inferior em problemas de 52
(onde não pode encontrar nenhuma hash antes de convergir) e 4461 cidades (onde o PoW
foi necessário em 4 execuções), encontrando todos os hashes na rota de 15112 cidades. O
Algoritmo Genético apresentou um desempenho mais equilibrado em termos de soluções
encontradas. Para o problema de 52 cidades, ele foi capaz de encontrar o hash em apenas
uma execução. Para as outras duas instâncias do problema ele pôde alcançar um hash
válido em 90% das execuções para o 4461 cidades e nas dez execuções para o problema
composto de 15112 cidades.

Tabela 1. Frequência das soluções resolvidas por cenário (PoSe/PoW).

Entrada Dificuldade SA AG PSO
PoSe PoW PoSe PoW PoSe PoW

52 cidades
Fácil 7 3 10 0 10 0

Intermediária 1 9 5 5 10 0
Difı́cil 0 10 1 9 10 0

4.461 cidades
Fácil 10 0 10 0 10 0

Intermediária 10 0 10 0 10 0
Difı́cil 7 3 9 1 10 0

15.112 cidades
Fácil 10 0 10 0 10 0

Intermediária 10 0 10 0 10 0
Difı́cil 10 0 10 0 10 0

4.2. Tempo Médio de Execução

O segundo critério de análise foi o tempo gasto para a execução dos métodos de
otimização e a solução por força bruta. A Tabela 2 mostra o tempo médio (em segundos)
de execução para cada algoritmo de otimização em função da dificuldade do problema e
do tamanho do conjunto de cidades. Observa-se que, para o cenário fácil, o tempo médio
de execução é relativamente baixo, com o Simulated Annealing apresentando o melhor
desempenho em todos os tamanhos de problema. O PSO, por sua vez, apresentou resulta-
dos próximos ao SA. Já o Algoritmo Genético demandou mais tempo para ser executado
em comparações às outras técnicas.

No cenário intermediário, o Algoritmo Genético foi a estratégia mais demorada
para ser executada, independente do número de cidades presentes no problema. Ao utili-
zarmos 52 e 15.112 cidades, o método de SA foi o mais eficiente em termos de tempo. Já
no caso de 4.461 cidades, quem executou mais rapidamente foi o PSO (30,517 segundos),
frente ao SA, que levou 36,635 segundos em média para ser executado.

Para o cenário difı́cil, o Algoritmo Genético e o PSO apresentaram tempos de
execução substancialmente mais longos, principalmente em instâncias maiores, como no
caso de 15112 cidades, quando o AG demandou, em média, 30,950 minutos para ser

executado. Nesse contexto, o Simulated Annealing foi o algoritmo que mostrou maior
eficiência, com um tempo médio de execução consideravelmente mais baixo.

Tabela 2. Tempo médio de execução (em segundos).
Entrada Dificuldade SA AG PSO

52 cidades
Fácil 0,049 0,074 0,071

Intermediária 0,356 29,750 0,458
Difı́cil 5,880 44,304 11,494

4.461 cidades
Fácil 2,607 12,351 4,491

Intermediária 36,635 46,376 30,517
Difı́cil 160,647 613,533 508,101

15.112 cidades
Fácil 10,286 33,892 13,632

Intermediária 98,357 271,676 166,283
Difı́cil 750,705 1.856,988 1.363,116

4.3. Quantidade Média de Hashes Testados

O terceiro critério levantado refere-se à quantidade média de hashes testados por cada
abordagem até a obtenção de um hash válido. A Tabela 3 apresenta a quantidade média
de indivı́duos testados pelos algoritmos ao longo das dez execuções. Para o cenário fácil,
os três algoritmos testaram um número relativamente baixo de soluções possı́veis, com
o Algoritmo Genético tendo a maior média, seguido do PSO e do Simulated Annealing,
respectivamente.

No cenário intermediário, como esperado, o número de hashes testados aumentou
significativamente, com o Algoritmo Genético apresentando a maior média, particular-
mente no problema de 52 cidades, onde foram testados 800.436 possı́veis soluções. Este
comportamento é decorrente do fato de o AG testar diversas versas a mesma rota, fato que
ocorre quanto a população é muito homogênea. O PSO e o Simulated Annealing também
aumentaram o número de testes, mas em menor escala, com o PSO mantendo um número
de testes relativamente equilibrado.

Para o cenário difı́cil, todos os algoritmos apresentaram uma quantidade consi-
derável de soluções testadas, com o Algoritmo Genético novamente avaliando a maior
quantidade de hashes. O Simulated Annealing e o PSO, por outro lado, apresentaram
números mais baixos em comparação ao AG, mas ainda assim significativos, indicando
a necessidade de explorar um número maior de soluções em problemas mais difı́ceis.
Novamente o AG foi executado até atingir o critério de parada e entrar no processo de
PoW visto que a população mostrou-se muito homogênea e não foi capaz de obter maior
volume de hashes distintos.

4.4. Distância Média Obtida

A última métrica levantada refere-se à qualidade da solução do TSP obtida pelos modelos
de otimização. Neste cenário, quanto menor o valor encontrado, melhor o desempenho
do algoritmo.

A Tabela 4 mostra a distância média obtida pelos três algoritmos para o problema
do TSP. Como esperado, ao aumentarmos o número de cidades, o custo do trajeto formado

Tabela 3. Quantidade média de hashes testados.
Entrada Dificuldade SA AG PSO

52 cidades
Fácil 2.444 5.410 4.514

Intermediária 3.593 800.436 23.602
Difı́cil 3.855 1.364.673 273.451

4.461 cidades
Fácil 2.695 6.707 2.678

Intermediária 23.897 21.414 12.133
Difı́cil 127.088 378.517 288.183

15.112 cidades
Fácil 4.302 5.306 3.007

Intermediária 39.631 52.752 43.353
Difı́cil 255.902 399.141 332.472

também aumentou. No cenário fácil, o Simulated Annealing e o AG apresentaram com-
portamento similares, mas com o AG sendo superior. Já o PSO obteve soluções inferiores
para as três instâncias do problema.

No cenário intermediário, o Algoritmo Genético obteve a menor distância média
em comparação com o PSO e o Simulated Annealing, que apresentaram distâncias médias
ligeiramente mais altas. Para o cenário difı́cil, o desempenho foi mais equilibrado entre
os três algoritmos, com o PSO mostrando um desempenho ligeiramente superior ao Si-
mulated Annealing e ao Algoritmo Genético em termos de distâncias médias.

Já no cenário difı́cil, para 52 cidades o AG se mostrou muito superior aos outros
dois métodos, obtendo a menor distância. Para 4.461 cidades, o SA foi superior aos outros
dois, com o PSO obtendo as maiores distâncias. O mesmo ocorreu para 15.112 cidades,
onde o SA obteve o melhor resultado.

Tabela 4. Distância média obtida para o Problema do Caixeiro Viajante.
Entrada Dificuldade SA AG PSO

52 cidades
Fácil 1, 444× 104 2, 029× 104 3, 003× 104

Intermediária 1, 105× 104 1, 041× 104 3, 017× 104

Difı́cil 1, 084× 104 0, 944× 104 2, 950× 104

4.461 cidades
Fácil 8, 081× 106 7, 925× 106 8, 334× 106

Intermediária 6, 577× 106 7, 516× 106 8, 331× 106

Difı́cil 3, 747× 106 5, 248× 106 8, 315× 106

15.112 cidades
Fácil 1, 330× 108 1, 310× 108 1, 340× 108

Intermediária 1, 271× 108 1, 234× 108 1, 341× 108

Difı́cil 1, 000× 108 1, 053× 108 1, 341× 108

4.5. Comparação dos modelos com o método de força bruta

A Tabela 5 demonstra os valores médios de tempo (em milissegundos) e número de hashes
testados das 10 execuções para cada uma das dificuldades de execução do modelo de força
bruta. Observa-se que o tempo de execução é ordens de grandeza inferior ao dos modelos
que utilizam algoritmos meta-heurı́sticos no processo de mineração, sendo algo esperado,
afinal, o algoritmo de mineração por força bruta é especializado em achar os hashes e não

possui outros cálculos matemáticos envolvidos (tais como gerar indivı́duos, comparar
indivı́duos, gerar números aleatórios, mutações, seleções e etc.).

Outro resultado que podemos extrair da mesma tabela é que, independentemente
do modelo utilizado, o número de hashes calculados para as diferentes dificuldades foi
bastante similar ao do modelo de força bruta. Observou-se uma média de aproximada-
mente 3.000 hashes para a dificuldade fácil, 50.000 para a dificuldade média e 200.000
para a dificuldade difı́cil. Esses valores indicam uma consistência no volume de cálculos
necessários, mesmo com a variação do modelo aplicado.

No entanto, o Algoritmo Genético (AG) apresentou um comportamento distinto
em relação aos demais modelos, realizando significativamente mais cálculos de hash. Isso
ocorre porque o AG avalia, em cada execução, um conjunto fixo de 1.500.000 indivı́duos
antes de recorrer ao modelo de força bruta. Como o AG converge rapidamente para
uma solução ótima e opera com uma taxa de mutação de apenas 5%, sua capacidade de
explorar novas possibilidades de hash é limitada. Com isso, ele tende a permanecer em
um subconjunto reduzido de soluções, muitas vezes recalculando os mesmos hashes, o
que gera uma quantidade expressiva de operações repetidas e desnecessárias no processo
de mineração.

Apesar do PSO também testar 1.500.000 (1 milhão e 500 mil) elementos, o mo-
delo explora uma área muito mais abrangente do que o AG, facilitando assim para achar
um hash correto, tendo em vista que não repete tantos elementos quanto o AG. Assim,
o PSO consegue ficar mais próximo do PoW nesse cenário de cálculos de hashes. Esta
mesma propriedade foi a possı́vel causadora do PSO ter tido menos qualidade no fitness
das soluções.

Uma das possı́veis soluções para resolver esse problema do AG seria aumentar a
taxa de mutação, de forma a explorar mais o conjunto e testar mais hashes. Porém, isso
pode ter um efeito colateral e acabar diminuindo o fitness médio da solução.

Tabela 5. Quantidade média de hashes testados e tempo médio de execução
para a abordagem de força bruta.

Dificuldade Tempo de Execução (s) Número de hashes Testados
Fácil 0,0051 2.597

Intermediária 0,1098 73.947
Difı́cil 0,4068 261.303

4.6. Análise Estatı́stica dos Modelos Meta-Heurı́sticos
Os testes estatı́sticos foram conduzidos para avaliar o desempenho dos algoritmos Simu-
lated Annealing (SA), Particle Swarm Optimization (PSO) e Algoritmo Genético (AG)
em relação ao tempo de execução e ao número de hashes calculados.

Inicialmente, foi aplicada uma análise de normalidade aos dados utilizando o teste
de Shapiro-Wilk, cujos resultados indicaram que ambas as métricas não seguem uma
distribuição normal (p = 0.00000). Assim, a comparação entre os algoritmos foi realizada
por meio do teste de Kruskal-Wallis, com um nı́vel de significância de 5%, sendo esta uma
alternativa não paramétrica ao ANOVA. Os resultados indicam que não há diferenças
estatisticamente significativas entre os algoritmos para ambas as métricas analisadas (p =

0.06542 para tempo e p = 0.63196 para número de hashes). Isso sugere que nenhum dos
modelos meta-heurı́sticos apresentou uma vantagem estatı́stica relevante sobre os demais
no contexto avaliado.

Por outro lado, ao analisarmos a influência da dificuldade da instância no desem-
penho dos algoritmos por meio de uma regressão linear, observamos que a dificuldade
tem um impacto significativo tanto no tempo de execução (p = 7.02× 10−6, R2 = 0.151)
quanto no número de hashes calculados (p = 2.03× 10−8, R2 = 0.225). Em média, cada
aumento no nı́vel de dificuldade acrescenta aproximadamente 349 segundos ao tempo de
execução e 209.900 novos hashes calculados.

Esse alto crescimento no número de hashes está diretamente relacionado ao com-
portamento do AG, que testa um grande número de candidatos antes de convergir para
uma solução final. O AG, ao avaliar cerca de 1.500.000 elementos a cada execução, ex-
plorando um espaço de busca significativamente menor que seus concorrentes (por possuir
baixa taxa de mutação), resulta em um número muito superior de cálculos de hashes em
comparação aos demais algoritmos. Essa caracterı́stica pode explicar a influência despro-
porcional do AG sobre os resultados globais, especialmente nas instâncias mais difı́ceis.

Dessa forma, os resultados indicam que, enquanto a dificuldade tem um impacto
significativo nas métricas analisadas, a escolha do algoritmo, por si só, não apresenta uma
diferença estatisticamente relevante em termos de desempenho. No entanto, o comporta-
mento distinto do AG sugere que ajustes na parametrização, como um aumento na taxa de
mutação, poderiam otimizar a exploração do espaço de busca, reduzindo a redundância
de cálculos e melhorando sua eficiência no contexto da mineração.

4.7. Discussão dos Resultados
Os resultados obtidos evidenciam as diferenças significativas entre os algoritmos de
otimização empregados para a mineração de blocos e sua viabilidade prática. Uma das
principais observações foi o elevado tempo de execução quando comparado com métodos
de força bruta simples. Isso era esperado, tendo em vista que não serão apenas cálculos
de hashes e somas simples, mas sim vários outros passos computacionalmente custosos:
geração de indivı́duos, mutações, verificações, cálculos de fitness, etc., para centenas de
milhares de indivı́duos. Este elevado tempo resultante do alto poder computacional gasto
pode ser um dos fatores que impossibilitaria seu uso em redes reais, devido à falta de
incentivos aos mineradores e aos usuários.

Outro ponto relevante é o desempenho do algoritmo Particle Swarm Optimization
(PSO), que apresentou resultados insatisfatórios em termos de fitness. Enquanto outros al-
goritmos conseguiam encontrar soluções mais próximas do ideal, o PSO consistentemente
obteve valores menos otimizados, indicando uma possı́vel dificuldade na adaptação à na-
tureza do problema do caixeiro viajante. Isso pode estar relacionado à necessidade de
uma representação mais refinada das partı́culas ou a uma maior exigência de exploração
em espaços de busca de alta complexidade.

Esse baixo desempenho pode ser explicado também pelo fato de que, durante o
processo de mineração, um hash válido é frequentemente encontrado antes que o algo-
ritmo consiga convergir. Além disso, a performance inferior do PSO pode estar associada
a uma baixa variação ou taxa de mutação, o que faz com que o algoritmo caia repetida-
mente em máximos locais. Uma possı́vel solução para esse problema seria uma melhor

calibração de seus parâmetros, utilizando, por exemplo, técnicas como a otimização baye-
siana para ajustar dinamicamente os valores de configuração do algoritmo.

Por outro lado, notou-se que o SA obteve um bom custo-benefı́cio para a tarefa
proposta, em comparação com o PSO e com o AG, garantindo excelentes soluções para o
problema do TSP enquanto encontra o hash com menos cálculos e recálculos do que seus
concorrentes. Isso se deve principalmente a simplicidade da natureza do algoritmo e de
sua boa parametrização.

Além disso, a utilização de algoritmos de otimização para mineração se mostrou
pouco vantajosa em termos de custo computacional. O gasto energético e computacional
para rodar tais algoritmos é significativamente maior em comparação com os métodos tra-
dicionais de Proof-of-Work (PoW), tornando inviável a sua adoção para redes blockchain
convencionais. A otimização proposta, ainda que teoricamente interessante, introduz um
overhead computacional que desestimula sua adoção em cenários práticos.

Ademais, do ponto de vista da segurança, a abordagem ainda pode ter um impacto
positivo em sua utilização. O uso de técnicas de otimização complexas pode aumentar
a segurança da rede ou, pelo menos, mantê-la no mesmo nı́vel das abordagens tradicio-
nais, uma vez que a solução do problema de mineração continua exigindo um alto poder
computacional e um custo significativo para um ataque bem-sucedido. Contudo, uma
análise mais aprofundada sobre possı́veis vulnerabilidades e impactos a longo prazo seria
necessária para validar essa hipótese.

5. Conclusões
O presente trabalho apresentou uma abordagem para buscar reutilizar a mesma rede e o
mesmo poder computacional para resolver dois problemas concomitantes: a validação de
blocos e o desperdı́cio energético em blockchains. Para isso, tenta-se fazer convergir um
algoritmo evolutivo e, cada elemento deste algoritmo é testado como hash válido de um
bloco a ser minerado em uma rede blockchain. Caso o algoritmo convirja antes de ser
encontrado um hash válido, segue-se via força bruta. Caso o hash seja encontrado antes
de convergir, retorna-se o melhor elemento encontrado até aquele ponto.

Embora os algoritmos meta-heurı́sticos possam apresentar um consumo compu-
tacional elevado para a mineração de blocos, eles demonstram potencial na busca por
soluções eficientes em redes blockchain. O desafio reside em equilibrar segurança e de-
sempenho, tornando essas abordagens viáveis para aplicações práticas. Com isso, abre-se
caminho para novas pesquisas e aprimoramentos que possam viabilizar a adoção desses
algoritmos em cenários reais.

Os experimentos realizados demonstraram que o uso de algoritmos de otimização
na mineração de blocos apresenta desafios consideráveis, especialmente em termos de
viabilidade computacional. Embora algumas abordagens tenham mostrado capacidade de
encontrar soluções, o alto custo computacional associado as torna pouco atrativas para
uso prático.

Apesar dessas limitações, a pesquisa sugere que o uso de algoritmos meta-
heurı́sticos pode oferecer resultados relevantes para aprimorar mecanismos de mineração,
principalmente em questões relacionadas à segurança e eficiência do processo. No en-
tanto, melhorias são necessárias para que essas técnicas se tornem competitivas com abor-

dagens tradicionais.

Como trabalhos futuros, sugere-se a implementação de um protocolo mais com-
pleto e robusto, utilizando um ou vários algoritmos de otimização para realizar buscas
heurı́sticas. Isso possibilitaria um estudo aprofundado sobre a viabilidade de trans-
ferências de dados em redes distribuı́das, além de permitir a paralelização da busca
heurı́stica em diferentes máquinas, como em um ambiente de computação em nuvem,
visando reduzir a sobrecarga de execução.

Este protocolo pode incluir uma API (Application Programming Interface) de de-
senvolvimento que permita ao desenvolvedor do algoritmo de mineração submeter o pro-
blema à rede utilizando funções pré-definidas compatı́veis com a blockchain. Por exem-
plo, o desenvolvedor pode fornecer os dados, uma função de verificação, uma função
de mutação e uma função para gerar novos indivı́duos, todas adaptadas ao problema es-
pecı́fico em questão, independentemente de sua natureza. Isso facilitaria a implementação
de problemas e soluções genéricas, indo muito além dos três algoritmos vistos neste tra-
balho e sendo capaz de resolver qualquer tipo de problema, não apenas o TSP.

Referências

Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
O’Reilly Media, Inc., 1st edition.

Asif, R. and Hassan, S. (2023). Shaping the future of ethereum: exploring energy con-
sumption in proof-of-work and proof-of-stake consensus. Frontiers in Blockchain, 6.

Ball, M., Rosen, A., Sabin, M., and Vasudevan, P. N. (2017). Proofs of useful work. IACR
Cryptology ePrint Archive, 2017:203. Accessed: Jun. 29, 2017.

Belotti, M., Božić, N., Pujolle, G., and Secci, S. (2019). A vademecum on blockchain
technologies: When, which, and how. IEEE Communications Surveys & Tutorials,
21(4):3796–3838.

Bizzaro, F., Conti, M., and Pini, M. S. (2020). Proof of evolution: leveraging blockchain
mining for a cooperative execution of genetic algorithms. In 2020 IEEE International
Conference on Blockchain (Blockchain), pages 450–455.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308.

de Vries, A. (2018). Bitcoin’s growing energy problem. 2:801–805.

Gaspar-Cunha, A., Takahashi, R., and Antunes, C. (2012). Manual de computação evo-
lutiva e metaheurı́stica. Ensino. Imprensa da Universidade de Coimbra / Coimbra
University Press.

Greve, F., Sampaio, L., Abijaude, J., Coutinho, A. A., Brito, I., and Queiroz, S. (2018).
Blockchain e a Revolução do Consenso sob Demanda, page v. 30.

Halford, R. (2014). Gridcoin: Crypto-currency using berkeley open infrastructure
network computing grid as a proof of work. Online.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks, pages 1942–1948.

King, S. (2013). Primecoin: Cryptocurrency with prime number proof-of-work. Online.

Lashkari, B. and Musilek, P. (2021). A comprehensive review of blockchain consensus
mechanisms. IEEE Access, 9:43620–43652.

Miah, M. S. U., Rahman, M., Hossain, M. S., and Rupai, A. (2019). Introduction to
Blockchain.

Shibata, N. (2019). Proof-of-search: Combining blockchain consensus formation with
solving optimization problems. IEEE Access, 7:172994–173006.

