Analise de Viabilidade na Utilizacao de Algoritmos
Meta-heuristicos como Mineradores em Redes Blockchain

Luiz Felipe Fonseca Rosa, Luiz Antonio Rodrigues, André Luiz Brun

'Universidade Estadual do Oeste do Parana - UNIOESTE
Cascavel — PR — Brasil

{luiz.rosa8, luiz.rodrigues, andre.brun}@unioeste.br

Abstract. Proof-of-Work (PoW) mining in blockchains consumes large amounts
of energy on intensive hash computations without generating practical value. As
an alternative, this study investigates the use of metaheuristics — Genetic Al-
gorithm, Simulated Annealing, and Particle Swarm Optimization (PSO) — in a
mining model that solves useful computational problems, such as the Traveling
Salesman Problem, where valid hashes represent solutions. Results indicate
that Simulated Annealing efficiently found good solutions. The Genetic Algo-
rithm was functional but incurred high computational costs, while PSO showed
inferior performance. Despite its potential, metaheuristic-based mining still fa-
ces challenges regarding its feasibility and practical application in blockchain
systems.

Resumo. A mineracdo baseada em Proof-of-Work (PoW) em blockchains con-
some grandes quantidades de energia em cdlculos hash intensivos, sem ge-
rar valor prdtico. Como alternativa, esta pesquisa investiga o uso de meta-
heuristicas — Algoritmo Genético, Simulated Annealing e Particle Swarm Opti-
mization (PSO) — em um modelo de mineracdo que resolve problemas com-
putacionais titeis, como o do Caixeiro Viajante, utilizando solugédes vdlidas
como hashes. Os resultados indicam que o Simulated Annealing encontrou
boas solucoes de forma mais eficiente. O Algoritmo Genético foi funcional,
mas com alto custo computacional, enquanto o PSO apresentou desempenho
inferior. Apesar do potencial, a minera¢do via meta-heuristicas ainda enfrenta
desafios quanto a sua viabilidade e aplicacdo prdtica em blockchains.

1. Introducao

A tecnologia blockchain tem se consolidado como uma solucdo inovadora, segura e
confidvel para a realizac@o de transacoes entre participantes em um modelo peer-to-peer,
mesmo na auséncia de confian¢a mutua entre os nés da rede [Belotti et al. 2019]. Trata-
se de uma estrutura de dados descentralizada, organizada como uma lista encadeada de
blocos, na qual cada bloco contém um conjunto de dados [Miah et al. 2019]. Esses da-
dos variam conforme a aplica¢do e podem incluir transagdes financeiras, certificados de
posse, registros de saude, entre outros. As blockchains desempenham um papel crucial
em diversos setores, como financgas, artes, saude, Internet das Coisas (IoT), computacao
em nuvem, entre muitos outros [Greve et al. 2018].

Para garantir a confiabilidade das transacOes entre dois noés, as blockchains utili-
zam protocolos de validag¢ao de blocos. O mecanismo de consenso do Bitcoin, conhecido



como Prova de Trabalho (PoW - Proof-of-Work), baseia-se em um oraculo randdomico
que seleciona um lider responsdvel por coordenar o consenso em cada rodada. Esse lider
€ escolhido por meio de um desafio criptografico altamente complexo, cuja resolugdo
exige grande poder computacional. O processo € denominado mineracdo, € 0s parti-
cipantes dispostos a competir para encontrar a solucdo sdo chamados de mineradores
[Antonopoulos 2014, Greve et al. 2018].

Embora o PoW proporcione elevados niveis de seguranga a rede, seu custo
energético € significativo [Lashkari and Musilek 2021]. A crescente dificuldade dos de-
safios criptograficos torna invidvel a resolu¢do por um tunico nd, exigindo a atuacdo
coordenada de diversos mineradores para manter a rede operante em tempo habil
[Asif and Hassan 2023].

Essa robustez, no entanto, tem um custo elevado: o desperdicio energético. Em
marco de 2018, estimava-se que cerca de 28 quintilhdes de hashes eram processados
por segundo na rede Bitcoin, resultando em apenas 2 a 3 blocos vélidos por intervalo
de tempo — cerca de 200 mil transagdes por dia. Isso representa uma razdo de apro-
ximadamente 8,7 quintilhoes de hashes por transa¢do, mesmo nos melhores cendrios
[de Vries 2018]. No mesmo ano, o consumo energético da rede Bitcoin foi estimado
em 2,55 gigawatts — valor compardvel ao consumo de paises como a Irlanda, com 3,1
gigawatts [de Vries 2018]. A principal critica ao PoW reside justamente no fato de que
esse esfor¢co computacional nio resulta em beneficio prético adicional, sendo utilizado
unicamente para encontrar um hash vélido [Bizzaro et al. 2020, Shibata 2019].

Em contrapartida, outras blockchains, como Ethereum e Solana, adotam o pro-
tocolo Proof-of-Stake (PoS), ou Prova de Participacdo. Nesse modelo, a selecdo do va-
lidador do bloco € baseada na quantidade de tokens que o participante possui, de modo
que quanto maior esse valor, maior a probabilidade de o n6 ser escolhido como ordculo
[Asif and Hassan 2023]. O PoS substitui o gasto energético do PoW por um comprome-
timento financeiro, oferecendo como principal vantagem sua eficiéncia energética. Se-
gundo a Ethereum Foundation, o POW consumia cerca de 5,13 gigawatts, enquanto o
PoS consome apenas 2,62 megawatts — uma reduc¢ao de 99,9% no consumo de energia
[Asif and Hassan 2023].

Nesse contexto, surgem propostas emergentes que visam conciliar a seguranca
do PoW com a eficiéncia energética do PoS, como a utilizacdo de algoritmos meta-
heuristicos como mecanismo de mineragdo. Protocolos como Proof-of-Search e Proof-
of-Evolution propdem o uso de algoritmos de otimizagdo para resolver problemas com-
putacionais tuteis durante o processo de mineracdo [Shibata 2019, Bizzaro et al. 2020].
Embora ainda exijam alto poder computacional, essas abordagens transformam o esfor¢o
em resultados com valor pratico, mantendo altos niveis de seguranca devido a complexi-
dade dos problemas e ao uso de criptografia [Asif and Hassan 2023].

Algoritmos meta-heuristicos sdo estratégias de otimizacao projetadas para encon-
trar solugdes 6timas — ou proximas da 6tima — em problemas complexos e com espagos
de busca vastos. Combinando elementos estocdsticos e deterministicos, esses algorit-
mos exploram o espaco de solu¢des em busca de maximos ou minimos globais, depen-
dendo do problema [Blum and Roli 2003]. Dentre os principais exemplos, destacam-se
o Algoritmo Genético (AG), Simulated Annealing (SA) e Particle Swarm Optimization



(PSO) [Gaspar-Cunha et al. 2012], que se inspiram em processos naturais como evolucdo
bioldgica, comportamento de enxames e fisica térmica — caracteristicas comuns a cha-
mada computacao evolutiva [Kennedy and Eberhart 1995].

Diante desse cendrio, o objetivo deste trabalho € investigar e avaliar a viabilidade
do uso de algoritmos meta-heuristicos — em especial AG, SA e PSO — como alternativas
vidveis ao modelo tradicional de mineracdo em redes blockchain. A proposta busca ndo
apenas mitigar o desperdicio de recursos computacionais, como também transformar esse
esfor¢o em resultados uteis e aplicaveis.

Este artigo estd organizado da seguinte forma: a Secdo 2 apresenta os principais
trabalhos relacionados ao tema e discute suas abordagens. Na Secdo 3, é detalhada a
proposta de solugcdo desenvolvida neste trabalho. A Secdo 4 discute os experimentos
realizados e os resultados obtidos por meio de simulacdes. Por fim, a Secdo 5 apresenta
as conclusdes e aponta direcdes para trabalhos futuros.

2. Trabalhos Relacionados

O Proof-of-Search [Shibata 2019] combina a formacao de consenso em Blockchain com a
solucdo de Problemas de Otimizagdo propondo um novo consenso, que permite que uma
blockchain seja usada para resolver problemas de busca e otimiza¢do. Qualquer usudrio
pode submeter um trabalho para encontrar uma solu¢do de um problema de otimizagao.
Segundo o autor, “Proof of work nada mais € do que um repetitivo célculo de hashes,
0 que acaba sendo um gasto de poder computacional e eletricidade, que poderiam ser
aplicados para resolver problemas uteis”.

Outros consensos tentam resolver ambos os problemas, como o proof-of-useful-
work [Ball et al. 2017], o Grindcore [Halford 2014] e o Primecoin [King 2013], man-
tendo a seguranca da rede e transformando o gasto computacional em algo mais util. O
primeiro, utiliza o poder computacional para resolver problemas de vetores ortogonais,
enquanto o Primecoin utiliza o gasto energético na busca por cadeias de numeros pri-
mos. Porém, ndo estd claro o quanto de demanda existem para tais problemas. O Grind-
core resolve os problemas implementando uma prova de pesquisa (proof-of-research), re-
compensando mineradores que disponibilizem seus recursos para a pesquisa da Berkeley
Open Infrastructure for Network Computing (BOINC). A desvantagem € que a block-
chain esta totalmente associada a uma entidade, o que pode impactar a continuidade da
rede [Shibata 2019].

A principal contribui¢do do proof-of-search (PoSe) € utilizar o poder computaci-
onal do proof-of-work de forma mais significativa do que o Primecoin e proof-of-useful-
work, nao sendo dependente de nenhum terceiro como o Grindcore.

O proof-of-search permite que o poder computacional gasto no PoW seja usado
para encontrar solucdes 6timas (ou proximas da 6tima) para instancias de problemas de
otimizacao. Neste protocolo, um usudrio submete um problema de otimizacao juntamente
com um programada chamada de avaliador, sendo o nonce a concatenagdo entre a solucao
candidata e seu valor resposta avaliado.

A Prova de Evolugdo (Proof of Evolution - PoE) [Bizzaro et al. 2020] também
deixa claro a importancia do consenso de prova de trabalho, sobretudo no quesito de
segurancga, afinal, uma quantia muito grande de poder computacional deve ser investida



pararealizar a solucao do puzzle. Apesar disso, outros modelos de consenso propostos nao
possuem as mesmas caracteristicas do PoW, tais como a dificuldade inerente do problema,
a facilidade de verificacio publica da solu¢do, a homogeneidade na complexidade dos
desafios, a capacidade de ajuste dinamico da dificuldade, a sensibilidade ao bloco e a
impossibilidade de reutilizacdo, além da independéncia da distribui¢do dos cdlculos.

O Proof of Evolution € baseado no Proof of Search, no qual a principal
contribui¢cdo do consenso é manter todas as propriedades-base do PoW enquanto usa
parte da energia e do poder computacional para resolver algoritmos genéticos, permi-
tindo cooperacdo entre os mineradores para melhorar a qualidade das solu¢des dos AGs.
A estrutura de ambos os protocolos é semelhante, sendo a do PoE definida da seguinte
forma: um nonce € uma tripla de valores (solucdo, fitness e complexidade). Todos os tra-
balhos realizados devem ser um AG com uma API (application program interface) fixa.
Mineradores podem submeter as solucdes antes de finalizar a execugao do job, permitindo
cooperacgdo.

Diferente dos trabalhos apresentados nesta secdo, a solucdo proposta explora
multiplas meta-heuristicas (AGs, SA, PSO), ampliando o escopo de aplicagdo. Cada al-
goritmo tem perfis distintos (exploragdo vs. explotacdo), permitindo selecionar a técnica
mais adequada ao tipo de problema (por exemplo, SA para espagos de busca continuos,
PSO para otimizagdo colaborativa). Além disso, ao contrdrio do Grindcore e do PoSe
(que exige submissdo de problemas por usudrios), a solu¢do proposta pode operar de
forma autdbnoma, sem depender de terceiros ou infraestrutura externa.

3. A Solucao Proposta

Neste trabalho, sao implementados trés algoritmos meta-heuristicos: Algoritmo Genético
(AG), Simulated Annealing (SA) e Particle Swarm Optimization (PSO). Esses métodos
foram escolhidos por sua comprovada eficicia em buscas heuristicas por solu¢des Gtimas
ou quase Otimas, especialmente em problemas de alta complexidade e com espagos de
busca extensos. A proposta é empregar tais algoritmos para resolver problemas compu-
tacionais relevantes e aplicdveis na inddstria ou em cendrios reais, utilizando para isso a
energia computacional do processo de mineragdo em redes blockchain.

No contexto desta pesquisa, o problema selecionado foi o cldssico Problema do
Caixeiro Viajante (PCV), que consiste em encontrar o caminho de menor custo (ou me-
nor distancia) para visitar um conjunto de cidades uma Unica vez e retornar ao ponto de
partida. Este problema € notoriamente dificil do ponto de vista computacional, sendo
amplamente utilizado como referéncia para avaliacdo de algoritmos de otimizacao.

A abordagem proposta consiste em minerar blocos utilizando, como nonce, in-
dividuos gerados pelos algoritmos evolutivos. Cada individuo representa uma possivel
solugcdo para o problema em questdo — no caso, uma rota candidata no PCV — sendo
validado conforme critérios definidos de dificuldade e estrutura do bloco. O processo
detalhado dessa aplicagdo encontra-se descrito no pseudocodigo apresentado no Algo-
ritmo 1.

Inicialmente, o algoritmo - AG, PSO ou SA - € inicializado. Esta etapa cria a
populacdo inicial, um conjunto de individuos candidatos a nonce, representados como
sequéncias de cidades do Problema do Caixeiro Viajante. Enquanto o algoritmo nao



Algorithm 1 Mineragdo do Bloco usando Algoritmos Genéticos
1: procedure MINERARBLOCO( )

2 INICIALIZAALGORITMOEVOLUTIVO( )

3 while algoritmoNaoConvergiu do

4 if TESTARHASH(melhorIndividuo, i) < DificuldadeDaRede then

5: RETURN(individuo) > Retorna o individuo valido imediatamente
6 EVOLUIRALGORITMO( )

7 140

8 while true do

9 if TESTARHASH(melhorIndividuo, i) < DificuldadeDaRede then
10: nonce <— melhorIndividuo + 1 > Combina explicitamente
11: RETURN(nonce) > Retorna o nonce valido
12: 1+ 1+1

convergir, cada individuo da populacido atual € testado como nonce para o bloco em
mineragdo. Isso envolve verificar que o hash gerado ao combinar o nonce com os da-
dos do bloco é menor que a dificuldade estabelecida pela rede. Se nenhum individuo
for vélido, o algoritmo continua a evoluir: novos individuos sdo gerados, passando por
possiveis mutacoes, € o teste se repete. Caso haja algum elemento que retorne um hash
valido para a rede, este elemento € entdo retornado e o algoritmo para, minerando assim
o bloco.

Quando o algoritmo evolutivo converge - atingindo um critério como nimero
maximo de iteracOoes ou uma solucdo aceitdvel - sem ter um bloco minerado, inicia-se
uma busca por forc¢a bruta, similar ao processo de minera¢ao do Bitcoin. Toma-se 0 me-
lhor individuo encontrado, inicializa-se uma variavel 7 com valor zero e incrementa-se
1 iterativamente, concatenando cada valor ao melhor individuo e testando o hash resul-
tante. O processo termina quando um hash valido, menor que a dificuldade da rede, é
encontrado.

O nonce no protocolo proposto se trata de uma tupla de valores: solu¢do encon-
trada e qualidade da solug¢do. Esses dois elementos sdo essenciais para verificar se 0 n6
realmente encontrou uma solu¢do vélida e o quao boa ela €, sendo simples de ser validada
e verificada por outros nos.

Em todas as implementacdes, as solu¢des vélidas sao submetidas ao processo de
verificacdo do hash que, no contexto deste trabalho, serdo todos os individuos de todas as
populagdes do AG, todas as solugdes testadas pelo SA e todos os elementos componentes
do PSO.

A definicdo das dificuldades foi baseada em um conceito fundamental das redes
blockchain: o target. Esse valor representa o limite superior que um hash de bloco deve
atingir para ser considerado valido. O farget € calculado utilizando a Equagao 1.

target = 1 < (256 — Dificuldade) (1)

Essa relacdo indica que, a medida que a dificuldade aumenta, o farget diminui,
reduzindo a quantidade de hashes vdlidos e, consequentemente, aumentando o esfor¢co



computacional necessdrio para encontrar uma solucao védlida. Esse mecanismo € essencial
para o controle da taxa de geracao de blocos em sistemas baseados em Proof-of-Work. Nos
testes a seguir,

4. Resultados

Foram definidas trés dificuldades para a realizacdo dos testes: a) facil, definida como
sendo 12; b) intermedidria, tendo o valor 15 e ¢) dificil, tendo o valor de 18. Além disso,
foram utilizados trés arquivos de entrada contendo diferentes problemas de otimizagao,
resultando em nove cendrios distintos. Cada um destes cendrios foi testado utilizando tos
rés algoritmos, totalizando 27 execucdes experimentais.

Os trés arquivos de entrada utilizados no problema foram escolhidos por
possuirem tamanhos variados, permitindo a avaliacao do desempenho dos algoritmos em
diferentes escalas do problema de otimizagao e estao disponiveis no repositorio 7SPLIB95
!, um conjunto de instancias cldssicas para o Problema do Caixeiro Viajante. Os arquivos
selecionados foram: a) berlin52.csv, que representa 52 cidades; b) fnl4461.csv, com 4.461
cidades; e d) d15112.csv, com 15.112 cidades.

Os trés algoritmos de otimizagdo foram executados 11 vezes para cada conjunto
de dados, correspondente aos diferentes tamanhos de instancias do problema (52, 4461
e 15.112 cidades) e para cada nivel de dificuldade (facil, intermediéria e dificil). Para
garantir a precisao das andlises, foi considerada a média dos 10 ultimos resultados de
cada execuc¢do, minimizando o impacto de eventuais flutuagdes nos valores obtidos nas
primeiras iteracdes. Esse procedimento visa fornecer uma avaliagdo mais confidvel do
desempenho dos algoritmos em diferentes cendrios.

Os resultados sao apresentados comparando a frequéncia das solucdes encontradas
pelo algoritmo genético ou por for¢a-bruta, o tempo médio de execucdo, a quantidade
média de hashes testada e a distancia média obtida.

4.1. Frequéncia de Solucoes Encontradas

A primeira andlise realizada refere-se ao computo do niimero de vezes que o hash foi ob-
tido pelo método de otimizagao (Proof of Search - PoSe) e quantas vezes foi determinado
pela busca por forga bruta (Proof of Work - POW).

A Tabela 1 apresenta a frequéncia com que as solu¢des foram encontradas através
do PoSe proposto e POW para cada um dos cendrios. Os valores identificados pelo PoSe
sdo aqueles cujo hash do bloco foi encontrado antes do algoritmo de otimizagdo ter-
minar (ou convergir). Por outro lado, os registros marcados como PoW correspondem
aqueles em que o algoritmo convergiu antes de obter uma hash valido, iniciando, a partir
desse ponto, uma busca por for¢a bruta. Cada célula apresenta a distribuicao PoSe/PoW.
Observa-se que, para o cendrio facil, os trés algoritmos de otimizacdo encontram solucdes
em sua totalidade, exceto no caso do Simulated Annealing para o problema de 52 cidades,
onde o numero de solu¢des encontradas através do PoSe € ligeiramente inferior.

Ja no cendrio intermediario, o AG e o PSO tém um desempenho robusto, com
a maioria das solugdes encontradas sendo obtidas antes da convergéncia do algoritmo,
exceto no caso de 52 cidades para o AG, onde houve uma divisao entre PoSe (5 casos) e

'"http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/



PoW (5 casos). O Simulated Annealing, por outro lado, apresentou um comportamento
mais instavel, encontrando mais solugdes através do PoW (9 de 10 execugdes) em maior
numero de cidades.

Para o cendrio dificil, o PSO teve um desempenho superior aos demais, onde
encontrou a totalidade dos hashes dentro da execucao do algoritmo de otimizagdo para
todas as rotas. O Simulated Annealing teve um desempenho inferior em problemas de 52
(onde nao pode encontrar nenhuma hash antes de convergir) e 4461 cidades (onde o PoW
foi necessario em 4 execugoes), encontrando todos os hashes na rota de 15112 cidades. O
Algoritmo Genético apresentou um desempenho mais equilibrado em termos de solugdes
encontradas. Para o problema de 52 cidades, ele foi capaz de encontrar o hash em apenas
uma execu¢do. Para as outras duas instancias do problema ele pdde alcancar um hash
valido em 90% das execugdes para o 4461 cidades e nas dez execugdes para o problema
composto de 15112 cidades.

Tabela 1. Frequéncia das solucoes resolvidas por cenario (PoSe/PoW).

. SA AG PSO

Entrada Dificuldade PoSe PoW | PoSe PoW | PoSe PoW
Facil 7 3 10 0 10 0
52 cidades Intermediaria 1 9 5 5 10 0
Dificil 0 10 1 9 10 0
Facil 10 0 10 0 10 0
4.461 cidades | Intermediaria | 10 0 10 0 10 0
Dificil 7 3 9 1 10 0
Facil 10 0 10 0 10 0
15.112 cidades | Intermediaria | 10 0 10 0 10 0
Dificil 10 0 10 0 10 0

4.2. Tempo Médio de Execucao

O segundo critério de andlise foi o tempo gasto para a execucdo dos métodos de
otimizacao e a solucao por for¢a bruta. A Tabela 2 mostra o tempo médio (em segundos)
de execucdo para cada algoritmo de otimiza¢do em func¢do da dificuldade do problema e
do tamanho do conjunto de cidades. Observa-se que, para o cendrio facil, o tempo médio
de execucdo ¢é relativamente baixo, com o Simulated Annealing apresentando o melhor
desempenho em todos os tamanhos de problema. O PSO, por sua vez, apresentou resulta-
dos proximos ao SA. Ja o Algoritmo Genético demandou mais tempo para ser executado
em comparagdes as outras técnicas.

No cenério intermedidrio, o Algoritmo Genético foi a estratégia mais demorada
para ser executada, independente do nimero de cidades presentes no problema. Ao utili-
zarmos 52 e 15.112 cidades, o método de SA foi o mais eficiente em termos de tempo. Ja
no caso de 4.461 cidades, quem executou mais rapidamente foi o PSO (30,517 segundos),
frente ao SA, que levou 36,635 segundos em média para ser executado.

Para o cendrio dificil, o Algoritmo Genético e o PSO apresentaram tempos de
execucao substancialmente mais longos, principalmente em instancias maiores, como no
caso de 15112 cidades, quando o AG demandou, em média, 30,950 minutos para ser



executado. Nesse contexto, o Simulated Annealing foi o algoritmo que mostrou maior
eficiéncia, com um tempo médio de execugdo consideravelmente mais baixo.

Tabela 2. Tempo médio de execugao (em segundos).

Entrada Dificuldade SA AG PSO
Facil 0,049 0,074 0,071
52 cidades Intermedidria 0,356 29,750 0,458
Dificil 5,880 44,304 11,494
Facil 2,607 12,351 4,491

4.461 cidades | Intermediaria | 36,635 46,376 30,517
Dificil 160,647 613,533 508,101
Facil 10,286 33,892 13,632
15.112 cidades | Intermediaria | 98,357 271,676 166,283
Dificil 750,705 | 1.856,988 | 1.363,116

4.3. Quantidade Média de Hashes Testados

O terceiro critério levantado refere-se a quantidade média de hashes testados por cada
abordagem até a obtencdo de um hash valido. A Tabela 3 apresenta a quantidade média
de individuos testados pelos algoritmos ao longo das dez execucdes. Para o cendrio fécil,
os trés algoritmos testaram um numero relativamente baixo de solugdes possiveis, com
o Algoritmo Genético tendo a maior média, seguido do PSO e do Simulated Annealing,
respectivamente.

No cenério intermedidrio, como esperado, o nimero de hashes testados aumentou
significativamente, com o Algoritmo Genético apresentando a maior média, particular-
mente no problema de 52 cidades, onde foram testados 800.436 possiveis solucdes. Este
comportamento € decorrente do fato de o AG testar diversas versas a mesma rota, fato que
ocorre quanto a populacdo € muito homogénea. O PSO e o Simulated Annealing também
aumentaram o nimero de testes, mas em menor escala, com o PSO mantendo um nimero
de testes relativamente equilibrado.

Para o cenério dificil, todos os algoritmos apresentaram uma quantidade consi-
derdvel de solugdes testadas, com o Algoritmo Genético novamente avaliando a maior
quantidade de hashes. O Simulated Annealing e o PSO, por outro lado, apresentaram
numeros mais baixos em compara¢do ao AG, mas ainda assim significativos, indicando
a necessidade de explorar um nimero maior de solucdes em problemas mais dificeis.
Novamente o AG foi executado até atingir o critério de parada e entrar no processo de
PoW visto que a populagdo mostrou-se muito homogénea e nao foi capaz de obter maior
volume de hashes distintos.

4.4. Distancia Média Obtida

A ultima métrica levantada refere-se a qualidade da solu¢ao do TSP obtida pelos modelos
de otimizacdo. Neste cendrio, quanto menor o valor encontrado, melhor o desempenho
do algoritmo.

A Tabela 4 mostra a distancia média obtida pelos trés algoritmos para o problema
do TSP. Como esperado, ao aumentarmos o numero de cidades, o custo do trajeto formado



Tabela 3. Quantidade média de hashes testados.

Entrada Dificuldade SA AG PSO

Facil 2.444 5.410 4.514

52 cidades Intermediaria 3.593 800.436 | 23.602
Dificil 3.855 | 1.364.673 | 273.451

Facil 2.695 6.707 2.678

4.461 cidades | Intermediaria | 23.897 21.414 | 12.133
Dificil 127.088 378.517 | 288.183

Facil 4.302 5.306 3.007

15.112 cidades | Intermediaria | 39.631 52.752 | 43.353
Dificil 255.902 399.141 | 332.472

também aumentou. No cendrio fécil, o Simulated Annealing e o AG apresentaram com-
portamento similares, mas com o AG sendo superior. Ja o PSO obteve solugdes inferiores
para as trés instancias do problema.

No cendrio intermediario, o Algoritmo Genético obteve a menor distancia média
em comparacdo com o PSO e o Simulated Annealing, que apresentaram distancias médias
ligeiramente mais altas. Para o cenario dificil, o desempenho foi mais equilibrado entre
os trés algoritmos, com o PSO mostrando um desempenho ligeiramente superior ao Si-
mulated Annealing e ao Algoritmo Genético em termos de distancias médias.

J& no cendrio dificil, para 52 cidades o AG se mostrou muito superior aos outros
dois métodos, obtendo a menor distancia. Para 4.461 cidades, o SA foi superior aos outros
dois, com o PSO obtendo as maiores distancias. O mesmo ocorreu para 15.112 cidades,
onde o SA obteve o melhor resultado.

Tabela 4. Distancia média obtida para o Problema do Caixeiro Viajante.

Entrada Dificuldade SA AG PSO

Facil 1,444 x 10* | 2,029 x 10* | 3,003 x 10*

52 cidades Intermedidria | 1,105 x 10* | 1,041 x 10* | 3,017 x 10*
Dificil 1,084 x 10* | 0,944 x 10* | 2,950 x 10*

Facil 8,081 x 10° | 7,925 x 10° | 8,334 x 10°

4.461 cidades | Intermedidria | 6,577 x 10% | 7,516 x 10° | 8,331 x 10°
Dificil 3,747 x 108 | 5,248 x 10¢ | 8,315 x 10°

Facil 1,330 x 10% | 1,310 x 10% | 1,340 x 108

15.112 cidades | Intermedidria | 1,271 x 108 | 1,234 x 108 | 1,341 x 10®
Dificil 1,000 x 10% | 1,053 x 10® | 1,341 x 108

4.5. Comparacao dos modelos com o método de forca bruta

A Tabela 5 demonstra os valores médios de tempo (em milissegundos) e nimero de hashes
testados das 10 execugdes para cada uma das dificuldades de execug¢dao do modelo de forca
bruta. Observa-se que o tempo de execucao € ordens de grandeza inferior ao dos modelos
que utilizam algoritmos meta-heuristicos no processo de mineragado, sendo algo esperado,
afinal, o algoritmo de mineragdo por for¢a bruta é especializado em achar os hashes e ndao



possui outros célculos mateméticos envolvidos (tais como gerar individuos, comparar
individuos, gerar numeros aleatdrios, mutagdes, selecoes e etc.).

Outro resultado que podemos extrair da mesma tabela € que, independentemente
do modelo utilizado, o ndmero de hashes calculados para as diferentes dificuldades foi
bastante similar ao do modelo de forca bruta. Observou-se uma média de aproximada-
mente 3.000 hashes para a dificuldade facil, 50.000 para a dificuldade média e 200.000
para a dificuldade dificil. Esses valores indicam uma consisténcia no volume de célculos
necessarios, mesmo com a varia¢cao do modelo aplicado.

No entanto, o Algoritmo Genético (AG) apresentou um comportamento distinto
em relacdo aos demais modelos, realizando significativamente mais célculos de hash. Isso
ocorre porque o AG avalia, em cada execugdo, um conjunto fixo de 1.500.000 individuos
antes de recorrer ao modelo de forca bruta. Como o AG converge rapidamente para
uma solucdo 6tima e opera com uma taxa de mutacio de apenas 5%, sua capacidade de
explorar novas possibilidades de hash € limitada. Com isso, ele tende a permanecer em
um subconjunto reduzido de solugdes, muitas vezes recalculando os mesmos hashes, o
que gera uma quantidade expressiva de operagdes repetidas e desnecessdrias no processo
de mineracao.

Apesar do PSO também testar 1.500.000 (1 milhdo e 500 mil) elementos, 0 mo-
delo explora uma area muito mais abrangente do que o AG, facilitando assim para achar
um hash correto, tendo em vista que ndo repete tantos elementos quanto o AG. Assim,
o PSO consegue ficar mais proximo do PoW nesse cendrio de cdlculos de hashes. Esta
mesma propriedade foi a possivel causadora do PSO ter tido menos qualidade no fitness
das solugdes.

Uma das possiveis solu¢des para resolver esse problema do AG seria aumentar a
taxa de mutacdo, de forma a explorar mais o conjunto e testar mais hashes. Porém, isso
pode ter um efeito colateral e acabar diminuindo o fitness médio da solucao.

Tabela 5. Quantidade média de hashes testados e tempo médio de execucao
para a abordagem de forca bruta.

Dificuldade | Tempo de Execugdo (s) | Numero de hashes Testados
Fécil 0,0051 2.597
Intermediaria 0,1098 73.947
Dificil 0,4068 261.303

4.6. Analise Estatistica dos Modelos Meta-Heuristicos

Os testes estatisticos foram conduzidos para avaliar o desempenho dos algoritmos Simu-
lated Annealing (SA), Particle Swarm Optimization (PSO) e Algoritmo Genético (AG)
em relagdo ao tempo de execucao e ao nimero de hashes calculados.

Inicialmente, foi aplicada uma andlise de normalidade aos dados utilizando o teste
de Shapiro-Wilk, cujos resultados indicaram que ambas as métricas ndo seguem uma
distribui¢do normal (p = 0.00000). Assim, a comparacdo entre os algoritmos foi realizada
por meio do teste de Kruskal-Wallis, com um nivel de significancia de 5%, sendo esta uma
alternativa ndo paramétrica ao ANOVA. Os resultados indicam que ndo ha diferencas
estatisticamente significativas entre os algoritmos para ambas as métricas analisadas (p =



0.06542 para tempo e p = 0.63196 para nimero de hashes). Isso sugere que nenhum dos
modelos meta-heuristicos apresentou uma vantagem estatistica relevante sobre os demais
no contexto avaliado.

Por outro lado, ao analisarmos a influéncia da dificuldade da instincia no desem-
penho dos algoritmos por meio de uma regressao linear, observamos que a dificuldade
tem um impacto significativo tanto no tempo de execucdo (p = 7.02 x 107, R? = 0.151)
quanto no nimero de hashes calculados (p = 2.03 x 1078, R? = 0.225). Em média, cada
aumento no nivel de dificuldade acrescenta aproximadamente 349 segundos ao tempo de
execucao e 209.900 novos hashes calculados.

Esse alto crescimento no numero de hashes estd diretamente relacionado ao com-
portamento do AG, que testa um grande numero de candidatos antes de convergir para
uma solugdo final. O AG, ao avaliar cerca de 1.500.000 elementos a cada execug¢do, ex-
plorando um espaco de busca significativamente menor que seus concorrentes (por possuir
baixa taxa de mutagdo), resulta em um nimero muito superior de célculos de hashes em
comparacao aos demais algoritmos. Essa caracteristica pode explicar a influéncia despro-
porcional do AG sobre os resultados globais, especialmente nas instancias mais dificeis.

Dessa forma, os resultados indicam que, enquanto a dificuldade tem um impacto
significativo nas métricas analisadas, a escolha do algoritmo, por si s, ndo apresenta uma
diferenca estatisticamente relevante em termos de desempenho. No entanto, o comporta-
mento distinto do AG sugere que ajustes na parametriza¢do, como um aumento na taxa de
mutagdo, poderiam otimizar a exploragao do espago de busca, reduzindo a redundancia
de célculos e melhorando sua eficiéncia no contexto da mineracao.

4.7. Discussao dos Resultados

Os resultados obtidos evidenciam as diferencas significativas entre os algoritmos de
otimizacdo empregados para a mineracdo de blocos e sua viabilidade pritica. Uma das
principais observacoes foi o elevado tempo de execuc¢ido quando comparado com métodos
de forca bruta simples. Isso era esperado, tendo em vista que nao serdao apenas cdlculos
de hashes e somas simples, mas sim varios outros passos computacionalmente custosos:
geracdo de individuos, mutagdes, verificagdes, cdlculos de fitness, etc., para centenas de
milhares de individuos. Este elevado tempo resultante do alto poder computacional gasto
pode ser um dos fatores que impossibilitaria seu uso em redes reais, devido a falta de
incentivos aos mineradores € aos usudrios.

Outro ponto relevante € o desempenho do algoritmo Particle Swarm Optimization
(PSO), que apresentou resultados insatisfatorios em termos de firness. Enquanto outros al-
goritmos conseguiam encontrar solucdes mais proximas do ideal, o PSO consistentemente
obteve valores menos otimizados, indicando uma possivel dificuldade na adaptagdo a na-
tureza do problema do caixeiro viajante. Isso pode estar relacionado a necessidade de
uma representacao mais refinada das particulas ou a uma maior exigéncia de exploragao
em espacos de busca de alta complexidade.

Esse baixo desempenho pode ser explicado também pelo fato de que, durante o
processo de mineracdo, um hash valido € frequentemente encontrado antes que o algo-
ritmo consiga convergir. Além disso, a performance inferior do PSO pode estar associada
a uma baixa variacdo ou taxa de mutagdo, o que faz com que o algoritmo caia repetida-
mente em maximos locais. Uma possivel solucdo para esse problema seria uma melhor



calibracdo de seus parametros, utilizando, por exemplo, técnicas como a otimizacao baye-
siana para ajustar dinamicamente os valores de configuracio do algoritmo.

Por outro lado, notou-se que o SA obteve um bom custo-beneficio para a tarefa
proposta, em comparacao com o PSO e com o AG, garantindo excelentes solucdes para o
problema do TSP enquanto encontra o hash com menos cédlculos e recdlculos do que seus
concorrentes. Isso se deve principalmente a simplicidade da natureza do algoritmo e de
sua boa parametrizacao.

Além disso, a utilizagao de algoritmos de otimizac@o para mineracao se mostrou
pouco vantajosa em termos de custo computacional. O gasto energético e computacional
para rodar tais algoritmos € significativamente maior em comparagdao com os métodos tra-
dicionais de Proof-of-Work (PoW), tornando invidvel a sua ado¢ao para redes blockchain
convencionais. A otimizacdo proposta, ainda que teoricamente interessante, introduz um
overhead computacional que desestimula sua ado¢do em cendrios praticos.

Ademais, do ponto de vista da seguranca, a abordagem ainda pode ter um impacto
positivo em sua utilizagdo. O uso de técnicas de otimiza¢do complexas pode aumentar
a seguranca da rede ou, pelo menos, manté-la no mesmo nivel das abordagens tradicio-
nais, uma vez que a solu¢ao do problema de minerac@o continua exigindo um alto poder
computacional e um custo significativo para um ataque bem-sucedido. Contudo, uma
andlise mais aprofundada sobre possiveis vulnerabilidades e impactos a longo prazo seria
necessdria para validar essa hipotese.

5. Conclusoes

O presente trabalho apresentou uma abordagem para buscar reutilizar a mesma rede e o
mesmo poder computacional para resolver dois problemas concomitantes: a validacdo de
blocos e o desperdicio energético em blockchains. Para isso, tenta-se fazer convergir um
algoritmo evolutivo e, cada elemento deste algoritmo € testado como hash valido de um
bloco a ser minerado em uma rede blockchain. Caso o algoritmo convirja antes de ser
encontrado um hash valido, segue-se via for¢a bruta. Caso o hash seja encontrado antes
de convergir, retorna-se o melhor elemento encontrado até aquele ponto.

Embora os algoritmos meta-heuristicos possam apresentar um consumo compu-
tacional elevado para a mineracdo de blocos, eles demonstram potencial na busca por
solugdes eficientes em redes blockchain. O desafio reside em equilibrar seguranca e de-
sempenho, tornando essas abordagens vidveis para aplica¢des praticas. Com isso, abre-se
caminho para novas pesquisas e aprimoramentos que possam viabilizar a ado¢@o desses
algoritmos em cendrios reais.

Os experimentos realizados demonstraram que o uso de algoritmos de otimizagao
na mineracdo de blocos apresenta desafios consideraveis, especialmente em termos de
viabilidade computacional. Embora algumas abordagens tenham mostrado capacidade de
encontrar solugdes, o alto custo computacional associado as torna pouco atrativas para
uso pratico.

Apesar dessas limitagdes, a pesquisa sugere que o uso de algoritmos meta-
heuristicos pode oferecer resultados relevantes para aprimorar mecanismos de mineragao,
principalmente em questdes relacionadas a seguranca e eficiéncia do processo. No en-
tanto, melhorias sao necessarias para que essas técnicas se tornem competitivas com abor-



dagens tradicionais.

Como trabalhos futuros, sugere-se a implementa¢do de um protocolo mais com-
pleto e robusto, utilizando um ou vérios algoritmos de otimizacdo para realizar buscas
heuristicas. Isso possibilitaria um estudo aprofundado sobre a viabilidade de trans-
feréncias de dados em redes distribuidas, além de permitir a paralelizacdo da busca
heuristica em diferentes mdquinas, como em um ambiente de computacdo em nuvem,
visando reduzir a sobrecarga de execugao.

Este protocolo pode incluir uma API (Application Programming Interface) de de-
senvolvimento que permita ao desenvolvedor do algoritmo de mineragdao submeter o pro-
blema a rede utilizando fung¢des pré-definidas compativeis com a blockchain. Por exem-
plo, o desenvolvedor pode fornecer os dados, uma funcdo de verificacdo, uma fungio
de mutacdo e uma fungdo para gerar novos individuos, todas adaptadas ao problema es-
pecifico em questao, independentemente de sua natureza. Isso facilitaria a implementacao
de problemas e solucdes genéricas, indo muito além dos trés algoritmos vistos neste tra-
balho e sendo capaz de resolver qualquer tipo de problema, ndo apenas o TSP.

Referéncias

Antonopoulos, A. M. (2014). Mastering Bitcoin: Unlocking Digital Crypto-Currencies.
O’Reilly Media, Inc., 1st edition.

Asif, R. and Hassan, S. (2023). Shaping the future of ethereum: exploring energy con-
sumption in proof-of-work and proof-of-stake consensus. Frontiers in Blockchain, 6.

Ball, M., Rosen, A., Sabin, M., and Vasudevan, P. N. (2017). Proofs of useful work. JACR
Cryptology ePrint Archive, 2017:203. Accessed: Jun. 29, 2017.

Belotti, M., Bozié, N., Pujolle, G., and Secci, S. (2019). A vademecum on blockchain
technologies: When, which, and how. [EEE Communications Surveys & Tutorials,
21(4):3796-3838.

Bizzaro, F., Conti, M., and Pini, M. S. (2020). Proof of evolution: leveraging blockchain
mining for a cooperative execution of genetic algorithms. In 2020 IEEFE International
Conference on Blockchain (Blockchain), pages 450—455.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268-308.

de Vries, A. (2018). Bitcoin’s growing energy problem. 2:801-805.

Gaspar-Cunha, A., Takahashi, R., and Antunes, C. (2012). Manual de computacdo evo-
lutiva e metaheuristica. Ensino. Imprensa da Universidade de Coimbra / Coimbra
University Press.

Greve, F., Sampaio, L., Abijaude, J., Coutinho, A. A., Brito, 1., and Queiroz, S. (2018).
Blockchain e a Revolugdo do Consenso sob Demanda, page v. 30.

Halford, R. (2014). Gridcoin: Crypto-currency using berkeley open infrastructure
network computing grid as a proof of work. Online.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks, pages 1942—1948.



King, S. (2013). Primecoin: Cryptocurrency with prime number proof-of-work. Online.

Lashkari, B. and Musilek, P. (2021). A comprehensive review of blockchain consensus
mechanisms. IEEE Access, 9:43620-43652.

Miah, M. S. U., Rahman, M., Hossain, M. S., and Rupai, A. (2019). Introduction to
Blockchain.

Shibata, N. (2019). Proof-of-search: Combining blockchain consensus formation with
solving optimization problems. IEEE Access, 7:172994-173006.



