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Abstract. Honey bees, important pollinators, are threatened by a variety of
pests, pathogens and extreme climatic events, such as the winter period. This
paper proposes a two-stages model that seeks to define and predict evolution-
ary scenarios for improving the bee colonies’ well-being. The used dataset has
data from both internal and external beehive sensors, and on-site inspection
of beekeepers from six apiaries between the years 2016-2018. In the first stage,
three evolutionary scenarios were obtained (pessimistic, conservative and opti-
mistic) through the clustering technique. In the second one, aiming to classify
these scenarios, an elastic net penalty logistic regression model was obtained
with an accuracy of ≈ 99.5%.

1. Introduction

Honey bees (Apis mellifera) are responsible for pollinating about 15$ billion
worth of food only in the US every year [Braga et al. 2020]. However about 40% of
the world’s bee species are dying [Sánchez-Bayo and Wyckhuys 2019]. According to
Bee Informed Partnership (BIP) 1, the total annual loss of bee hives in the 2018/19
season was above average, at almost 40%, the biggest loss in 13 years. In partic-
ular, honeybees populations have suffered mass deaths in some European regions
and in North America due to Colony Collapse Disorder (CCD) and severe winters
[Barron 2015, Gil-Lebrero et al. 2017].

Today, thanks to the sensor networks and Internet of Things (IoT)
paradigms, beekeepers and researchers can remotely monitor bee colonies
[Meikle and Holst 2015, Kridi et al. 2016, Zogovic et al. 2017]. Remote monitoring
via wireless sensors is one of the most important characteristics of the precision
beekeeping [Zacepins et al. 2015] which basically involves beehives data collec-
tion, data analysis and support decision making in an apiary management context

1https://research.beeinformed.org



[Dineva and Atanasova 2018, Braga et al. 2019]. Once the sensors are installed in
the hives, the apiary can be monitored without disturbance, even during periods
when invasive inspections of the hives are contraindicated, such as during the winter
[Meikle et al. 2017]. However, little is yet known about the semantics of the data col-
lected from the hives [Zacepins et al. 2015, Jacobs et al. 2017], such as which physical
variables most affect the bees behavior. Such knowledge would help to improve for
instance the bee colonies’ well-being.

In this context, this paper presents a solution for the definition and classifica-
tion of bee colonies’ well-being states. Some of these states could lead the hive to an
irreversible imbalance. Our proposal uses clustering (unsupervised learning), with in-
ternal, external sensors and inspection data, and classification (supervised learning),
with internal, external sensor and clustering data. By not including inspection data
during the classification step, we reinforce the idea of not needing invasive inspections
in the hives to know the current status of the colonies.

2. Material and Methods

2.1. Dataset

We used a dataset composed of internal data from 27 colonies, distributed in
6 apiaries in the USA as well meteorological data2 from the apiaries monitored from
January 2016 to December 2018. Raw dataset has 731,654 observations. Table 1 shows
the data distribution per hives/apiaries and monitoring periods.

Table 1. Distribution of data between beehives and apiaries in the United States.
State Apiary Monitoring Period #Samples
North Carolina BBCC 06/2016 - 10/2018 200,544

Juniper Level 04/2017 - 12/2018 90,613
Beesboro 01/2018 - 12/2018 132,552

Pennsylvania BBTS 01/2016 - 12/2016 27,673
Indiana The Bee Hive 01/2016 - 12/2017 160,381
Utah Lakeview 02/2017 - 12/2018 118,891

The collection of the internal data was carried out through the SolutionBee3

system, using as internal variables the temperature of the bees cluster (i.e. the central
part of the hive, where the bees gather) and the hive weight.

The used meteorological data were sampled each 1 hour (sampling period) and
the weather station was chosed based on the shortest distance between the station
and the apiary. In short, the internal sensor data variables were: temperature (◦C ) and
weight (kg ) whereas those from external sensors were temperature (◦C ), humidity (%),
pressure (hPa), dew point (◦C ), precipitation (mm) and wind speed (km/h).

Inspection data in loco were obtained using a standardized inspection form
in a weekly basis. The form here used, called Healthy Colony Checklist (HCC), was

2www.worldweatheronline.com
3www.solutionbee.com



proposed by the Bayer Bee Care Center (BBCC) 4. The HCC consists of 6 binary lev-
els (yes/no questions) to define the colony health: 1 - brood - all stages of brood
and instars (i.e. the larvae growth stages) present in appropriate amounts? 2 - adult
bees (Sufficient adult bees and age structure to care for brood and perform all tasks of
the colony?), 3 - queen (a young (<1 year old), productive, laying queen present?), 4 -
food (Sufficient nutritious water, forage, and food stores available (inside and/or out-
side the hive), and young brood being fed?), 5 - no stressors (no (apparent) stressors
present that would lead to reduced colony survival and/or growth potential?; and 6 -
suitable space (suitable space for current near-term expected colony size that is san-
itary, defendable, and room for egg laying?). Thus, if all these 6 questions are marked
"no problem", then the colony is considered 100 % healthy. On the other hand, each
item marked as ’with problem’, represents a theoretically decrease of 1/6 of the colony
health level.

2.2. Pre-processing

The raw data set, described in the subsection 2.1, has been merged with the in-
spection data from the HCC form, with a 7-day limit of the module difference between
the collection dates of the inspection data sets and sensors. Observations from sensors
that did not correspond to any inspection observations were excluded.

After obtaining the sensor and inspection data set, a "filter" was performed
to make the values consistent and as a way of controlling the variability of the phe-
nomenon. In the weight variable (kg ), removing observations from the BBCC apiary
with weights above 100kg , as they presented high variation in a short time, what was
considered to be measurement error. Subsequently we removed observations with in-
ternal temperatures greater than 40◦C , due to the thermal protection characteristics of
the hives, the bees tend to control the temperature and therefore internal temperatures
above 40◦C already are considered abnormal. Two variables were also extracted from
the variable "date of collection", the categorical variable "season of the year" (spring,
summer, autumn and winter) and the binary variable "day shift" (day and night).

Thus, a dataset of 661,025 observations has 16 variables: day shift, season, in-
ternal temperature (◦C ), weight (kg), external temperature (◦C ), humidity (%), pres-
sure (hPa), dew point (◦C ), precipitation (mm), speed wind (km/h) and the six binary
inspection factors (brood, adult bees, queen, food, no stressors and suitable space).

2.3. Elastic Net Logistic Regression

Regression analysis is a statistical technique to investigate and model the rela-
tionship between variables, these variables can be dependent or independent accord-
ing to the modeling purpose.

Logistic regression is a statistical method for modeling a classification prob-
lem. The logistic regression response variable has K levels Y = {1,2, . . . ,K }, these levels
will be obtained through clustering, section 2.4, and will be described and commented
in the Results section. Assuming you have n observations and p independent vari-
ables. Let yi ∈ {0,1, . . . ,K } be the value of the response variable for the observation

4https://beehealth.bayer.us/bayer-news-and-resources/setting-the-standard-for-managing-
healthy-honey-bee-colonies



i , i = 1,2, . . . ,n e xi = (xi 1, . . . , xi p ,1)> the i -th vector of observations from the X spec-
ification matrix. Then, the response variable is related to the explanatory variables
according to Equation 1.

P(Y = k|X = x) = eβ0k+β>
k xk∑K

l=1 eβ0l+β>
l xl

, i ∈ {1,2, . . . ,n};k ∈ {1,2, . . . ,K }. (1)

Logistic regression with Elastic Net or Elastic Net penalty is a mixture of the
penalty terms Lasso [Tibshirani 1996] and Ridge [Hoerl and Kennard 1970], introduced
by Zou and Hastie [Zou and Hastie 2005] to handle highly correlated variables and per-
form variable selection simultaneously. A non-negative regulatory term is added to the
negative log-likelihood function, −l (β; xi ) in order to control the "size" of the β vector
coefficients, using the term Ridge , and select variables "resetting" their coefficients,
using the term Lasso. The negative value of the log-likelihood function of the logistic
regression with penalty Elastic Net is given by

−l (β; xi ) =−l (β)+λg (β). (2)

Let YN×3 be the design matrix and yi l = I(yi = l ), then we have

−l (β; xi ) =−
[

1

n

n∑
i=1

(
K∑

k=1
yi l (β0k +xT

i βk )− log

(
K∑

k=1
eβ0k+xT

i βk

))]
+λ

[
(1−α)||β||2F /2+α

p∑
j=1

||β j ||q
]

. (3)

Note that the Equation 3 has two parameters: α andλ, the parameterα controls
the level of mixing between the two penalty methods, for α= 0 we have the regulariza-
tion Ridge and for α= 1 we have regularization Lasso, for values of α between 0 and 1
a mixture of the two methods is incorporated. The parameter λ controls the impact of
the penalty on the adjustment of the model and its coefficients. In general cases the
values of these parameters are obtained via cross-validation experiments.

The solution of the logistic regression equation with Elastic Net penalty, Equa-
tion 3, is found using numerical methods, more specifically by the method of descend-
ing coordinates [Friedman et al. 2010].

2.4. k-Prototypes

We used the statistical tool of clustering k-prototypes for the variable defini-
tion that characterize the evolutionary scenarios and or working in environments with
mixed types of variables (continuous and categorical). The k-prototype clustering al-
gorithm is based on a mixture of k-means and k-modes methods.

The k-means algorithm, one of the most used for data clustering, is classified
with a method of partial clustering. Given a X array of observations and a k (≤ n) num-
ber, the algorithm seeks to minimize the quadratic sum of intragroup errors by parti-
tioning the X matrix into k groups.

One of the main concern with k-means is its limitation to solve cases in which
the dataset is categorical since it was designed for environments where the data is con-



tinuous/numerical even converting categorical columns to dummys variables. To miti-
gate this problem, Huang (1998) proposed two methods (Equation 4), which both were
used in this paper.

The dissimilarity function (distance) between two objects A and B , both with p
attributes / variables, being v attributes of numerical character and c nominal / cate-
gorical attributes, such that p = v + c, is given by the Equation 4.

dpr oto(A,B) =
v∑

j=1
(a j −b j )2 +γ

c∑
j=v+1

δ(a j ,b j ), (4)

where the first term is the Euclidean distance measure squared in the numeric at-
tributes and the second term is the dissimilarity function (distance) used in the k-
modes method in the nominal / categorical attributes. The γ constant is used to
avoid any "favoring" of one or more attributes in the cluster. In the k-prototypes algo-
rithm, to obtain clusters, it minimizes a cost function based on the k-means algorithm
[Huang 1998], modified to attend data with mixed type variables.

3. Results

3.1. Clustering

The number of classes was defined by analyzing the scree-plot graph. A grid
search was performed with k, in which k ∈ {1,2, . . . ,10}, through the application of the
k-prototype algorithm whose results can be seen in Figure 1.

Figure 1. Objective function vs number of clusters using the k -prototypes algorithm.

After choosing the ideal number of classes, k = 3 (i.e. 3 clusters), we applied the
k-prototype algorithm to the pre-processed data set and its prototypes were evaluated.
Next, the interpretations of each obtained cluster are made and, in addition, Tables 2,
3 and 4 present basic statistics of the variables in each group.

3.1.1. Cluster #1

Regarding the moment of first cluster sample observation, we have a predomi-
nance (about 91%) of daytime samples and the majority observed during the summer
(63.8%). The internal temperature ranged from approximately 11◦C to almost 39◦C .



However, half of the samples are located between 23.89◦C and 32.22◦C , which is a good
range for the colony. With respect to humidity, values below the ideal were recorded,
with the first quartile equals to 50% and only a quarter of the samples with humidity
above 75%. Finally, regarding the in loco inspections, we have satisfactory results for
most items. However, it is important to note that 76.87% of the samples certified for
a young laying queen. Furthermore, 37.02% of the samples registered the presence of
stressors.

Table 2. Basic statistics for Cluster #1 variables with 277,063 samples.

(a) Continuous Variables

Statistics
Temperature
Internal (ºC)

Weight
(kg)

Temperature
External (ºC)

Humidity
(% )

Pressure
(%)

Point of
Dew (ºC)

Precipitation
(mm)

Speed of
Wind (km/h)

Minimum 11.11 0.01 8.00 11.00 995.0 -11.00 0.00 0.00
1st Quartile 23.89 23.72 22.00 50.00 1013.0 13.00 0.00 6.00
Median 27.78 29.16 25.00 63.00 1016.0 19.00 0.00 9.00
Mean 28.11 32.76 25.08 61.39 1016.0 16.67 0.0564 9.82
3rd Quartile 32.22 39.84 28.00 75.00 1019.0 22.00 0.00 12.00
Maximum 38.89 108.35 37.00 99.00 1033.0 26.00 4.7000 41.00

(b) Nominal / Categorical Variables

Season
Year

Frequency

Summer 176751
Autumn 51291
Winter 486
Spring 48535

Shift of
Day

Frequency

Day 252467
Night 24596

Valor Brood
Adult
Bees

Queen Food
No

Stressors
Suitable

Space

Presence (1) 243485 263817 212982 247878 174497 241544
Frequency 87.88 % 95.22 % 76.87 % 89.47 % 62.98 % 87.18 %

3.1.2. Cluster #2

As noted in Table 3, cluster #2 presents a day/night sample ratio more balanced
than Cluster #1, with a slight majority (about 60%) of night samples.

Table 3. Basic statistics for Cluster #2 variables with 158,252 samples.

(a) Continuous Variables

Statistics
Temperature
Internal (ºC)

Weight
(kg)

Temperature
External (ºC)

Humidity
(% )

Pressure
(%)

Point of
Dew (ºC)

Precipitation
(mm)

Speed of
Wind (km/h)

Minimum -8.89 0.01 -11.00 11.00 996.0 -20.00 0.00 0.00
1st Quartile 7.78 25.43 6.00 46.00 1013.0 -2.00 0.00 6.00
Median 12.78 29.96 10.00 60.00 1018.0 2.00 0.00 9.00
Mean 12.57 33.52 9.487 59.90 1018.0 1.78 0.02 10.31
3rd Quartile 17.22 40.07 13.00 74.00 1023.0 6.00 0.00 13.00
Maximum 37.22 89.88 24.00 100.00 1040.0 16.00 3.30 55.00

(b) Nominal / Categorical Variables

Season
Year

Frequency

Summer 13091
Autumn 90095
Winter 6045
Spring 49021

Shift of
Day

Frequency

Dia 62592
Night 95660

Valor Brood
Adult
Bees

Queen Food
No

Stressors
Suitable

Space

Presence (1) 141500 144831 101515 143465 130340 147698
Frequency 89.41 % 91.52 % 64.15 % 90.66 % 82.36 % 93.33 %

We also have an interesting number of autumn samples (almost 57%). By



checking continuous variables, the internal temperature changes from approximately
−9◦C to just over 37◦C . It is a clearly decrease in temperatures, as result of the decrease
in number of summer samples. Only 25% of the samples had temperatures equal to or
greater than 17.22◦C . Regarding humidity, there was a quarter of the samples between
74% and 100%. Following the in loco inspections, 64.15% of the observations stated
that there was a young laying queen and 82.36% of the samples showed no stressors.

3.1.3. Cluster #3

For the Cluster #3, the number of samples observed during the night is the
majority, about 81.5%. With respect to the seasons, the majority is distributed between
spring (39.7%) and summer (36.8%). In the description of the continuous variables,
we have an internal temperature range of approximately 4◦C to 35◦C . Examining
the first quartile of the internal temperature, less than 25% of the samples recorded
temperatures below 19◦C . Next, we have the humidity ranging from 44% to 100% in
this Cluster #3. In addition, 75% of the samples recorded humidity above 82%. Moving
on to the in loco inspections, we have ideal values. It is worth mentioning that almost
80% of the samples recorded the presence of a young laying queen. Another highlight
is the stressors, just over 60% of the samples indicated no apparent stressors.

Table 4. Basic statistics for Cluster #3 variables with 225,710 samples.

(a) Continuous Variables

Statistics
Temperature
Internal (ºC)

Weight
(kg)

Temperature
External (ºC)

Humidity
(% )

Pressure
(%)

Point of
Dew (ºC)

Precipitation
(mm)

Speed of
Wind (km/h)

Minimum 3.89 0.01 3.00 44.00 995.0 2.00 0.00 0.00
1st Quartile 18.89 21.00 17.00 82.00 1013.0 14.00 0.00 6.00
Median 22,22 26,13 20,00 89,00 1016,0 18,00 0.00 9.00
Mean 21.02 26.39 19.32 86.87 1016.0 17.29 0.11 9.86
3rd Quartile 23.89 30.52 22.00 93.00 1019.0 21.00 0.00 12.00
Maximum 35.00 82.56 29.00 100.00 1032.0 25.00 11.90 39.00

(b) Nominal / Categorical Variables

Season
Year

Frequency

Summer 83003
Autumn 52660
Winter 410
Spring 89585

Shift of
Day

Frequency

Day 41661
Night 184049

Valor Brood
Adult
Bees

Queen Food
No

Stressors
Suitable

Space

Presence (1) 183586 199778 180032 197344 135969 189375
Frequency 81.33 % 88.51 % 79.76 % 87.43 % 60.24 % 83.90 %

3.2. Classification

The parameters defined in the cross-validation experiment eliminated any
need for the Elastic Net penalty, since the λ parameter that provided greater accuracy
was λ= 0. Thus, with the current data and the value of λ= 0, the usual logistic regres-
sion was used. The results of applying the Elastic Net logistic regression to the test set
are shown in Table 5.

High discrimination is observed between the scenarios, given that the correct
answers (elements of the main diagonal) are greater than the errors (other elements).
This result shows that the data from internal and external sensors are sufficient to ex-
plain almost all the variability of the defined variable, which is showed in Table 5(b).



Table 5. Basic Statistics Metrics from the model

(a) Confusion Matrix for Logistic Regression Elastic Net with repeated cross-validation.
Predictions

Scenario 1 2 3
1 82645 86 139

Real 2 81 47239 108
3 392 150 67466

(b) Metrics obtained from the combination of the 3 scenarios.
Metrics

Accuracy Precision Recall F1-score AUC Log loss
0.9952 0.9952 0.9951 0.9952 0.9999 0.0342

The high discrimination of the 3 clusters (subsections 3.1.1, 3.1.2 and 3.1.3) by
the classifier is partly due to to the pattern found during the annual cycle and its high
correlation with the seasons, as shown in Figure 2. The colors black, gray and light gray
represent Clusters 1, 2 and 3, respectively. At the summer, Cluster 1 has the higher pro-
portion, this rate decreases as summer ends and increases when summer approaches
again. Conversely, Cluster 2 has the lowest rate in the summer, furthermore in the
beginning of autumn it increases and it is the highest in winter and the first month of
spring, but starts to decrease as summer approaches. Moreover, regarding Cluster 3,
its rate is higher only in May, but it maintains a substantial rate from mid-spring to
mid-autumn, i.e. from April to October.

Figure 2. Scenarios along the months of the year. The month of February was hidden
due to few observations in the period, all from the same apiary.

4. Discussion

We can highlight the difference between Cluster #1, Cluster #2, and Cluster #3
with respect to (i) an undesirable state, which represents risk to the colony health; (ii)
a relatively good but not ideal state; and (iii) a state very close to the ideal, which rep-
resents the best colony healthy state. Thus, ordered by increasing health and devel-
opment potential of the colony, according to section 3.1 we have Cluster #2 as being



a worrying state, Cluster #1 as being a good state and Cluster #3 as being the optimal
state.

The internal temperatures of Cluster #2 present a risk to the colony health, as
shown in Table 3(a). While Clusters #1 and #3 have adequate internal temperature
ranges, the first one are even better though (Table 2(a) and 4(a)). Regarding humid-
ity, the Cluster #3 stands out positively from the others, about 75% of the samples
with humidity equal to or greater than 82%, the range of 90 to 95% being ideal for
the brood rearing [Abou-Shaara et al. 2017]. Thus, the Cluster #3 represents the best
level of colony health. Similarly, for nominal variables, in relation to the presence of a
young queen (ag e < 1year ), according to Table 3(b) we have in Cluster #2 the lowest
rate whereas Cluster #3 has the best (almost 80%), as shown in Table 4(b). However, re-
garding the absence of stressors, we have the highest rate (82.36%) in Cluster #2, since
this cluster has fewer samples during the summer, the time of year when there are more
stress factors for the colony.

Furthermore, regarding the parameter λ which defines the degree of penalty
applied to the model and which was defined as 0 (zero), in the case of the usual logistic
regression, it does not rule out the possibility that the addition of more variables, e.g.
more humidity sensors or temperature, problems of multicollinearity or adding vari-
ables that do not add information appear. On the other hand, based on sensor data,
our proposal is able to determine whether there are problems, whether these prob-
lems are relevant or not and, through diagnosis, readjust the model, all based on its
precision.

5. Conclusion

Here we propose a two-fold statistical model with i) a clustering method used
to determine and characterize the evolutionary states of the colonies through sensor
measurements and inspection, and ii) a classification method to obtain a model with a
very high precision (99.5%) to classify the clusters/scenarios without inspection data,
since we aim to diagnose the colony without having to open it. The main contribution
of this paper is a high precision model that can adapt to new data naturally and making
it possible to determine with a high degree of certainty when the colony needs immedi-
ate intervention (Cluster #2), when it may need some attention (Cluster #1) and when
it is well and healthy, without the need for external assistance (Cluster #3).
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