
ApisFlow: a Real-Time Automated Tool to Detect, Classify
and Count Honey Bees Castes at the Hive Entrance

Gabriel Vasconcelos Fruet1, Isac Gabriel Abrahão Bomfim3,
Rafael Capelo Domingues1, Antonio Rafael Braga2, Danielo G. Gomes1

1Grupo de Redes de Computadores, Engenharia de Software e Sistemas (GREat)
Departamento de Engenharia de Teleinformática

Centro de Tecnologia, Universidade Federal do Ceará (UFC), Fortaleza - CE

2Redes de Computadores – Campus Quixadá,
Universidade Federal do Ceará (UFC), Quixadá-CE

3Laboratório de Apicultura, Campus Crateús,
Instituto Federal do Ceará (IFCE), Crateús-CE

[gabrielfruet,rafaelcapelo22]@alu.ufc.br

[rafaelbraga, danielo]@ufc.br, isac.bomfim@ifce.edu.br

Abstract. There are three types of castes in honey bee (Apis mellifera L.) colony:
the queen, workers, and drones. Although they are all important to perpetuate
the species, drones do not collaborate with tasks in the colony and their counting
may overestimate the real number of foraging workers, individuals who really
contribute to pollination services. So, monitoring, classifying, and counting the
flow and proportion of workers and drones through the beehive entrance provide
useful information related to the colony’s well-being. This has become possible
thanks to the so-called Precision Beekeeeping, an emerging field of digital agri-
culture to gather and transfer bee-related data over time. Here, we propose
ApisFlow, a real-time object-tracking framework for automatically detecting,
tracking, classifying and counting the flow of honey bee castes at the hive en-
trance. ApisFlow uses computer vision and machine learning methods and al-
gorithms. We strongly believe that ApisFlow allows bee counting, tracking, and
classification in a less laborious, safe, fast, and accurate way to help beekeepers
in making decisions saving time. Suggesting a high-precision algorithm with a
mean error rate below 5%.

1. Introduction
Precision beekeeping is an emerging field of digital agriculture that integrates Computer
Science/Engineering, Biology, and Zootechnics to promote remote non-invasive monitor-
ing of bee colonies. Thanks to digital infrastructures and computing methods, precision
beekeeping allows monitoring honey bee (Apis mellifera L.) colonies seeking to support
and improve pollination services, as well the well-being and production of these insects
and beekeepers [Hadjur et al. 2022]. Although this bee species is the most used for pol-
lination services in commercial plantations around the world [Khalifa et al. 2021], they
need to meet some minimum standards in order to well perform their role as commercial
pollinators. Therefore, some parameters can be used to verify whether and when a colony
is suitable for this service [Delaplane et al. 2013]. Counting the flow of bees entering and

leaving the hive is a good indicator for that [Sagili et al. 2011]. Besides providing a good
estimate of the colony strength, observing the flow of bees in the hive entrance associated
with the detection and classification of the type of bee caste can provide more accurate
information about the pollinator potential of a colony, as well as a prediction about swarm-
ing [Boes 2010]. Honeybee colonies have three types of castes: the queen, the workers,
and the drones. Although they are all important for the perpetuation of this species on the
planet, workers and drones are the castes that are most often seen entering and leaving
the nest As drones do not collaborate with tasks in the colony and their numbers increase
when the colony is heavily populous, their count may overestimate the real number of
foraging workers, individuals who really contribute to pollination services. In addition,
these drone counts can be used as swarming predictors, helping beekeepers not to have
their colonies suddenly weakened, as long as they receive this information and quickly
carry out adequate management to avoid this phenomenon [Boes 2010]. However, the
presence of an observer in front of a beehive for counting and detecting bees, in addition
to disturbing the activities of the bee colony, can be dangerous and exhausting for this ob-
server, as well as it is not practical to be carried out continuously [Delaplane et al. 2013].

Therefore, to tackle this problem, computer vision algorithms based on Digi-
tal Image Processing (DIP) techniques can be used to monitor these variables at a dis-
tance and in real-time, facilitating diagnoses or predictions of certain events that are hap-
pening or will occur in certain colony or even in an entire apiary [Barros et al. 2021,
Albuquerque et al. 2022, Andrijević et al. 2022]. From this perspective, here we pro-
pose ApisFlow, a framework capable of automatically detecting, tracking, classifying,
and counting in real time the honey bee castes entering and leaving the beehive by meth-
ods and algorithms of computer vision and machine learning.

2. Material and Method

2.1. Videos dataset

We used a honey bee dataset from the Appalachian State University1 to test and validate
ApisFlow. This dataset has 1-minute long videos captured from the entrance of 24 bee-
hives and has been recorded since April 2022, on a daily basis, every five minutes, from
7h:00 a.m. to 8h:00 p.m.

2.2. Hardware and Software

Machine learning and computer vision algorithms are typically CPU and GPU intensive as
as they deal with billions of mathematical operations for making successful predictions.
To tackle this challenge, we used a robust computer system that included a high-end
GPU (GTX 1060 6GB), a sizeable 16GB of RAM, i5 7400, Windows 10, and GPU-
powered algorithms. Additionally, we relied on Python 3.10.9, an advanced programming
language, and leveraged a range of helpful libraries such as NumPy, SciPy, OpenCV, and
the standard Python library.

2.3. ApisFlow flowchart

Figure 1 shows the ApisFlow dataflow. To use the ApisFlow framework, you need two
things: (1) the videos you want to count bees, and (2) a trained object detector specific

1https://appmais.cs.appstate.edu/

to the dataset you are using with ApisFlow. Once you have these two requirements, you
can start counting the data. The counting process happens in a real-time and online way,
meaning it happens while the video is being processed, and each frame is only viewed
once (3). ApisFlow detects objects in the images using the object detector you plugged
in, then associates track, classifies, and counts them in that order (4). After processing
each video, the counted data is saved (5) and exported for each class (6).

Figure 1. ApisFlow flowchart.

Over the last years, we have seen interesting advances in object detection tools
such as YOLO2 (You Only Look Once), R-CNN [Girshick et al. 2014], and MobileNet
[Howard et al. 2017]. By following the best practices of software engineering, we de-
fined interfaces for object detector creation and detection. This allows us to seamlessly
use different algorithms without requiring modifications to the underlying code, only the
object detector being used. In our tests, we mainly used YOLOv8, which is currently
considered the most advanced real-time object detection method. YOLO is suitable for
the purpose of this study because it achieves both high accuracy and fast prediction times
[Yin et al. 2020].

2.4. Classification

The object detection algorithm plays a crucial role in determining the object’s category
within an image. In this study, we specifically focused on identifying and categorizing
workers, drones, and other insects, referred to as potential enemies.

2https://docs.ultralytics.com/

(a) all classes (b) workers and drones (c) none

Figure 2. Classified objects*
*A yellow box represents a worker bee; a purple box indicates a drone bee; a blue box represents a

potential enemy. Additionally, the blue line depicts the path that a bee has traversed over time.

Figure 2 shows frames from videos processed by ApisFlow. Colored rectangles
indicate the object’s class: yellow for workers, purple for drones, and blue for potential
enemies. Additionally, a blue gradient line represents the estimated path of the object.

During tracking, inconsistencies in object classification may arise as frames
progress, particularly when dealing with objects that are very similar. To address this
issue, we have empirically established a solution. For each tracked object, we store the
50 most recent classifications. If more than 20% of these classifications label the object
as a drone or potential adversary, we assign it the most common class between the two.
Otherwise, we classify it as a worker. We implemented this approach because training an
object detector with precise differentiation between workers and drones is challenging.
Given their similarities and the prevalence of workers in most images, the model occa-
sionally misclassifies drones as workers. To mitigate this, we rely on this classification
estimation method.

2.5. Estimating the bees movement via Kalman Filter

When monitoring honey bees at the entrance of the beehive, we observe their takeoff
and landing activities. To detect honey bees, specifically foraging worker bees or drones,
we employed object detection algorithms. However, these algorithms exhibit some un-
certainty when determining the exact bounding boxes around the bees. To address this
concern, we used Kalman Filter. The Kalman Filter is an iterative filtering process that
helps refine the estimation of measured variables with a certain level of uncertainty, al-
lowing us to obtain more accurate results.

(a) i (b) i+1 (c) i+2

Figure 3. Consecutive frames example.

Figure 3 shows three consecutive frames (i, i+1, i+2) of the outgoing and incom-
ing flow of foragers and drones at the beehive entrance that were estimated through our
Kalman Filter. For every object being tracked, we have a vector of dynamic states that de-
scribe the tracking estimated state throughout its existence. This dynamic state brings the
10 following features used in the Kalman filtering process: x, y, a, h, vx, vy, va, vh, ax, ay,
where x and y are the coordinates of the track in the frame, a is the aspect ratio of the
bounding box that surround the object, and h the height of the bounding box, v means
velocity and a means acceleration.

2.6. Object Tracking

Many improvements in object tracking have been discussed and implemented over the
last few years. DeepSORT, for instance, is a simple, online and real-time tracking objects
algorithm while assigning an ID to each object [Yang et al. 2022]3.

The main challenge of tracking is figuring out what news detection belongs to
what existing tracks. To tackle this problem, we need to establish how probable is the
combination of a track and a detection. To determine the likelihood of a track, we can
make use of metrics to create a cost function for the combination of a tracked object and
detection, that will be inversely proportional to the probability of being the same object.

A simple way to measure distance is by using the Euclidean distance, we use it
to find the distance between where we expect something to be (i.e predicted state from
Kalman Filter) and where we actually detect it. We also consider the difference in velocity
between the predicted and detected positions in relation to the track. Another metric that
we use is the cosine distance, this helps us see how much a path differs from what we
expect, to calculate it, we look at the speed of the path and compare it to the speed of the
detected object in relation to the path. IoU is another useful metric that we use to see how
much two rectangles overlap, we use it by comparing the projected state bounding box
and the detection bounding box.

Based on these metrics, we can define the following equation for estimating a cost
to a combination of a track and a detection:

||pt − pd|| · 3

√
(α + 1− vt · vd

||vt|| · ||vd||
) · (β + ||vt − vd||) · (γ + 1− IoU(bt, bd)) · λ (1)

where p is the position, v is the velocity and b is the bounding box, variables underscored
with t are related to track, and with d are related to detection, greek letters are constants.

The user has the option to select the constants values and, in our tests, we used α =
0.5; β = 0.5, γ = 1, λ = 0.1. These constants determine the level of influence each metric
has on the final score. Without these constants, certain metrics may suggest the optimal
combination, while others may have disproportionate importance. Therefore, we apply a
constant value to each metric to ensure a balanced evaluation.

3https://nanonets.com/blog/object-tracking-deepsort/

(a) non-null velocity (b) null velocity.

Figure 4. Bee flow heatmaps.

Figure 4 shows heatmaps of bee movement, where spots closer to 1 represent the
highest cost and spots closer to 0 indicate the lowest cost. This implies that if detection
occurs in a location with a low cost compared to a particular track, it is highly probable
that it belongs to the same bee. The detection assigned to a specific track is determined
by selecting the one with the lowest cost among all the detections, excluding the lowest
cost associated with any other track. We solve this linear assignment problem using the
Hungarian algorithm.

2.7. Counting
When measuring the flow of bees in a colony, the typical approach employed by beekeep-
ers is to count incoming and outgoing bees based on their observable behavior. If a bee
was outside and enters the beehive, it is considered an incoming bee. Conversely, if a
bee was inside the colony and leaves, it is considered an outgoing bee. However, in the
context of this paper, accurately determining whether a bee has truly entered or exited
the beehive poses challenges. Bee entrance area is often congested with a multitude of
bees, making tracking difficult and increasing the likelihood of confusion. To address this
issue, we propose the use of a designated region surrounding the entrance, referred to as
the ”Entrance Box” (Figure 5).

(a) congested bee hive entrance (b) entrance without congestion

Figure 5. Entrance bounding box (green rectangle).

Referring to the green rectangle shown in Figure 5, we can readily determine
whether a bee is positioned inside or outside of it. Building upon this observation, we
established specific states for each tracked bee by considering only their initial and current
positions. These states are summarized in Table 1 and illustrated in Figure 6.

Table 1. Bees flow states.

Initial Current Flow State
Inside Outside Outgoing

Outside Inside Incoming
Inside Inside Guarding

Outside Outside Walking outside
Less than 5 frames tracked Inconclusive

(a) incoming (b) outgoing (c) all states

Figure 6. Bees flow states.

2.8. Error measurement

During the development of the counting algorithm, it is essential to assess its effectiveness
and accuracy in predicting bee counts. The simplest method we employed for measuring
this involves manual counting (named here as real) of incoming and outgoing bees, which
is then compared to the counts generated by the automated system (named here as mea-
sured).

To manually count the bees, we used a hand tally counter to keep track of the num-
bers. We watched the bee videos at half the normal speed to facilitate the identification of
bees entering and leaving the hive. The counting process involved focusing on one class at
a time (e.g., drones, workers, and potential enemies). Before commencing the counting,
we established predefined rules to determine when a bee should be considered as entering
or leaving the hive. These rules align with those described earlier in Subsection 2.7. Bees
that were guarding the hive or simply walking outside were not included in our count, as
they were not relevant to our study.

Furthermore, we needed to devise a method for calculating the error in our mea-
surements. Since our data sometimes included a true count of zero, using a simple formula
such as |real − measured| · real−1 would result in an infinite value if the real count is
zero. To overcome this issue, we utilized a metric known as MAAP (Mean Arctangent
Absolute Percentage) [Hyndman and Koehler 2006]. The MAAP metric addresses this
problem by approaching zero instead of infinity, enabling more accurate error calcula-
tions even when the true count is zero. The error calculation is performed separately for
each combination of class and flow (e.g., incoming workers, and outgoing drones).

3. Results and Discussion
3.1. Prediction precision
We looked at 27 videos of bees entering and leaving hives and counted the number of
drones and workers bees in each video. We compared our manual counts (real) with
the counts generated by ApisFlow (measured). However, because there were very few
instances of enemies invading the hive, we could not test the algorithm’s accuracy in
counting them; we can only prove the efficiency of counting drones and workers.

(a)

(b)

Figure 7. Comparison between real and measured data (a) human counted versus
machine counted outgoing flow. (b) human counted versus machine counted
incoming flow.

Table 2. Class errors

Worker Drone
Incoming 3.7% 4.0%
Outgoing 6.1% 5.9%

Table 2 and Figure 7 show a minor error across all classes compared to recent
video bee counters as discussed by Odemer (2022). Please note a difference of approxi-
mately 2% between the incoming and outgoing bees in each class. This difference may
be attributed to the increased challenge of predicting when a bee will start flying out of
the beehive, compared to when it enters. Outgoing bees, being stationary at the entrance
and departing randomly, pose a greater difficulty for prediction. Nevertheless, the im-
pressive results hold significance, particularly due to our accomplishment of real-time
performance and low-resource applications.

3.2. Prediction time
Since we are working with videos with a frame rate of 30 frames per second (fps), the
ApisFlow tool must also run at a speed of at least 30 fps. The algorithm’s performance
will depend directly on the tools used (Section 2.2).

ApisFlow perfomed at 38.9 fps average on our machine, with a 12.9 fps standard
deviation. Based on that, we can see that, on our machine, the ApisFlow ran, on average,
faster than the data supplied, meaning that it can be considered a real-time algorithm.

To achieve real-time processing, we made several improvements to the tracking
algorithm. These included using faster array access in NumPy, minimizing the use of
vector and matrix operations, and identifying which parts of the program took the most
time, trying to speed them up. As a result, we could process our part of the algorithm in
an average of 2 ms. However, the object detector took up most of the processing time,
which took an average of 13 ms. Since ApisFlow is not tied to a specific object detection
algorithm, as new research on object detection progresses, we can easily incorporate faster
algorithms and achieve speedier processing rates in frames per second.

4. Conclusion
This paper’s main contribution is the improved recognition of worker bees and drones,
making bee counting, tracking, and classification easier, safer, faster, and more precise for
beekeepers. The ApisFlow framework enables real-time remote access, opening doors for
advancements in Precision Beekeeping. It enhances our understanding of honey bee flow
within beehives, providing valuable insights into predicting colony swarming, assessing
colony health, identifying potential threats, evaluating pollination potential, detecting lay-
ing workers, and recognizing deficits in returning foragers.

As a suggestion for future work, we propose integrating a particle filter to improve
the tracking of bee movement and overall accuracy. Furthermore, to enhance drone de-
tection, we recommend exploring the combination of object detector classification with
ratio proportion classification [O’Brien et al. 2022].

Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Danielo G. Gomes (processes
311845/2022-3 and 432585/2016-8), Gabriel Fruet (process 144754/2022-3), and Rafael
Capelo (process 162249/2022-5) thank the financial support of the Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico-Brasil (CNPq). Antonio Rafael Braga
thanks for the financial support of the Fundação Cearense de Apoio ao Desenvolvimento
Cientı́fico e Tecnológico - FUNCAP, process BP5-00197-00220.02.00/22. The authors
would like to express their gratitude to Dr. Rahman Tashakkori for providing the video
dataset used in this paper.

References
Albuquerque, D. Q., Braga, A. R., Bomfim, I. G. A., and Gomes, D. G. (2022). Aplicando

um modelo yolo para detectar e diferenciar por imagem castas de abelhas melı́feras de
forma automatizada. In Anais do XIII Workshop de Computação Aplicada à Gestão do
Meio Ambiente e Recursos Naturais, pages 51–60. SBC.

Andrijević, N., Urošević, V., Arsić, B., Herceg, D., and Savić, B. (2022). Iot monitoring
and prediction modeling of honeybee activity with alarm. Electronics, 11(5):783.

Barros, C., Freitas, E. D., Braga, A. R., Bomfim, I. G., and Gomes, D. (2021). Aplicando
redes neurais convolucionais em imagens para reconhecimento automatizado de abel-
has melı́feras (Apis mellifera l.). In Anais do XII Workshop de Computação Aplicada à
Gestão do Meio Ambiente e Recursos Naturais, pages 19–28, Porto Alegre, RS, Brasil.
SBC. https://doi.org/10.5753/wcama.2021.15733.

Boes, K. (2010). Honeybee colony drone production and maintenance in accordance with
environmental factors: an interplay of queen and worker decisions. Insectes sociaux,
57:1–9.

Delaplane, K. S., Dag, A., Danka, R. G., Freitas, B. M., Garibaldi, L. A., Goodwin,
R. M., and Hormaza, J. I. (2013). Standard methods for pollination research with apis
mellifera. Journal of Apicultural Research, 52(4):1–28.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation.

Hadjur, H., Ammar, D., and Lefèvre, L. (2022). Toward an intelligent and efficient bee-
hive: A survey of precision beekeeping systems and services. Computers and Elec-
tronics in Agriculture, 192:106604. https://doi.org/10.1016/j.compag.2021.106604.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679–688.

Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F.,
Musharraf, S. G., AlAjmi, M. F., Zhao, C., Masry, S. H., Abdel-Daim, M. M., et al.
(2021). Overview of bee pollination and its economic value for crop production. In-
sects, 12(8):688.

Odemer, R. (2022). Approaches, challenges and recent advances in automated bee count-
ing devices: A review. Annals of Applied Biology, 180(1):73–89.

O’Brien, W., Tashakkori, R., Parry, R. M., Hamza, A., and Graber, J. (2022). Estimating
the number of drones at the entrance of a honey bee hive using machine learning tools.
In SoutheastCon 2022, pages 397–404.

Sagili, R. R., Burgett, D., et al. (2011). Evaluating honey bee colonies for pollination: a
guide for commercial growers and beekeepers.

Yang, F., Zhang, X., and Liu, B. (2022). Video object tracking based on yolov7 and
deepsort. arXiv preprint arXiv:2207.12202.

Yin, Y., Li, H., and Fu, W. (2020). Faster-yolo: An accurate and faster object detection
method. Digital Signal Processing, 102:102756.

