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Abstract. Analytical solutions of equations are of fundamental importance in 

understanding and describing physical phenomena.  In this work we present the solution 

of the two-dimensional advection-diffusion equation in Cartesian geometry by the GILTT 

approach, considering that the eddy diffusivity and the vertical wind profile depends on 

the z variable. To carry more information of the original problem, a Sturm-Liouville 

problem given by Bessel functions is used as basis in the solution. Numerical simulations 

and comparisons with experimental data are presented.  

 

1. Introduction 

Analytical solutions of equations are of fundamental importance in understanding and describing 

physical phenomena, since they are able to take into account all the parameters of a problem, and 

investigate their influence and it easy to obtain the asymptotic behavior of the solution, which is 

usually difficult to generate through numerical calculations. Moreover, when using models, while 

they are rather sophisticated instruments that ultimately reflect the current state of knowledge on 

turbulent transport in the atmosphere, the results they provide are subject to a considerable margin 

of error. This is due to various factors, including in particular the uncertainty of the intrinsic 

variability of the atmosphere. Models, in fact, provide values expressed as an average, i.e. a mean 

value obtained by the repeated performance of many experiments, while the measured 

concentrations are a single value of the sample to which the ensemble average provided by models 

refer. This is a general characteristic of the theory of atmospheric turbulence and is a consequence 

of the statistical approach used in attempting to parameterize the chaotic character of the measured 

data.  An analytical solution can be useful in evaluating the performances of numerical model (that 

solve numerically the advection diffusion equation) that could compare their results, not only 

against experimental data but, in an easier way, with the solution itself in order to check numerical 

errors without the uncertainties presented above. 

   In the last years, special attention has been given to the issue of searching analytical 

solutions for the advection-diffusion equation in order to simulate the pollutant dispersion in the 

Atmospheric Boundary Layer (ABL). We mention the works of Rounds (1955), Smith (1957), 

Scriven and Fischer (1975), Demuth (1978), van Ulden (1978), Nieuwstadt (1980), Nieuwstadt and 

de Haan (1981), Tagliazucca et al. (1985), Tirabassi (1989), Koch (1989), Tirabassi and Rizza 

(1994), Sharan et al., (1996), Lin and Hildemann (1997), Sharan and Modani (2005, 2006). These 
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solutions are valid for very specialized practical situations with restrictions on wind and eddy 

diffusivities vertical profiles. To solve the advection-diffusion equation for more realistic physical 

scenario appeared in the literature the ADMM (Advection Diffusion Multilayer Method) approach 

(Moreira et al. (2006), Costa et al. (2006)), valid for any eddy diffusivity and wind profile 

depending on the height. The main idea relies on the discretisation of the ABL in a multilayer 

domain, assuming in each layer that the eddy diffusivity and wind profile take averaged values. The 

resulting advection-diffusion equation in each layer is then solved by the Laplace Transform 

technique. A more general methodology, that skips the multilayer discretisation of the height z 

appearing in the ADMM approach, is known in the literature as GILTT (Generalized Integral 

Laplace Transform Technique) approach. The main idea of this methodology comprehends the 

steps: expansion of the concentration in series of eigenfunctions attained from an auxiliary problem, 

replacing this equation in the advection-diffusion equation and taking moments, we come out with a 

matrix ordinary differential equation that is then solved analytically by the Laplace Transform 

technique (Moreira et al. (2009), Buske et al. (2011, 2012)).  Similar solutions were proposed by 

Kumar e Sharan (2010) and Guerreiro et al. (2012).  

To reach our objective, we begin presenting the solution of the two-dimensional advection-

diffusion equation in Cartesian geometry by the GILTT approach, considering that the eddy 

diffusivity and the vertical wind profile depends on the z variable (is important to remember that the 

eddy diffusivity can depend also on time and space as in the articles of Moreira et al. (2009) and 

Vilhena et al. (2012)). Traditionally, the GILTT approach uses as basis eigenfunctions given in 

terms of cosine functions. Here, a new Sturm-Liouville problem will be considered, carrying more 

information of the original problem. In this case, the eigenfunctions are given by Bessel functions. 

Once we construct the general solution, numerical simulations and future perspectives of this 

methodology are presented.  

 

2. The advection-diffusion equation and the GILTT method 

The advection-diffusion equation of air pollution in the atmosphere is essentially a statement of 

conservation of the suspended material and it can be written as: 
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where c  denotes the average concentration of a passive contaminant (g/m
3
), u , v , w  are the mean 

wind (m/s) components along the axis x, y and z, respectively and S is the source term. The terms 

''cu , ''cv  and ''cw  represent, respectively, the turbulent fluxes of contaminants (g/sm
2
) in the  

longitudinal, crosswind and vertical directions.  

One of the most widely used closures for Eq. (1), is based on the gradient transport 

hypothesis (or K-theory) which, in analogy with the Fick’s law of molecular diffusion, assumes that 

turbulence causes a net movement of material down the gradient of material concentration at a rate 

which is proportional to the magnitude of the gradient (Seinfeld and Pandis (1998)): 
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where xK , yK , zK  are the Cartesian components of eddy diffusivity (m
2
/s) in the x, y and z 

directions, respectively. In the first order closure all the information on the turbulence complexity is 

contained in the eddy diffusivities. 

The Eq. (2), combined with the continuity equation of mass, leads to the advection-diffusion 

equation. For a Cartesian coordinate system we rewrite the advection-diffusion equation like 

(Blackadar (1997)): 
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The advection-diffusion equation (3) can be solved analytically by the 3D-GILTT approach 

(Buske et al. (2011, 2012), Vilhena et al. (2012)). Here, for comparison with experimental data we 

will assume for the advection-diffusion equation (3): stationary conditions, crosswind integrated 

concentrations and that the advection is much higher than the diffusion in the x-direction. After the 

simplifications, let us consider the problem:  
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for hz 0  and 0x , subject to the boundary conditions of zero flux at the ground and ABL top 

and a source with emission Q at height sH  ( )()(0, sy Hz=Qzcu   at x = 0). Here 
y

c  represents 

the crosswind integrated concentration, h is the ABL height, zK  is the eddy diffusivity variable 

with the height z ( )(zKK z  ),u  is the longitudinal wind speed ( )(zuu  ), and δ is the Dirac delta 

function.  

Following the works of Moreira et al. (2009), Buske et al. (2011) and Vilhena et al. (2012) 

we pose that the solution of problem (4) has the form:  

 



N

n
nny

zxczxc
0

)()(),(                                                         (5) 

where )(zn  are the eigenfunctions of an associated Sturm-Liouville problem and )(xc
n

 is the 

transformed concentration.  

In the application of the GILTT method, the following auxiliary Sturm-Liouville problem is 

chosen:  

0)()( 2"  zz nnn                          at     0 < z < h               (6a) 

0)('  zn                                at     z  = 0, h ,               (6b) 

which has the solution )cos()( zz nn  , where )(zn  are the eigenfunctions and hnn /   

(n=0,1,2,…) are the respective eigenvalues.   

Here, a different expansion for the solution of the advection-diffusion equation will be 

explored. In other words, we propose another Sturm-Liouville problem as the basis generator.  The 

idea of this proposal comes from the fact that the auxiliary problem (6) has the same shape of the 

ordinary differential equation (relative do z variable) that appears in the solution of Eq. (4) by the 

method of separation of variables, when the vertical eddy diffusivity is considered constant. This 

suggests the possibility of using a new auxiliary problem that appears in the solution of Eq. (4) by 

the method of separation of variables, considering linear vertical eddy diffusivity, Kz = z, given by: 

0)())(( 2''  zzz nnnn                          at     0 < z < h               (7a) 

0)('  zn                                at     z  = 0, h ,               (7b) 

which has Bessel functions of first specie and order zero as solution )/()( 0 hzJz nn  , where 

n  (n=0,1,2,…) are the positive roots of the Bessel function of first specie and order one, 1J . 

Problem (7) carries more information from the original problem than the series expansion (5).  
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To determine the unknown coefficient )(xc
n

 we replace Eq. (5) in Eq. (3) and applying the 

operator dzz

h
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0

)() ( , we come out with the result:  
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Observe that, using the integration parts technique, we can recast the second integral in Eq. (8) as: 
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 for both Sturm-Liouville problems considered in this work (Eqs. (6) and (7)). 

Therefore, Eq. (8) is rewritten as: 
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which can be recast in matrix form like: 

0)()('  xFYxY ,                                               (10) 

subject to the initial condition (0))0(
n

cY  . Here Y(x) is the vector whose components are )(xc
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The vector Y(0) is obtained from the source condition, by a similar procedure leading to 
1)()0()0(  BHQcY

smn
, where B

-1
 is the inverse of matrix B given above. 

The transformed  problem represented by the Eq. (10) is solved analytically following the 

work of Moreira et al. (2009), by the combined Laplace transform technique and diagonalization of 

the matrix F  ( 1 XDXF ). By this procedure we come out with the result:  

    )0(11
YXDIsXsY 

  ,                                                    (11) 

where  sY  denotes the Laplace Transform of the vector  xY . Here D is the diagonal matrix of 

eigenvalues of the matrix F, X is the matrix of the respective eigenfunctions and X
-1

 it is the inverse. 

The elements of the matrix (sI + D) have the form {s + dn} where 
n

d  are the eigenvalues of the 

matrix F  given in Eq. (9). Performing the Laplace transform inversion of Eq. (11), we come out 

with: 

  )0()( 1YXxGXxY   ,                                       (12) 

where G(x) is the diagonal matrix with elements xid
e
 . 

Therefore, the solution for the concentration given by Eq. (5) is now well determined once 

the vector  )(xc
n

 is known. The solution of the problem (4) using as basis eigenfunctions given in 

terms of cosines and Bessel functions will be called here as GILTTC and GILTTB, respectively. 

 

3. Numerical results 

To illustrate the aptness of the discussed formulation to simulate contaminant dispersion in the 

ABL, we evaluate the performance of the discussed solutions against experimental ground-level 

concentration using different dispersion experiments available in the literature. Below we briefly 
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discuss the Copenhagen and Prairie-Grass dispersion experiments, which allow us to validate the 

results encountered by the mentioned solutions. The computational code was developed in Fortran. 

The Copenhagen field campaign took place in the suburbs of Copenhagen in 1978, and is 

described by Gryning and Lyck (1984).  It consisted of tracer released without buoyancy from a 

tower at a height of 115 m, and collection of tracer sampling units at the ground-level positions (z = 

0) at the maximum of three crosswind arcs. The sampling units were positioned at two to six 

kilometers from the point of release. The site was mainly residential with a roughness length of the 

0.6 m. The meteorological conditions during the dispersion experiments ranged from moderately 

unstable to convective.  

In the Prairie-Grass experiment, according to Barad (1958), the tracer SO2 was released 

without buoyancy at a height of 0.46 m, and collected at a height of 1.5 m at five downwind 

distances (50, 100, 200, 400 and 800 m) at O'Neill, Nebraska in 1956. The Prairie Grass site was 

quite flat and much smooth with a roughness length of 0.6 cm. Here we consider the experimental 

data appearing in the paper of Nieuwstadt (1980).  

The choice of the turbulent parameterization represents a fundamental aspect for pollutant 

dispersion modeling. In terms of the convective scaling parameters, the vertical eddy diffusivity can 

be formulated as (Degrazia et al. (1997)): 
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where z is height; h is the thickness of the ABL and 
*

w is the convective velocity scale. 

In our simulations, we use the wind speed profile described by a power law, according 

Panofsky and Dutton (1984),  
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where zu  and 1u  are the mean wind velocity respectively at the heights z  and 1z , while  is an 

exponent that is related to the intensity of turbulence (Irwin (1979)). For the Copenhagen 

experiment 1.0  and for the Prairie-Grass experiment 07.0 . 

In Tables 1 and 2 we present some performances evaluations of the model for the 

Copenhagen and Prairie-Grass experiments, respectively, using the statistical evaluation procedure 

described by Hanna (1989) and defined as: 

NMSE (normalized mean square error) = 
oppo CCCC 2)(  , 

FA2 = fraction of data (%, normalized to 1) for 2)/(5.0  op CC , 

COR (correlation coefficient) = 
poppoo CCCC  )(( , 

FB (fractional bias) = )(5.0 popo CCCC  , 

FS (fractional standard deviations) = )(5.0)( popo  , 

where the subscripts o and p refer to observed and predicted quantities, respectively, and the 

overbar indicates an averaged value. The statistical index FB says if the predicted quantities 

underestimate or overestimate the observed ones. The statistical index NMSE represents the model 

values dispersion in respect to data dispersion. The best results are expected to have values near to 

zero for the indices NMSE, FB and FS, and near to 1 in the indices COR and FA2. 

For the Copenhagen experiment the statistical indices of Table 1 point out that a good 

agreement is obtained between experimental data and the GILTT method for both basis, regarding 
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the NMSE, FB and FS values relatively near to zero and COR relatively near to 1. At this point, we 

can affirm that no significant difference between the models was observed for the high source of the 

Copenhagen experiment. 

 

Table 1: Statistical indices evaluating the model performance using the Copenhagen experiment. 

Model NMSE COR FA2 FB FS 

GILTTC – N=100 0.05 0.91 1.00 -0.01 0.14 

GILTTB  – N=100 0.05 0.91 1.00 -0.04 0.13 

 

Table 2 shows the performance of the solution for the Prairie-Grass experiment. The 

statistical indices of the table point out that a reasonable agreement is obtained between 

experimental data and the GILTT method. It is important to notice that the GILTTB numerically 

converges much faster than GILTTC (while GILTTB needs 100 eigenvalues, GILTTC needs 300 

eigenvalues to reach the same accuracy). 

 

Table 2: Statistical indices evaluating the model performance using the Prairie-Grass experiment. 

Model NMSE COR FA2 FB FS 

GILTTC – N=100 0.80 0.83 0.64 0.39 0.56 

GILTTC – N=200 0.23 0.92 0.71 0.06 0.33 

GILTTC – N=300 0.15 0.95 0.72 -0.01 0.28 

GILTTB – N=100  0.11 0.97 0.71 -0.1 0.23 

 

4. Conclusions 

In this work, focusing our attention to the task of pollution dispersion simulation in atmosphere, we 

present analytical solutions in series expansion, solving the two-dimensional advection-diffusion 

equation by the GILTT approach. By analytical we mean that no approximation is made along its 

derivation. Analytical solutions are of fundamental importance in understanding and describing 

physical phenomena, since they are able to take into account all the parameters of a problem, and 

investigate their influence. Moreover, we need to remember that air pollution models have two 

kinds of errors. The first one due the physical modeling and another one inherent to the numerical 

solution of the equation associated to the model. Henceforth, we may affirm that the analytical 

solution, in some sense, mitigate the error associated to the mathematical model. As a consequence, 

the model errors are restricted to the physical modeling error.  

For the problems discussed, we promptly realize the very good results achieved, under 

statistical point of view, by the GILTT method when compared with the experimental data, for the 

two basis used. For the case of high source no significant difference was observed between 

GILTTC and GILTTB. However, for the low source, GILTTB numerically converges much faster 

than GILTTC. We focus our future attention in the direction of the generalization of this solution.  
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