The Importance of Attributes in Predicting the Lifetime of
Human and Automated Pull Requests

Leandro Ferrarezi Valiante', Mairieli Wessel?, Manoel Limeira de Lima Junior!

!Graduate Program in Computer Science — Universidade Federal do Acre (UFAC)
Rio Branco, AC, Brazil

2Radboud University - Nijmegen, The Netherlands

leoferrarezi@gmail.com, mairieli.wessel@ru.nl, juniorlimeiras@gmail.com

Abstract. Pull request(PR)-based workflows improves collaboration in software
development; however, the influx of PRs in certain repositories is challeng-
ing. Bots, like Dependabot, automate PR creation but can cause communica-
tion noise, indicating the need for smarter tools. We investigated 197,736 PRs
from 90 open-source projects using regression algorithms to predict PR life-
times. Results showed that in 21 repositories, Dependabot PRs were reviewed
faster, whereas in 47 repositories, human PRs were quicker. The RMSE differ-
ence was notable, with 18,338 minutes for human PRs and 5,585 minutes for
Dependabot PRs. Key attributes for prediction were similar across scenarios,
although the number of commits was very important only for Dependabot PRs.

1. Introduction

GitHub is one of the leading software repository hosting sites that facilitates the workflow
of developers across multiple software repositories, and allows the Pull Request (PR)
contribution method [Chacon and Straub 2014], through which a contributor can submit
a PR to be reviewed by the project main developers. In large Open-Source Software
(OSS) repositories, the influx of PRs is a major challenge. Ruby on Rails repository gets
over 300 PRs monthly [Yu et al. 2015]. Thus, core team developers need automated tools
to manage tasks efficiently and without distractions [Mirhosseini and Parnin 2017].

Efforts to automate tedious and repetitive tasks have emerged [Wessel et al. 2018].
Development bots have been introduced into OSS repositories for tasks like dependency
updates, fixes, or optimizations. There are about 1,295 bots involved in automated PRs
on GitHub [Wyrich et al. 2021]. A manual analysis of 351 projects found that 26.5%
utilized at least one bot [Wessel et al. 2018]. Bots can answer frequently asked questions,
guide contributors to sign agreements, notify about failed continuous integration tests,
and assign reviewers. These initiatives attempt to enhance developers’ productivity by
saving time and allowing them to focus on improving software quality.

Dependabot is a tool designed to automatically propose updates to external
library dependencies, aiming to address vulnerabilities and maintain project stabil-
ity [Alfadel et al. 2021]. Dependabot monitors the GitHub Advisory Database, and upon
identifying a vulnerability, it submits a PR to update the library version and resolve the
issue. Despite the advantages of using Dependabot and automating PRs, recent research
highlights several challenges in managing PRs generated by bots over time, including the
necessity of multiple PR reversions, continuous integration issues, the annoyance caused

by excessive notifications and noise, and other project-related issues that can hinder de-
veloper productivity [Mirhosseini and Parnin 2017]. A recent study has also found low
acceptance rates and delayed reviews for bot-generated PRs [Wyrich et al. 2021].

In this context, enhancing automation tools to estimate the lifetime of a PR could
be beneficial. This capability could help conserve resources, prevent repository overload
from excessive activity in a short period, and promote more efficient management of PRs.
Towards this aim, we investigates the following three research questions:

RQ1. What is the lifetime difference in PRs created by humans vs. Dependabot?

RQ2. Is there any difference in PR lifetime prediction between human and Dependabot
PRs?

RQ3. What are the most important attributes in the PR lifetime prediction in human and
Dependabot scenarios?

In this study, we evaluated prediction models for the lifetime of automated PRs
generated by Dependabot and also PRs created by humans across 90 software reposito-
ries spanning from 2011 to 2021. The SMOReg algorithm using the RBF kernel emerged
as the best prediction model for PR lifetime in both scenarios. In the scenario with De-
pendabot PRs, the improvement over the baseline was approximately 68%, and in the
human PRs scenario, this improvement was approximately 40%. Additionally, it was
identified that the “workload” and the “number of participants” have greater importance
for both scenarios in PRs lifetime prediction. However, the “number of commits” seems
very important only in Dependabot scenario (36 victories), while the “requester” is the
top 3 attribute in the human scenario, with 48 victories.

2. Methodology

The choice of Dependabot was motivated by the following factors: (i) given that the
study aims to predict the lifetime of automated PRs, it was crucial to analyze data from
PRs created by bots; (i1) since May 2019, Dependabot has been integrated with GitHub,
the platform used to collect data for this study. This integration underscores Dependabot’s
widespread adoption across repositories; and (iii) the two Dependabot users registered on
GitHub (dependabot[bot] and dependabot-preview[bot]) collectively generate more PRs
than all other bots combined [Wyrich et al. 2021]. This dominance further emphasizes
Dependabot’s significance in the scenario of automated PRs.

To explore repositories proficient in the PR paradigm and Dependabot usage,
a query was conducted using the GHTorrent database [Gousios and Zaidman 2014a].
Specifically, data from a dump released in 2021 via Twitter (now “X”) that contained
repositories hosted on GitHub up to March 6, 2021. The query criteria focused on repos-
itories meeting the following conditions: (i) having a minimum of 500 PRs created either
by Dependabot or by humans; (ii) at least 10% of all PRs in the repository were generated
by Dependabot; and (ii1) the repository had a minimum of 20 contributors.

In total, 101 repositories were selected for data collection. The individual PR data
extraction was made by using the ‘“Pullreq Analysis” tool [Gousios and Zaidman 2014b]
and the GitHub API. A total of 227,242 PRs were collected, out of which 43,202
were generated by Dependabot. The dataset used in this study is available on Zen-
odo [Ferrarezi 2023].

The final set of 55 attributes collected was then categorized into three high-level
groups: 38 attributes characterizing the PR, 9 attributes of the Project, and 8 at-
tributes of the Developer. The complete description of each attribute is available on our
replication package [Ferrarezi 2023]. The PR1 attribute (lifetime_minutes) serves as the
prediction target. This attribute indicates the lifetime of a PR in minutes, representing the
time interval between its submission and the decision to integrate or reject it.

In the data mining process, outlier detection is crucial because using outlier in-
stances during the training phase can lead to inaccurate results from predictive mod-
els [Ramirez-Gallego et al. 2017]. In this study, the outlier detection method utilized was
the Support Vector Machines (SVM) approach [Scikit Learn 2024], which identified and
removed 10% of instances from each database identified as outliers by the method.

The experimental process took place in the following sequence: (i) defined the
sizes of the training and test windows, ranging from 10% to 40% for training, and 1% to
10% for testing; (ii) calibrated algorithms parameters to generate and evaluate the pre-
dictive models using the defined windows, calculating the average RMSE (Root Mean
Squared Error) for these models; (ii1) evaluated regression algorithms with varied execu-
tion configurations on the selected datasets; (iv) generated tables presenting the average
RMSE metrics, mean ranking and number of victories for each algorithm; (v) evalua-
tion of the best settings for each algorithm; and (vi) application of the attribute selection
strategy to identify the most important attributes in each prediction scenario.

The calibration step aimed to find the optimal configuration for each regression
algorithm. A subset of 11 repositories, approximately 10% of the collected data, was
selected based on the following criteria: (i) four repositories with minimal involvement
of Dependabot; (i1) four repositories with the highest involvement of Dependabot; and
(111) three repositories with the highest number of PRs. These criteria were used to ensure
a diverse representation of repository characteristics for effective algorithm calibration.

The method adopted for splitting the training and testing datasets was the
“Training-Test Sliding Validation” (TTSV) approach [de Lima Junior et al. 2018]. This
method maintains the chronological order of instances in the dataset by dividing them
into training and testing sets. In this approach, each evaluation round typically involves
selecting, for example, 10% of instances for training and the immediately subsequent
1% for testing. The method’s performance is evaluated by computing the arithmetic mean
of the RMSE values obtained from each testing round.

Initially, the regression algorithm was evaluated using 1% of the dataset for test-
ing, while varying the training size from 10% to 40%. After determining that a 40% train-
ing window provided optimal results, further testing was conducted by varying the test
size from 1% to 10%. The best performance was achieved with a 40% training size and a
1% testing size for both Dependabot and human-generated PR scenarios.

The 11 repositories selected for algorithm calibration have an average of 2, 682 to-
tal instances, with 23.59% being PRs created by Dependabot and 68.31% being PRs cre-
ated by humans. In this dataset, Dependabot PRs have an average lifetime of 3,472 min-
utes, while human PRs have an average lifetime of 19, 640 minutes.

In the predictive experiments, the SMOreg, IBk, M5P, and Random Forest (RF)
algorithms were evaluated, alongside Linear Regression (LR). These algorithms were

chosen due to their well-established presence in research, proven performance across di-
verse datasets and scenarios [Lessmann et al. 2008], and wide use in similar prior stud-
ies [Gousios et al. 2014, Yu et al. 2015, e Silva and de Lima Junior 2021]. The parameter
variations for each algorithm were conducted as follows: SMOreg with PolyKernel, RBF,
and Puk kernels; iBK with number of odd & (neighbors), ranging from 1 to 35; M5P with
pruned and unpruned trees; and RF with the number of generated trees ranging from 50 to
1200, with an increment of 50.

To evaluate the prediction results of each configuration, three metrics were used:
(i) RMSE, which indicates the average error obtained for the predicted values in each
test instance; (ii) a ranking metric derived from RMSE results, called Mean Ranking,
and obtained as follows: for each repository, the RMSE results receive an ordered rank
number, being 1 for the lowest error, 2 for the second lowest and so on up to n for the
highest calculated error, where n is the number of repositories evaluated, then, the ranks
for each configuration are summed, and the result is divided by the number of repositories,
where a lower mean, a better performance of the algorithm; and (ii1) the third metric is the
number of Victories, defined by the count of how many times each algorithm achieved
the lowest RMSE value, considering all repositories.

The attribute selection process aims to enhance predictive task results and iden-
tify the most important attributes. Moreover, selecting a subset of attributes reduces the
dataset’s dimensionality, thereby improving the performance during the evaluation of pre-
dictive models. By executing the Relief-F attribute selection, a ranking of attributes was
generated for each model tested using the TTSV method. The aforementioned ranking
metric was used to highlight the most important attributes for each scenario, considering
the average importance value generated by the Relief-F strategy for each model.

3. Results and Discussion

The adoption of Dependabot by GitHub repositories over time was verified using PR data
from the 101 repositories extracted from GitHub. This adoption started to grow in 2019,
especially after Dependabot integration as an official GitHub tool. However, PRs created
by humans still constitute the majority (75% on average), even among the repositories
with expertise in using Dependabot. Previous research conducted in the context of PR
lifetime does not distinguish between automated and human PRs, which can significantly
influence tasks such as predicting the PR lifetime.

To answer the RQI1, the lifetime of PRs in both scenarios were compared by
calculating the quartiles (Q) of the lifetime. Then the PRs were separated by the limits
between Q1 to Q3, representing 50% of the instances. The average lifetime between these
limits was considered to perform the lifetime comparison. In this way, it was possible to
define that in 21 repositories Dependabot has PRs reviewed in less time, while in 47 repos-
itories human PRs are faster. In 33 repositories there was no significant difference.

The lifetime contrast between human and Dependabot PRs can be highlighted
considering the characteristics of two repositories: in the “activeadmin”, the lifetime of
50% of the Dependabot PRs is concentrated between 18 minutes and 2.7 hours, while
50% of human PRs have their lifetime concentrated between 3.85 hours and 9.92 days.
On the other hand, in the “draft-js”, the lifetime of 50% of Dependabot PRs is concen-
trated between 6.15 days and 2.69 weeks, while the lifetime of 50% of human PRs is

concentrated between 6 hours and 2.51 weeks. These examples underscore the impor-
tance of distinguishing between scenarios based on the author of the PR (human or bot),
particularly in the case of Dependabot, when studying PRs lifetime. Previous research
has not made this distinction, which may lead to less accurate results.

To determine the best configuration for the regression algorithms in each scenario,
variations in the parameter values of these algorithms were applied and executed for each
model created using the training and test windows, as well as for each dataset collected
for this study. The M5SP and SMOreg algorithms achieved the best results with the same
configuration in both scenarios. On the other hand, the iBK and RF algorithms showed
differences in the configuration that yielded the best results. For the scenario with PRs
created by humans, iBK performed best with £ = 35, and RF achieved the best perfor-
mance with 750 trees. In the scenario with Dependabot PRs, iBK performed best with
k = 5, and RF achieved the best results with 900 trees.

Having defined the best settings for the four algorithms in each scenario, the next
objective was to evaluate these algorithms on the selected calibration datasets. In both sce-
narios, the SMOreg algorithm with the RBF Kernel achieved the best results on average.
In the scenario with Dependabot PRs, the improvement over the baseline (LR algorithm)
was approximately 38% (RMSE from 6, 039 to 3,754), and in the scenario with human
PRs, this improvement was approximately 31% (RMSE from 24,976 to 17, 406).

The next experiment aimed to evaluate the algorithms with the best configurations
in each model generated using the TTSV technique across the 90 repositories, considering
the two scenarios separately. Table 1 displays the average RMSE among the models, mean
ranking, and the number of victories for each algorithm in each of the scenarios. It is
evident that the SMOreg algorithm with the RBF Kernel achieved the best results in terms
of RMSE, mean ranking, and victories in both scenarios. It is worth noting that the RMSE
difference between the scenarios is significant, with 18, 338 minutes (12.7 days) for PRs
created by humans and 5, 585 minutes (3.8 days) for PRs from Dependabot, answering
our RQ2, and highlighting, once again, the importance of distinguishing between both
scenarios, which can significantly reduce the error rate of predictive algorithms.

Table 1. Metrics obtained from algorithms evaluation on 90 repositories
Dependabot Pull Requests ‘ Human-created Pull Requests
M5P SMOreg iBK RF M5P SMOreg iBK RF

LR Unpruned RBF k=15 900 trees Unpruned RBF k=35 750 trees
Average RMSE 17,573 6,246 5585 6219 6,123 | 30415 22270 18,338 20,779 31,444
Mean Ranking 4.90 3.08 143 2.80 2.78 4.66 343 1.12 2.44 3.34
Victories 0 13 64 3 11 0 9 81 0 0

In Table 1, it is possible to observe the improvement in the algorithm results com-
pared to the baseline (LR algorithm). In the scenario with human PRs, there was an
improvement of approximately 40% when comparing the RMSE averages between the
LR and SMOreg algorithms. In the scenario with Dependabot PRs, comparing the same
algorithms, an even more significant improvement of approximately 68% is observed.

Table 2 was compiled to analyze individual repositories in each scenario and as-
sess the improvement in predicting the lifetime of PRs. It lists the 5 lowest and 5 highest
RMSE values achieved with the SMOReg algorithm (best overall result) in each scenario.

The table includes the repository names, the RMSE values with the LR algorithm base-
line, and the percentage improvement in the RMSE metric for each repository.

Table 2. Best and worst RMSE results among the repositories

Dependabot Pull Requests \ Human Pull Requests
. SMOreg . SMOreg
Repository LR RBF Improvement | Repository LR RBF Improvement
open-event-server 641 208 67.55% mediathread 1,349 1,191 11.71%
jhipster 725 355 51.03% weblate 3,470 1,335 61.53%
coredns 858 497 42.07% nuxeo-drive 2,790 2,029 27.28%
openstreetmap-website 1,993 551 72.35% MozillaAddonsServer 3,006 2918 2.93%
aws-operator 1,598 581 63.64% fpl-ccd-config 3,679 2,962 19.49%
WikiEduDashboard 18,125 16,376 9.65% hugo 56,734 55,995 1.30%
janusgraph 27,847 17,216 38.18% alloy 142,075 74,989 47.22%
elide 45,122 17,423 61.39% openstreetmap-website 143,877 75,563 47.48%
cloudcontroller 26,234 18,406 29.84% draft-js 108,834 82,201 24.47%
graylog 27406 19,974 27.12% rubygems.org 13,8698 88,010 36.55%
Average 17,572 5,585 68.21% ‘ Average 30,415 18,338 39.70%

In Table 2, the best result for Dependabot PRs in the RMSE metric was achieved
by the SMOReg algorithm in the “open-event-server” repository with a value of 208.
This means that the algorithm would have an average error of 208 minutes when predict-
ing the lifetime of a new PR created by Dependabot. Additionally, the SMOreg algorithm
improved this metric by 67.55% compared to the baseline. For human PRs, a notable im-
provement of 61.53% was achieved in the “weblate” repository by the SMOreg algorithm,
reducing the average error from 3,470 to 1, 335 minutes compared to the baseline.

Additionally, when analyzing Table 2, it is observed that the “openstreet-map-
website” repository appears in both tables, indicating its inclusion in both scenarios. In
the Dependabot PRs scenario, the RMSE metric with SMOreg was 551, ranking as the
4,5, best result. However, in the human PRs scenario, the same repository is among the
worst results, ranking third-to-last with a RMSE of 75, 563. As an answer to our RQ2,
this result underscores the importance of separating PRs for lifetime analysis.

The Relief-F attribute selection strategy was employed to detect and investigate
the most important attributes for predictive models. It generated rankings of attributes for
each model across datasets. A table summarizing the average position in the ranking and
the number of victories for each dataset was then created. Table 3 highlights the top ten
most important attributes identified in each scenario based on these rankings.

Table 3. Most important attributes for each scenario

Dependabot Pull Requests ‘ Human-created Pull Requests

ID Attribute Mean Ranking Victories ‘ ID Attribute Mean Ranking Victories
PR4 num_commits 3.53 36 P8 workload 4.18 35
P8 workload 5.40 22 PR6 num_participants 5.19 11
PR6 num_participants 6.76 23 PR36 requester 7.83 48
PR34 at_mentions_comments 10.55 3 PR34 at_mentions_comments 8.07 4
PR3 conflict 16.27 9 PR4 num_commits 10.50 1
P9 perc_external_contribs 17.92 0 PR27 src_added 13.45 0
PR37 weekday 18.90 2 PR29 src_churn 14.85 0
PR29 src_churn 19.30 0 PR14 files_added 16.77 0
D1 prev_pullreqs 19.49 0 PR17 files_changed 17.15 0
PR28 src_deleted 19.56 0 P9 perc_external_contribs 18.02 1

In Table 3, most of the attributes identified as significant are common to both
scenarios. The “workload” attribute is one of them, and indicates the workload in the
repository, i.e., the number of open PRs at the moment a new PR is created. The attribute
num_commits stands out as more important in the Dependabot scenario compared to hu-
man PRs. It was observed that in Dependabot PRs, additional commits beyond the initial
one by Dependabot are often made by humans to adjust the proposed solution. This tends
to significantly increase the lifetime of the PR.

The attribute “num_participants” obtained 23 victories in the Dependabot PRs sce-
nario and is also among the most important in both scenarios. This aligns with the analysis
presented regarding the “num_commits” attribute: when it is necessary for a Dependabot
PR to has more than one participant, it indicates that the proposed bot’s solution required
adjustments, and thus, the PR lifetime tends to increase.

In the scenario with Dependabot PRs, the attribute “weekday” was identified as
highly significant. It achieved victories in the “Guttenberg-mobile” and “Spreed” reposi-
tories during experiments. In “Guttenberg-mobile”, PRs created on Fridays or Saturdays
tended to have longer lifetimes compared to other days, influencing the algorithm deci-
sion. In the “Spreed” repository, a notable pattern was observed where 92% of Depend-
abot PRs created on Fridays and Saturdays exhibited similar lifetimes. On Sundays, only
4 PRs were created, but they had longer lifetimes, while Mondays saw only 3 PRs with
shorter lifetimes. While these patterns may not apply to all repositories, they suggest that
the “weekday” attribute could be important for predictive modeling in specific scenarios.

Answering our RQ3, since 6 out of the top 10 most important attributes for pre-
dictive models are common between the two scenarios (PR4, PR6, PR29, PR34, P8 and
P9), it can be concluded that the main attributes in predicting the lifetime of PRs are gen-
erally common between the scenarios with Dependabot PRs and human PRs. However,
the “number of commits” seems very important only in Dependabot scenario (36 victo-
ries). On the other hand, the “requester” attribute has 48 victories in human scenario, and
has no importance on Dependabot scenario, since the user is always the same. Also, sep-
arating automated PRs allowed identifying that characteristics related to the core team’s
response time may differ in each scenario. The varying attributes employed in the mod-
els across different scenarios may provide valuable insights into understanding prediction
performance, which warrants further investigation in future studies.

4. Related Work

Predicting lifetime can help reviewers save time, improve efficiency, and optimize PR re-
view prioritization. Researchers have focused on identifying the factors that influence
lifetime [Soares et al. 2021, Silva et al. 2020, Gousios et al. 2014, Alfadel et al. 2021,
He et al. 2023, Nasrabadi et al. 2023], predicting lifetime [de Lima Junior et al. 2021,
e Silva and de Lima Junior 2021], and evaluation time [Yu et al. 2015]. Previous re-
search, however, has not considered differences between automated and human PRs.

Recent studies explored the integration (acceptance or rejection) and life-
time of automated PRs [Alfadel et al. 2021, Wyrich et al. 2020, Wyrich et al. 2021,
He et al. 2023, Nasrabadi et al. 2023]. [Wyrich et al. 2021] conducted a comparative
study of automatically and manually created PRs using a large dataset (20, 623, 320 PRs),
but with 4, 654 users identified as bots, even recommending in their conclusion that the

comparison can be done individually for bots. Additionally, the analyzed data corresponds
to a short period (January 2019 to May 2020). The conclusions of [Wyrich et al. 2021]
point out that automated PRs that are accepted have, on average, a 10 hours lifetime,
which is significantly longer than that of humans. However, this does not apply to all
projects, as indicated by our study. To the best of our knowledge, there are no scientific
publications that analyze the lifetime of automated PRs in individual projects.

In software development, bots are commonly used for repetitive tasks such as
bug fixing [Monperrus 2019], dependency updates [Alfadel et al. 2021], defect predic-
tion [Khanan et al. 2020], code refactoring and improvement [Wyrich and Bogner 2019],
and more. Studies related to bots (e.g. [Mirhosseini and Parnin 2017]) emphasize annoy-
ing behavior such as verbosity, redundancy, excessive actions, unsolicited or unwanted
tasks in PRs, generating communication noise, as well as excessive information due to
the creation of “new voices” [Monperrus 2019] in developer conversations, which are
already burdened with online communication.

5. Limitations

Our study focused on OSS repositories using Dependabot, so the findings may not fully
apply to closed-source repositories or other bots. While we do not expect big differences,
further research is necessary to investigate the transferability of the results. We have also
ensured the collection of a large and diverse sample of repositories to mitigate this limita-
tion. Furthermore, GitHub API allows only 5000 requests per hour [GitHub Docs 2022].
Given that each commit, PR, and comment requires a new request, repositories with sig-
nificant activity can take several days to complete the extraction process.

6. Conclusion and Future Work

This study demonstrated that human and automated PRs have different lifetime charac-
teristics and should, therefore, be studied and assessed separately, mainly with predictive
tasks. We evaluated 5 predictive algorithms (Linear Regression, MSP, SMOReg, iBK, and
RandomPForest) using the TTSV method with PR data collected from 101 software repos-
itories. The experiments considered two scenarios: models generated with human PRs
and models with Dependabot PRs. The SMOreg algorithm with the RBF Kernel achieved
the best results, on average. In the scenario with Dependabot PRs, the improvement over
the baseline (LR algorithm) was approximately 68%, and in the human PRs scenario, this
improvement was approximately 40%. Additionally, 6 of the top 10 most important at-
tributes are the same for Dependabot and human-created PRs, but the number of commits,
participants, and the day of the week have greater importance for Dependabot PRs.

Bots that generate PRs can overwhelm repositories by creating multiple requests
in quick succession, often before existing ones have been reviewed. Although it is pos-
sible to configure the bot to create PRs at specific times, this may delay critical updates,
including those that address severe security vulnerabilities. The PR lifetime prediction
could prevent the creation of new PRs until pending ones have been adequately reviewed,
which would also reduce the computational costs associated with these verification.

Researchers point out that smarter tools should be built to prevent the communi-
cation “noise” caused by bots in software repositories. One way to build smarter tools to
avoid this noise may be to incorporate the ability to predict the PR lifetime, preventing

overload in software projects. It is believed that the study of factors related to the lifetime
of automated PRs and the generation of prediction models can be beneficial in moving
toward this goal. Future work can also include in-depth investigations into the influence
of each attribute on an automated PR, and other bots beyond Dependabot can be studied
and evaluated. Other techniques, such as the extraction of association rules, may bring
some new insights.

References

Alfadel, M., Costa, D. E., Shihab, E., and Mkhallalati, M. (2021). On the use of de-
pendabot security pull requests. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pages 254-265.

Chacon, S. and Straub, B. (2014). Pro git. Springer Nature.

de Lima Janior, M. L., Soares, D., Plastino, A., and Murta, L. (2021). Predicting the
lifetime of pull requests in open-source projects. Journal of Software: Evolution and
Process, 33(6):e2337.

de Lima Junior, M. L., Soares, D. M., Plastino, A., and Murta, L. (2018). Automatic
assignment of integrators to pull requests: The importance of selecting appropriate
attributes. J. Syst. Softw., 144:181-196.

e Silva, J. M. and de Lima Junior, M. L. (2021). Prediction of pull requests review time
in open source projects. In Proceedings of the XX Brazilian Symposium on Software
Quality, pages 1-10.

Ferrarezi, L. (2023). Data used for the research ‘The Importance of Attributes in Predict-
ing the Lifetime of Human and Automated Pull Requests’. https://zenodo.org/
doi/10.5281/zenodo.8199923. [Online: Accessed on 07/04/2024].

GitHub Docs (2022). Rate limits for the REST APIL https:
//docs.github.com/en/rest/using-the-rest—-api/
rate-limits—-for-the-rest—-api?apiVersion=2022-11-28+#
primary-rate-limit-for-authenticated-users. [Online: Accessed
on 07/04/2024].

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An exploratory study of the pull-
based software development model. In Proceedings of the 36th international confer-
ence on software engineering, pages 345-355.

Gousios, G. and Zaidman, A. (2014a). A dataset for pull-based development research. In
Proceedings of the 11th Working Conference on Mining Software Repositories, pages
368-371.

Gousios, G. and Zaidman, A. (2014b). Pullreq Analysis. https://github.com/
gousiosg/pullregs. [Online: Accessed on 07/04/2024].

He, R., He, H., Zhang, Y., and Zhou, M. (2023). Automating dependency updates in
practice: An exploratory study on github dependabot. IEEE Transactions on Software
Engineering.

Khanan, C., Luewichana, W., Pruktharathikoon, K., Jiarpakdee, J., Tantithamthavorn,
C., Choetkiertikul, M., Ragkhitwetsagul, C., and Sunetnanta, T. (2020). Jitbot: an

explainable just-in-time defect prediction bot. In Proceedings of the 35th IEEE/ACM
international conference on automated software engineering, pages 1336—1339.

Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, 34(4):485—-496.

Mirhosseini, S. and Parnin, C. (2017). Can automated pull requests encourage software
developers to upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM interna-
tional conference on automated software engineering (ASE), pages 84-94. IEEE.

Monperrus, M. (2019). Explainable software bot contributions: Case study of automated
bug fixes. In 2019 IEEE/ACM st international workshop on bots in software engi-
neering (BotSE), pages 12-15. IEEE.

Nasrabadi, H. M., Agaronian, A. E., Zannone, N., Constantinou, E., and Serebrenik,
A. (2023). Investigating the resolution of vulnerable dependencies with dependabot
security updates. In Mining Software Repositories conference.

Ramirez-Gallego, S., Krawczyk, B., Garcia, S., WozZniak, M., and Herrera, F. (2017). A
survey on data preprocessing for data stream mining: Current status and future direc-
tions. Neurocomputing, 239:39-57.

Scikit Learn (2024). OneClassSVM. https://scikit-learn.org/stable/
modules/generated/sklearn.svm.OneClassSVM.html. [Online: Accessed on
07/04/2024].

Silva, D. A. N. d., Soares, D. M., and Gongalves, S. A. (2020). Measuring unique changes:
How do distinct changes affect the size and lifetime of pull requests? In Proceedings

of the 14th Brazilian Symposium on Software Components, Architectures, and Reuse,
pages 121-130.

Soares, D. M., de Lima Junior, M. L., Murta, L., and Plastino, A. (2021). What factors in-
fluence the lifetime of pull requests? Software: Practice and Experience, 51(6):1173—
1193.

Wessel, M., De Souza, B. M., Steinmacher, 1., Wiese, 1. S., Polato, 1., Chaves, A. P., and
Gerosa, M. A. (2018). The power of bots: Characterizing and understanding bots in oss
projects. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1-19.

Wyrich, M. and Bogner, J. (2019). Towards an autonomous bot for automatic source
code refactoring. In 2019 IEEE/ACM 1Ist international workshop on bots in software
engineering (BotSE), pages 24-28. IEEE.

Wyrich, M., Ghit, R., Haller, T., and Miiller, C. (2021). Bots don’t mind waiting, do
they? comparing the interaction with automatically and manually created pull requests.
In 2021 IEEE/ACM Third International Workshop on Bots in Software Engineering
(BotSE), pages 6—10. IEEE.

Wyrich, M., Hebig, R., Wagner, S., and Scandariato, R. (2020). Perception and acceptance
of an autonomous refactoring bot. arXiv preprint arXiv:2001.02553, 1:303-310.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: Determi-
nants of pull request evaluation latency on github. In 2015 IEEE/ACM 12th working
conference on mining software repositories, pages 367-371. IEEE.

