OrchestraAl: A Multi-Agent Generative Al for Software
Development

Joao Luiz Bione da Silva Holanda, Thiago Silva de Souza

Centro Universitario Lasalle do Rio de Janeiro (Unilasalle-R1J)
Niter6i — RJ — Brazil

joao.bione@icloud.com, profthiagodesouza@gmail.com

Abstract. This paper presents OrchestraAl, a multi-agent Al assistant designed
to support professional software developers by combining conversational interac-
tion with autonomous execution of development tasks, including code generation
and Git version control. Unlike typical Al chatbots, OrchestraAl actively per-
forms actions such as creating and modifying code files within a customizable
local environment, preserving privacy and offering flexibility through the inte-
gration of open-source and external language models. The paper details the
system’s modular architecture, which leverages LangChain and pluggable Large
Language Models (LLMs), and reports qualitative results from initial evaluations.
The findings indicate a strong potential for productivity improvement, along with
identified limitations and proposed future improvements.

1. Introduction

Recent advances in artificial intelligence (AI) have significantly impacted software devel-
opment, particularly through the emergence of intelligent coding assistants. Tools such as
GitHub Copilot and OpenAl ChatGPT can generate code snippets or entire functions from
natural language prompts, facilitating developer productivity. However, these solutions
typically rely on proprietary large language models (LLMs) and require paid subscriptions
or continuous cloud connectivity, which may not align with the needs and constraints of
all developers. Consequently, there is a growing demand for Al-assisted development ap-
proaches that are cost-flexible, privacy-preserving, and customizable, allowing developers
to choose or switch between underlying LLMs according to their specific requirements and
workflows. This demand is underlined by recent scholarly analyses of the local deployment
of language models on devices, which emphasize enhanced privacy (no code leaves the
device), offline capability, lower latency, and reduction of recurring costs Xu et al. [2024].

To address these needs, OrchestraAl is proposed as a local, developer-oriented
Al assistant that extends beyond the limitations of conventional chatbot-based systems.
Rather than restricting interactions to question-answer dialogues, OrchestraAl executes
concrete development tasks, including creating and modifying code files, executing system
commands, and managing version control operations, all through natural language instruc-
tions. The system is designed to operate within the developer’s local environment—such
as a personal machine or integrated development environment (IDE)—ensuring that source
code and data remain private while enabling the use of open-source models for inference.
Although developers may optionally connect OrchestraAl to external LLMs via paid APIs
if desired, the core system remains independent of paid services, offering flexibility in cost
and deployment.

The system was conceived and developed with the goal of advancing Al-assisted
programming beyond chat-based interactions by incorporating multiple specialized agents,
each responsible for specific aspects of the development workflow. This multi-agent
design enables OrchestraAl to interact naturally with users while autonomously execut-
ing development tasks under user guidance. The target audience includes professional
developers seeking to leverage Al to streamline workflows without sacrificing control or
incurring additional costs. Functioning as a ‘co-developer’, OrchestraAl handles routine
and multi-step operations, enabling developers to focus on higher-level problem-solving
and design activities. In summary, OrchestraAl represents a novel approach to Al-assisted
software development by offering an extensible, multi-agent system that operates within
the user’s environment, adapts to individual developer preferences, and automates a wide
range of tasks, from coding to version control.

The remainder of this paper is organized as follows. Section 2 presents related
work on generative Al and multi-agentic systems in software engineering. Section 3 details
the architecture and implementation of OrchestraAl, describing its specialized agents
and orchestration workflow. Section 4 reports and discusses the qualitative evaluation
results, highlighting capabilities, limitations, and opportunities for improvement. Section
5 presents the threats to validity of this study, outlining the limitations of the current
evaluation and identifying avenues for strengthening future assessments. Finally, Section 6
concludes the paper and outlines future work directions.

2. Literature Review

In recent years, Generative Al—particularly large-scale models such as Large Language
Models (LLMs)—has ushered in a new era of Al-driven content creation. Artificial
intelligence-generated content (AIGC) refers to media (text, images, etc.) produced
by Al algorithms rather than humans, enabling the rapid generation of high-quality content
in a short time frame Cao et al. [2024]. Prominent examples include ChatGPT, an conver-
sational LLM by OpenAl, and DALL-E 2, an image generator, which together illustrate
how generative models now create human-like text and novel imagery on demand Cao
et al. [2024]. These advances make content creation more efficient and accessible, as Al
can automate the production of substantial content in very little time.

Rapid progress in generative Al has been largely driven by scale and innovation
in model training. Modern foundation models leverage vast datasets, massive neural
network architectures with billions of parameters, and extensive computational resources
to achieve unprecedented capabilities. For example, GPT-3 retained the transformer-based
architecture of GPT-2 but grew from 1.5 billion to 175 billion parameters and trained on
orders of magnitude more data (CommonCrawl vs. smaller WebText), which produced
substantially improved generalization and content quality Cao et al. [2024]. Such a scaling
has markedly improved the realism and coherence of the generated output.

In parallel, new techniques such as Reinforcement Learning from Human Feedback
(RLHF) have been introduced to align the model outputs with human preferences and
correctness. InstructGPT and ChatGPT apply RLHF during fine-tuning: human labelers
rank model output, and these rankings are used to train a reward model, which then guides
the LLM through a policy optimization step, significantly improving reliability and factual
accuracy over time Ouyang et al. [2022]. These innovations help address the questions of

relevance and factuality in the generated content by iteratively refining the behavior of the
model based on human-guided signals.

Beyond natural-language content, large language models have been adapted for
software engineering tasks such as code generation and developer assistance. When
integrated into developer environments, these models can translate natural-language de-
scriptions into functional source code and provide context-aware completions, refactoring
suggestions and optimization guidance Chen [2021]. These capabilities are changing
how programmers interact with code, enabling faster production of boilerplate and simple
functions while supporting tasks like documentation generation and code review Chen
[2021]. Parallel research has also explored specialized applications, such as generating
commit messages from code diffs using LL.Ms, demonstrating the potential of language
models to automate routine software engineering tasks. Nevertheless, current LLMs still
face challenges related to code quality and reliability, underscoring the need for human
oversight and specialized agentic frameworks that can mediate between the model and the
development workflow.

Beyond generation, researchers have begun designing autonomous Al agents that
couples the reasoning and language understanding of an LLM with tools to act on the world,
executing code, browsing the Web, or controlling software. These agents can operate
continuously, handling repetitive or multi-step tasks without human intervention. A prime
example is AutoGPT, an open source framework that autonomously decomposes high-level
goals into subtasks (web searches, API calls, email drafting) and executes them without
further user guidance Ning et al. [2025]. In the Web domain, the so-called WebAgents
observes the content of the page, uses an LLM to decide each browser action, executes it,
and repeats until the original command is complete Ning et al. [2025].

As agents gain autonomy and tool-use capabilities, new security and alignment
challenges arise. Narajala & Narayan (2025) introduce the Advanced Threat Framework
for Autonomous Al Agents (ATFAA) and a complementary mitigation suite (SHIELD)
to address novel vulnerabilities: from prompt injection attacks in the agent’s reasoning
pipeline to poisoning of its long-term memory module Narajala and Narayan [2025]. This
work highlights the need for new security paradigms tailored to agentic Al.

The traditional single-agent model has advanced into agentic Al, characterized
by multiple specialized agents working collaboratively to address complex problems. In
this paradigm, individual agents with distinct roles coordinate dynamically, decompose
high-level tasks into actionable subtasks, maintain persistent context across interactions,
and operate with a degree of autonomy while ensuring alignment with overarching goals.
This multi-agent orchestration builds upon foundational concepts in multi-agent systems
while leveraging the adaptability of modern generative models, enabling emergent and
cooperative behaviors even in unstructured and evolving environments Sapkota et al.
[2025].

Despite these advancements, key challenges persist in the deployment of generative
and agentic Al systems. Agents may produce hallucinations or factual inaccuracies with
high confidence, posing risks to reliability. Their performance can degrade significantly
when exposed to novel or out-of-distribution inputs, reflecting brittleness in real-world
scenarios. In multi-agent environments, emergent behaviors may lead to unanticipated

cooperation or conflicts, complicating control and predictability. Furthermore, the au-
tonomy and tool-use capabilities of these agents introduce new security vulnerabilities,
necessitating the development of robust safeguards for safe and effective integration into
user workflows.

3. OrchestraAl

OrchestraAl is a specialized multi-agent generative Al system designed explicitly to
facilitate software development through human-Al interaction loops. Drawing from
contemporary advances in Generative Al and leveraging Large Language Models (LLMs),
the OrchestraAl architecture orchestrates tasks related to version control, code generation,
testing, and conversational interaction to enhance developer productivity.

3.1. System Architecture

The architecture of OrchestraAl consists of three specialized agents, each responsible for a
distinct domain-specific function and coordinated by a central orchestrator that manages
task distribution and workflow execution. This structure is represented in Figure 1.

Orguestradl - Multi-Agent

Environment
ChatAgent
: . uses .
[Conversational Assistance) -

Language Model [LLM}
Ex: Qwen-14B via
il —_— il LangChain

Orchestrator Codelgent —

Developer {User) ¥ = :
b {Central Coordinator) (Code Handling)

uses

T—operations—._

GitAgent N

{Git Operations) Local Systemn

q - (Git, Files, etc.)
——operations——

Figure 1. System Architecture

* GitAgent: Manage Git version control operations, generating semantic commit
messages adhering to the Conventional Commits specification, handling branch
management, and automating repository interactions such as status checks and
diffs.

* CodeAgent: Performs a variety of software engineering tasks, including file
creation, editing, and reading. It supports multiple programming languages and
frameworks, automatically executes and generates test cases, performs static code
analysis and refactoring suggestions, and manages overall project structures and
dependencies.

* ChatAgent: Provides a natural-language-based interface for developers, answer-
ing general technical questions, helping in documentation creation, and offering
explanations of programming concepts and best practices.

The central Orchestrator routes user requests to the appropriate agent, manages
task prioritization, handles errors gracefully, and ensures smooth inter-agent communica-
tion and workflow execution.

3.2. Interaction Workflow

The interaction with OrchestraAl typically follows a structured conversational workflow, as
illustrated in Figure 2. The developer begins by issuing a request using a natural language
prompt (e.g., “Create a Python file with basic mathematical functions”). The orchestrator
then parses this request, identifies the appropriate agent(s) to handle it, and forwards
the command accordingly. The selected agent (GitAgent, CodeAgent, or ChatAgent)
executes the task and produces an intermediate output, such as code snippets, test cases, or
commit messages. The developer can review this output and, if necessary, provide iterative
feedback, allowing the agent to refine its responses and actions, thereby exemplifying the
Vibe Coding paradigm within the development workflow.

Developer (User) Drehestrator Gitagent Codedgent Chatagent

"Create a file caleulator. py with & sum functien”

Farwiards reguest far file creation

Returnd generated Pythan code [&. 4., sum Tunction)

Ganarates semantic commit message (Conventional Comenit)
PR

Returns. confirmation leted camimit

s usar of successiul comemit with generated message

"What is a semantic commit?”

Returns explanatary snswer about semantic commits

Developer (User) Drehestrator Gitagent Codedgent Chatagent

Figure 2. Interaction Workflow

3.3. Distinctive Features

OrchestraAl stands out from traditional generative Al models through several key capabili-
ties Sapkota et al. [2025]:

* Dynamic Reasoning and Planning: Capable of interpreting complex user goals,
decomposing tasks into actionable steps, and dynamically re-planning actions in
response to user feedback and contextual changes.

* Persistent Memory and Context Management: Retains context across multiple
interactions, enabling coherent, context-aware responses throughout the software
development lifecycle.

* Tool Use and External Interaction: Equipped to invoke external APIs, tools, and
perform operations such as code execution, version control actions, and automated
testing, extending capabilities beyond text generation alone.

* High Autonomy with Human-in-the-Loop: While offering significant autonomy
in task execution, OrchestraAl explicitly integrates iterative human feedback,
balancing automation with user oversight.

* Modular Extensibility: Its multi-agent architecture allows for easy integration of
additional specialized agents, enhancing scalability, maintainability, and adaptabil-
ity to future development needs.

3.4. Implementation and Deployment
OrchestraAl is implemented using modern Python tooling, particularly using the LangChain
framework for agent orchestration and model integration Narajala and Narayan [2025].
* Backend Technologies: Python 3.8+, LangChain with Ollama (using the model
gwen3:14b) and regular expression libraries for task interpretation. The directory
structure is represented in Figure 3.

Orquestradl Project Root

v v L3 T T L3 L3 v

agents/ crehestrator. py main.py install.sh gta requirements txt canfig.py README.md

T r T

it_agent.py code_agent_py chat_agent.py

Figure 3. Directory Structure

* Installation and Deployment: The system provides cross-platform installation
and launchers. On macOS/Linux, an automated script (install.sh) configures
a local shell alias (gta) and can optionally install a system-wide launcher in
/usr/local/bin/gta. On Windows, a Command Prompt launcher (gta.cmd) is in-
cluded. These entry points call the same Python program (main.py), enabling
seamless integration into existing development workflows. Figure 4 represents this

workflow.
macO0S / Linux
. Installation and Launch -
Run install.sh
cross-platform
Windows
Creates local alias: gta Use gta.cmd bundled

l l

Optional system-wide
launcher: /usr/local/bin/gta

Ensure folder is on PATH

Both entry points call:

main.py
l Examye GTA usage v
ta 'commit message’ gta 'create file gta 'what is semantic
g 8 calculator.py' commit?’

Figure 4. Implementation and Deployment

3.5. Usage Scenarios

Typical usage scenarios of OrchestraAl demonstrate its practical utility.

* Semantic Commit Generation: Developers describe their code changes conversa-
tionally, and GitAgent automatically generates standardized descriptive commit
messages.

* Automated Test Generation: CodeAgent creates unit and integration tests based
on existing code or specified functionality, accelerating test-driven development
practices.

* Project Structure Setup: CodeAgent rapidly scaffolds project structures, help-
ing developers in setting up initial boilerplate code, dependencies, and folder
hierarchies.

* Technical Documentation and Support: ChatAgent provides on-demand doc-
umentation snippets, best-practice advice, and general programming assistance,
significantly reducing research time.

In conclusion, OrchestraAl exemplifies a modern and interactive approach to
software development, utilizing human-AlI collaboration to maximize productivity, main-
tainability, and adaptability within software engineering teams.

4. Results and Discussion

This section presents the qualitative evaluation of OrchestraAl and discusses its capabilities
and limitations. The evaluation focused on three scenarios: (i) code generation from
natural language prompts, (i) execution of Git version control operations based on user
instructions, and (iii) multi-turn conversational interactions for iterative refinement. All
tests were conducted in a controlled environment, with OrchestraAl integrated into the
local file system and Git, emphasizing descriptive and interpretative analysis rather than
quantitative benchmarking.

In the code generation tasks, OrchestraAl was able to generate syntactically correct
and coherent code in response to clear and simple user requests, such as creating a Python
function to compute a sum. These results align with the model’s capabilities derived from
programming-focused LLMs, demonstrating practical utility in generating boilerplate and
functional code snippets. However, when faced with requests that were underspecified
or involved more complex logic, the system produced incomplete or partially accurate
outputs, indicating a tendency to make assumptions in the absence of explicit user guidance.
Figure 5 illustrates a practical usage example of OrchestraAl, showing a developer prompt
requesting the creation of a FastAPI project along with the corresponding files and project
structure automatically generated by the system.

For version control operations, OrchestraAl successfully interpreted high-level user
commands to perform Git-related tasks, including repository initialization, file staging, and
commit creation with user-specified messages. This confirms the system’s integration with
development tools and its potential to automate routine versioning operations. Nevertheless,
advanced Git functionalities, such as conflict resolution and branching strategies, were
not evaluated, and the system currently performs reactive operations without semantic
summarization of code changes.

The conversational interface of OrchestraAl proved effective in facilitating iterative
development, allowing users to refine outputs and request modifications through natural

Explorer -+ || % setup.py U X|| @ requirements.txt Dv @ De > -
+~ POC ‘ crud_poc > %@ se‘tupvpy)
v crud_poc
%@ requirements.txt
@ setup.py

app = FastAPI(]
title="CRU

@app.get("/health", tags=["Health"])
yr ef health_check() —> Dict[str, strl:

‘ Health check endpoint to verify the API is running.

Problems Output Debug Console |Terminal| Ports GitLlens Azure bash +v M @ -+ ~ X

gta> Crie um novo projeto FastAPI chamado ‘crud_poc’. Gere um arquivo main.py com cédigo de rota de health-check e inc
lua o arquivo requirements.txt minimo.
v Estrutura de projeto python criada com sucesso.

Arquivo: README.md

Arquivo: requirements.txt

Arquivo: setup.py

Diretério: src/

Diretério: tests/
[Handled by: CodeAgent]

gta> git init

v Reinitialized existing Git repository in /Users/joaoluizbione/.git/
[Handled by: GitAgent]

gta> git status
> Outline v On branch main

> Timeline No_commits yet

Figure 5. An OrchestraAl usage perspective.

language interactions while maintaining context over shorter sessions. This aligns with
the goal of providing a co-developer experience within the user’s environment. However,
the system exhibited limitations in managing extended conversations, reflecting the finite
context window of the underlying LLMs and highlighting the need for mechanisms that
support long-term memory and context management.

Overall, the qualitative evaluation demonstrates that OrchestraAl can enhance
developer productivity by automating basic programming and version control tasks through
natural language interaction. Nonetheless, further work is needed to address current
limitations, including the incorporation of quantitative evaluations for benchmarking, the
implementation of advanced task decomposition and planning, improvements in context
retention for extended sessions, and the integration of automated code execution and testing
to increase reliability. Additionally, exploring enhanced user interface elements and robust
security mechanisms will be essential for deploying OrchestraAl effectively in professional
software development environments.

5. Threats to Validity

This study is limited by its qualitative evaluation methodology, which focused on de-
scriptive analysis without quantitative benchmarking. As a result, it was not possible
to objectively measure OrchestraAl’s impact on developer productivity, task completion
time, or code quality, limiting the generalizability of the observed outcomes. Additionally,
the evaluation scenarios involved small, well-defined tasks within controlled environ-
ments, which may not fully reflect the complexity and variability of real-world software
development workflows.

Another threat to validity concerns the scope of functionalities tested, as advanced
Git operations, large codebase management, and complex multi-step task orchestration
were not explored in the current implementation. Moreover, the reliance on the context
window of the underlying language models may affect the system’s ability to maintain
coherence during extended interactions, potentially limiting usability in longer development

sessions. Future work will address these limitations through systematic quantitative
studies, user-centered evaluations in diverse settings, and the integration of advanced
context management and security safeguards to ensure robust deployment in professional
environments.

6. Conclusion

In conclusion, this work introduced OrchestraAl, a multi-agent Al assistant tailored for
software development. Our motivation was to create an Al agent that operates beyond
simple chat exchanges — one that can interpret developer requests and take actions such
as creating code files, editing content and performing version control commands. We
addressed the need for a cost-effective and developer-centric solution by designing Orches-
traAl to run locally with open-source LLMs while still allowing integration with more
powerful paid LLM APIs if the user requires. This flexibility ensures that professional
developers can adopt Al assistance on their own terms, maintaining privacy and control
over their development workflow.

The results of our initial tests are promising. OrchestraAl successfully generated
syntactically correct code from natural language prompts, carried out Git operations like
commits from high-level instructions, and engaged in multi-turn dialogues to refine outputs
based on user feedback. These scenarios demonstrate the potential of having an Al partner
embedded in the development environment — it can save time on boilerplate coding,
automate routine tasks, and help manage project state through conversational commands.
Developers interacted with the system in a conversational loop, receiving immediate,
context-aware support that goes far beyond what static code generation tools provide.

However, this project also revealed several challenges and limitations. Agent
performance can be affected by more complex tasks or very long interaction sessions, partly
due to the inherent limits of the context length of LLMs. It currently excels at well-defined,
small-scale tasks, but handling large codebases or intricate multi-step operations will
require further enhancements. There is also a need for a rigorous quantitative evaluation of
OrchestraAl’s impact on developer productivity and code quality, as our assessment SO
far has been qualitative. Ensuring robustness and security is vital, too. Since OrchestraAl
can execute system commands and write to files, careful safeguards and user oversight are
necessary to prevent unintended actions.

Despite these challenges, OrchestraAl illustrates a compelling use case for Al
in software engineering. It shows that with a careful orchestration of specialized agents
and human-in-the-loop design, an Al system can effectively collaborate with a developer.
We believe that this approach can be extended and improved: future work will focus
on integrating long-term memory for better context retention, more advanced planning
algorithms for complex task decomposition, and automated code testing/verification to
increase trust in the agent’s outputs. In addition, expanding the range of supported
developer tools and programming languages will make the system more versatile.

Ultimately, OrchestraAl represents a step toward more powerful and autonomous
developer assistants that remain under the developer’s guidance. By being cost-flexible
and adaptable, it lowers the barrier for individuals and teams to adopt Al in their daily
programming activities. With continued refinement, such Al agents could become an
invaluable part of the professional developer toolkit — increasing productivity, providing
on-demand expertise, and enabling a new mode of human-Al collaboration in software

development.

References

Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun. A comprehensive survey of
ai-generated content (aigc): A history of generative ai from gan to chatgpt. J. ACM, 37
(4):111:1-111:44, 2024.

M. e. a. Chen. Evaluating large language models trained on code. arXiv, 2021. doi:
10.48550/arXiv.2107.03374. URL https://arxiv.org/abs/2107.03374.
Trabalho seminal (Codex) demonstrando geracdo de cdédigo funcional a partir de
descricdes em linguagem natural e resultados em benchmarks como HumanEval.

V. S. Narajala and O. Narayan. Securing agentic ai: A comprehensive threat model and
mitigation framework for generative ai agents. arXiv preprint arXiv:2504.19956, 2025.

L. Ning, Z. Liang, Z. Jiang, H. Qu, Y. Ding, W. Fan, X. yong Wei, S. Lin, H. Liu, P. S.
Yu, and Q. Li. A survey of webagents: Towards next-generation ai agents for web
automation with large foundation models. arXiv preprint arXiv:2505.23350, 2025.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Beam, C. Keller, A. Madan, W. Agarwal,
J. Schulman, M. Chen, T. Brown, et al. Training language models to follow instruc-
tions with human feedback. In Advances in Neural Information Processing Systems,
volume 35, 2022.

R. Sapkota, K. I. Roumeliotis, and M. Karkee. Ai agents vs. agentic ai: A conceptual
taxonomy, applications and challenges. arXiv preprint arXiv:2505.10468, 2025.

J. Xu, Z. Li, W. Chen, Q. Wang, X. Gao, Q. Cai, and Z. Ling. On-device language
models: A comprehensive review. arXiv, 2024. doi: 10.48550/arXiv.2409.00088.
URL https://arxiv.org/abs/2409.00088. Revisdo que destaca beneficios
de execugdo local: privacidade, menor laténcia, operagdo offline e reducao de custos de
uso.

