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Abstract. Agents with a cognitive dimension are paramount to represent and
understand land use and land cover changes that involves decision making.
A Belief-Desire-Intention(BDI)-Agent system for environmental simulation was
developed:the MASE-BDI framework. MASE-BDI, a novel version of MASE,
implements agents that can be represented by their individual beliefs and in-
tentional behavior to choose plans of action in a complex environment. We
investigate the advantages, limitations and drawbacks of this new design and
how practical reasoning agents can contribute to decision support for sustain-
ability. Experiments were made in a spatially explicit LUCC study case of the
Brazilian Cerrado between the years of 2002 and 2008. MASE-BDI simulation
results were compared to those obtained with the multi-agent system for land-
use change simulation previously developed in this research project.

1. Introduction
To manage the land use and land cover changes (LUCC) is likely to be the most significant
challenge facing the Earth over the next decades.The effects of LUCC extend land surface
and affects the Earth’s climate, hydrology and ecological processes. Over the next century,
global population is projected to increase by 50-100% and it is likely that there will also
be an increase of the pressures to further convert or manage “natural” ecosystems for
human needs. LUCC research aims to support insightful management of land resources
in order to avoid irreversible damage [Le et al. 2008].

Understanding the patterns of LUCC has increased significantly over the last
decade [Turner II 2002]. This has been facilitated in part by the increased awareness of
the issues and by the large number of focused studies directed to understanding the under-
lying driving forces for LUCC dynamics. But there is still much debate when it comes to
aiming for environmental sustainability while ensuring or maintaining economic develop-
ment. Recent researches reinforced the role of information technology on improving envi-
ronmental sustainability in terms of information, representation, organization, innovative
strategies and evaluation of systems that break new ground in environmental responsibil-
ity [Elliot 2011]. Thus, policy makers and governmental planners in the LUCC sector
start to rely on software, such as simulators, to do analysis of land resources and prepare
the stakeholder dialogue on LUCC management decisions [Kangas and Kangas 2005].
Multi-agent system (MAS) is a well-suited approach that can be used in simulators to
help to answer some environmental research-relevant questions.

MAS aims to reproduce the knowledge and reasoning of several heterogeneous
agents that need to coordinate their actions to jointly solve planning problems through



time. Much research has been made on MAS because it offers an abstraction mecha-
nism to allow researchers to manage complexity with greater ease and therefore over-
come difficulties that the complex nature of LUCC imposes on traditional modeling ap-
proaches, such as statistical modeling, transition probabilities or classical optimization
[Verburg 2006]. MAS allows to incorporate the influence of human decision making on
land use, along with the appropriate environmental feedbacks, in a formal and spatially
explicit way, taking into account social interaction, adaptation and decision making at
different levels [Matthews et al. 2007].

The MultiAgent System for Environmental Simulation (MASE) is a computa-
tional system that uses a configurable user model to examine and to simulate the human
impacts of changing land use and land management in both spatially and temporally ex-
plicit manner [Ralha et al. 2013a]. MASE1 aims to assist analyzing LUCC dynamics us-
ing technical information to aid the decision making process. It effectively illustrates the
environmental, economic and social dynamics while driven by regional management poli-
cies. Although MASE was proven a valid solution, ecologists still strive for new method-
ologies to represent the human action, the environment and its relations. Most MAS
architectures include reactive agents, nevertheless, when human actions are considered in
the ecosystem, architectures place more emphasis on deliberation. Nonetheless, a cog-
nitive dimension is primordial for all ecological systems [Bousquet and Le Page 2004].
One common approach adopted in the Artificial Intelligence (AI) field is to build agents
as intentional systems. One of the objectives of this research project is to investigate if
those AI cognition techniques could help solve environmental problems.

We present an extended version of MASE with a high-level agent architecture that
implements a Belief-Desire-Intention (BDI) model. MASE-BDI adopts agents with indi-
vidual knowledge bases and intentional behavior to represent the complex, dynamic and
error-prone LUCC environment. We refactored all MASE code regarding the agents: its
internal logic, architecture, communication and interaction protocol, and the way agents
perceive and act in the environment. The LUCC model used in MASE-BDI is the same
as the one used in MASE, and we tested it in the same case study, to establish a compar-
ison. Although the use of a BDI architecture is foretell to be a promising method, it is
not yet critically reviewed or broadly adopted in the LUCC scientific community. Thus,
the present research goal is to investigate the advantages, limitations and drawbacks of
applying cognitive agents into the MASE framework. This paper is organized as follows:
Section 2 discuss the MASE-BDI design and presents some implementation details. Sec-
tion 3 reports on the LUCC study case, a set of experiments in a Cerrado area of the
Brazilian Federal District, and Section 4 present the results. Section 5 summarizes the
findings and suggests future research issues.

2. THE MASE-BDI

In ecosystems, BDI architectures were first applied in [Bousquet et al. 1993]. However,
most applications for ecological problems use simple agents and attention focuses on
understanding their coordination or their relations with the environment. Although au-
thors recognize the importance of the cognitive to represent the complexity of agents in
the environmental models, the general rule for ecological applications is the absence of

1http://mase.cic.unb.br/



it[Railsback et al. 2006]. The MASE-BDI framework was designed to meet this lack of
cognitive tools. Its reasoning engine is based on the BDI model, where agents can be
represented by their individual beliefs and intentional behavior to choose plans of action
in a complex environment [Bratman 1987][Dennett 1989].

MASE-BDI is an hybrid MAS that enables modeling and simulations of LUCC
dynamics using a configurable user model with both top-down and bottom-up structures
simultaneously [Verburg 2006]. For comparison purposes, MASE-BDI uses the same
methodological two-fold approach used to define MASE: (i) the systematic and structured
empirical characterization of the model [Smajgl et al. 2011]; and (ii) the conceptual struc-
ture definition according to the agent-based model documentation protocol - Overview,
Design concepts and Details [Grimm et al. 2006]. The adopted conceptual structure is ad-
equate for conducting experiments which tests, for example, human understanding of key
processes in land-use changes and other environmental issues. See [Ralha et al. 2013a]
for a complete description of the MASE System.

The MASE novel approach implements a BDI agent architecture design, adopt-
ing agents with individual knowledge bases and intentional behavior. We investigate the
advantages, limitations and drawbacks of this new design in a spatially explicit LUCC
study case of the Cerrado area of the Brazilian Federal District between the years 2002
and 2008. The role of the cognitive agents is evaluated. The results were compared to
those obtained with MASE previous architecture. The following sections present the ar-
chitecture, execution model and implementation aspects of MASE-BDI, highlighting the
key features that set MASE and MASE-BDI apart.

2.1. Architecture Overview

MASE-BDI was built upon the JADEX agent framework, since we used the
JADE platform to develop MASE and wanted to keep the developed functionali-
ties [Pokahr et al. 2003]. JADE is a middleware that garantees the FIPA-related apliance
with issues such interoperability, security, and maintainability. JADEX is an extension of
JADE that provides both a middleware and a reasoning-oriented system. The reasoning-
oriented feature emphasizes on rationality and goal-directedness, with a reasoning engine
based on the BDI model. To access functionality of the JADEX system, a Java API is
provided for basic actions such as sending messages, manipulating beliefs or creating
subgoals.

The MASE-BDI high level architecture is composed of three hierarchical layers:
from the top, an User Interface (UI) layer, a Pre-processing layer and an Agent layer.
The UI layer is composed by a graphical interface, which enables the visualization of the
simulation, and a JADEX module, the JADEX Control Center (JCC). The Pre-processing
layer groups a set of objects responsible for the image processing of the simulation and
the configuration of the user model. Those images and data are set by the user. These two
layers are responsible for the support of the Agent Layer, the practical implementation of
the BDI model. This layer contains a set of agents that interacts with one another. Each
agent is coupled with an individual Belief Database and all of them makes use of the same
Resoning Engine.

The MASE-BDI Agent Classes were named after the main abstractions of a LUCC
environment: GRID Manager, Spatial Manager, Transformation Manager and Transfor-



mation Agents. The internal structure and reasoning mechanisms are the same for each
class of agents. From the outside, an agent is perceived as a black box, which receives
and sends messages. Incoming messages, as well as internal events and new goals serve
as input to the agent’s internal reaction and deliberation mechanism. Based on the results
of the deliberation process these events are dispatched to already running plans, or to new
plans instantiated from the plan library. Running plans may access and modify the belief
base, send messages to other agents, create new top-level or subgoals and cause internal
events.

The reaction and deliberation mechanisms are generally the same for all agents.
The behavior of a specific agent is therefore determined solely by its concrete beliefs,
goals, and plans, set by the user in the conceptual model. The MASE-BDI character-
ization follows the guideline provided by JADEX [Pokahr et al. 2003]. The beliefs are
represented by Java Objects contained in the belief base as named facts that can be di-
rectly manipulated by setting, adding or removing facts. The beliefs are used as input for
reasoning engine by specifying certain belief states, e. g. as preconditions for plans.

Goals are concrete, momentary desires of an agent. A deliberation mechanism
is responsible for managing the state transitions of all goals. As restricted by JADEX,
a sophisticated goal deliberation mechanism is not yet available, therefore currently the
JADEX engine automatically activates all valid goal options. In MASE-BDI, a perform
goal is directly related to the execution of actions. Therefore the goal is considered to
be reached, when some actions have been executed, regardless of the outcome of these
actions. In a LUCC metaphor this can mean that a transformation agent of the agricul-
tural type may have a goal to explore the land until there are still natural resources to be
exploited. For as long there are trees to cut, this agent will be reaching its goal.

The implemented reasoning engine handles all event such as the reception of a
message or the activation of a goal by selecting and executing appropriate plans. Instead
of performing ad-hoc planning, MASE-BDI uses the plan-library approach defined by
JADEX to represent the plans for each agent. For each plan, a plan head defines the cir-
cumstances under which the plan may be selected and, a plan body specifies the actions to
be executed. The plan bodies, which are predefined courses of actions are implemented as
Java classes. JADEX provides a basic Java API for basic action such as sending messages,
manipulating beliefs, or creating goals.

The agents are created based on a LUCC conceptual model. To create and start an
agent, the system needs to know the properties of the agent to be instantiated. The initial
state of an agent is determined among other things by the beliefs, goals and the library of
known plans. The plan bodies are implemented as Java classes. All other concepts are
specified in a so called agent definition file (ADF) using a XML language that follows the
JADEX framework. A predefined package of functionality related entities (beliefs, goals
and plans) can be clustered and it is called an agent capability. Agents can have multiple
capabilities.

This internal structure will work together as the simulation goes on. Each step of
the simulation will be executed following an integration protocol and an execution model.
The following section will present the overall mechanisms to understand the MASE-BDI
reasoning engine.



2.2. Execution Model and Interaction Protocol

Figure 1 illustrates the components of the MASE-BDI reasoning engine and its relations.
The functional elements of the execution model follow the BDI realization plan. Some
plans, internal events and goals of a Transformation Agent, i.e. a rancher in a LUCC
simulation, are detailed in Figure 1 but the structure is the same for each class of agents.
The core of any BDI architecture is the mechanism of plan selection: an agent has to
receive information from the environment (messages or internal events), choose the plan
that best fit its goals, execute the plan and keep track of the plan steps to notice failures.
In the MASE-BDI, all of the required functionality is implemented in separated compo-
nents. The relevant information about beliefs, goals and plans is stored in data structures
accessible to all the components of the reasoning engine.
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Figure 1. Overview of the MASE-BDI Execution Model

The Message Receiver performs operations that take FIPA ACL messages from
another agent and create internal or external events that are placed in an event list. The
Dispatcher selects events and builds a list of applicable plans. It also selects the plans
to be executed from the Plan base, in a deliberation step, associating each plan to the
corresponding event or goal. The Scheduler takes each plan, set by the Dispatcher as
ready, and executes them. As a consequence of the execution of a plan new messages or
events will be created and the belief database may be altered.

The simulation is made by the interaction of all class of agents. The interaction
protocol is FIPA compliant and the basic unit of communication is a message. Figure 2
shows some of the main messages exchanged in a LUCC simulation. Through time, this
messages set the course of action of the simulation. The basic land use exploration is the
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Figure 2. Overview of the MASE-BDI Interaction Protocol

outcome of the workflow presented in this Figure. The GRID Manager (GRIDM) starts
the simulation running a step. The Transformation Manager (TM) perceives this event and
send multiple messages to all Transformation Agents (TA), authorizing the exploration to
start or the TA to move around the space. The TA will execute its plans of land use,
exploring and moving around the environment. When it’s done, it returns the exploration
results to the TM. If the plan execution of TA fails, due i.e. to a land exhaustion or because
there is another TA exploring the intended exploration space, the plan is dropped and the
TM is informed of the conflict. Thenceforth, the TM requests to the Spatial Manager (SM)
anther available land space and informs the TA its new position. The TA then updates its
belief, restarts and wait for a new chance to be deployed and explore its new space. This
cycle will continue until the goals of the simulation are done.

3. The Cerrado Case Study
The land use/cover change of Brazil’s Federal District (DF) Cerrado was chosen as a case
study in MASE and therefore was maintained for comparison reasons in MASE-BDI.
The Cerrado is a Brazilian savanna-like ecosystem and is the second largest biome in
Brazil, occupying approximately 22% of the country surface area. The Cerrado is one of
the most threatened biomes of the world, mainly due to the rapid agriculture expansion
[Sano et al. 2008]. The input of the simulation used two land cover maps provided by the
Brazilian Institute of Environment and Renewable Resources (IBAMA) at a initial time
(2002 - t0) and a subsequent time (2008 - t6). Those maps are public domain data and are
used by the government in the deforestation control and land use planning.

As in the MASE experiments, the simulation was performed in steps, where each
step corresponds to a week time in real life. The total area of study was divided into
cells, in which every set of four cells represents one hectare, which is occupied by a
different agent. The physical state of the cells correspond to the set of real spatial data
including six proximal variables: (i) water courses (rivers); (ii) water bodies (lakes); (iii)
buildings; (iv) highways; (v) streets; and (vi) protected areas. In this first experiment
using cognitive agents the human factor over the land is represented by two types of
transformation agents: farmers and ranchers. The political aspects are also taken as a
compelling force in the simulation, translating the Federal District Spatial Plane (PDOT)
onto an influence matrix for the transformation agents. In both simulations the proximal
variables are used in order to create a probabilist model that reflects the likelihood of



exploration.

We performed both MASE and MASE-BDI simulations using identical parame-
ters to compare the results found in both agent architectures. The MASE-BDI simulations
were performed using 10 to 100 transformation agents. In each simulation, the last step
was saved in an image, named simulated 2008, so it could be compared with the image
representation of observed 2008 and a score would be obtained. Moreover, the image rep-
resentation of the observed 2002 was compared with the observed 2008 using the same
method of the simulated images comparison, described in [Pontius et al. 2008]. The val-
idation is based on a quantitative agreement with the observed changes, and we calculate
the sum of the LUCC area and the pixel by pixel comparison, which includes the alloca-
tion of land cover change. Those metrics are the ones often used in the benchmarking of
LUCC modelling tools, as presented by [Paegelow et al. 2014]. The null model threshold
is then obtained, a representation of a simulation with zero agents. This measurement is
a reference score for all simulation, as theirs score should be better than this borderline
score.

4. Experimental Results and Discussion
The baseline MASE results are the ones presented in [Ralha et al. 2013b]. The MASE-
BDI simulation results are illustrated in Figures 3 and 4. Figure 3 presents the DF area
and the changes and persistence in the land cover affected by anthropic processes and
natural vegetation. The real observed change and the MASE predicted change are put
aside for comparison. Figure 4 shows us a three map comparison using (i) a reference
map of initial time (2002), (ii) a reference map of subsequent time (2008), and (iii) a
MASE prediction map of the subsequent time (2008). According to the methodology, the
three-map comparison specify the amount of the predictions accuracy that is attributable
to land persistence versus land change. It is possible to pinpoint the locations where the
simulation was accurate and the locations where the MASE predicted land cover changes
different from the observed.

a. Observed b. Predicted

Layers

Anthropic gain

Anthropic persistence

Native vegetation

persistence

Figure 3. MASE-BDI model predictions for the Brazilian Federal District, showing
(a) Observed change 2002-2008, (b) Predicted change 2002-2008

Different applications can be summarized and compared using two statistics: the
null model resolution (NMR) and the figure of merit(FoM). The simulation results indi-
cate the potential of the presented multi-agent model system. Considering the accuracy
of the simulations using MASE-BDI, the application results were better than the null
model, that examines both the behavior of the model and the dynamics of the landscape.
The definition of this null model is a prediction of complete persistence, i.e. no change,
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Figure 4. Three map comparison: the final image comparing (i) a reference map
of initial time (2002), (ii) a reference map of subsequent time (2008), and (iii) a
MASE-BDI prediction map of the subsequent time (2008)

between the initial and the subsequent time, therefore the accuracy of the null model is
100% minus the amount of observed change.

Considering the figure of merit, the more accurate applications are the ones where
the amount of observed net change in the reference maps is larger. The figure of merit
is the ratio of the intersection of the observed change and predicted change to the union
of the observed change and predicted change, which can range from 0% (no overlap
between observed and predicted change) to 100% (perfect overlap between observed and
predicted change, a perfect accurate prediction). MASE-BDI Figure of Merit best results
were found in the simulations with 80 and 90 agents, where the FoM reached 55%. In
MASE previous results, the maximum value of FoM were 54% in a simulation with 90
agents. The FoM best values in MASE-BDI varied from 51% to 55% while in MASE
those values were 50% to 53%. These prediction measures may be seen as too low to
those who are used to purely statistical models, but according to [Pontius et al. 2008],
LUCC frameworks that are able to reach a FoM higher than 50% are exceptionally rare.

5. Conclusions

This article presents MASE-BDI, an extended version of MASE with a high-level agent
architecture that implements BDI. The BDI design and the agents execution model were
presented and a case study was performed. The results shows us that even with a more
complex cognitive agent architecture, MASE-BDI was able to surpass MASE previous
results in the same case study. Even though MASE-BDI is a more refined solution it was
designed to be flexible to the user, with real gain in modularity, clarity and reuse of the
models.

MAS provide an efficient tool to assess ecological complexity and to assist ecosys-
tem management. The MASE-BDI prototype allows the user to investigate research-
relevant questions such as how effective are management practices, such as ecological-
economic zoning, or how effective are deliberate changes in land use, such as reforesta-
tion on LUCC dynamics. Moreover, the basic components of a system designed for a



dynamic, uncertain world should include some representation of beliefs, desires, inten-
tions and plans. The notions of complexity and change, inherent to ecological problems,
have a major impact on the way the computational systems are built. We believe that soft-
ware agents, in particular BDI agents, can provide the essential components necessary to
cope with the real world complex scenarios.

We have proposed a BDI approach to simulate the human decision making process
in a LUCC dynamic environment. This approach is particularly useful for applications
where human decision affect directly the land use planning process. The user may create
different types of planning for agents in the simulation. MASE framework will held
the mechanisms for those agents to select the plan according to the environment and to
execute the currently active plan during the hole simulation process. As future work we
intend to integrate additional transformation agents to demonstrate the system’s activities
coordinating capability considering a large number of agents. To evaluate the use of the
cognitive agents in MASE-BDI it is necessary a comprehensive assessment of errors and
uncertainties in the model simulation. Future work will include a detailed error analysis
and uncertainty treatment, possibly a undecidability model for the simulations will be
proposed.
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