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Abstract. This study investigates forest fire dynamics in Sete Cidades National
Park, a Cerrado Biome area, using cellular automaton models. We examine how
varying wind speeds and vegetation scenarios affect fire spread, analyzing their
impact on burned area expansion. By simulating fire spread across varied land-
scapes, we analyze the impact of wind velocities w⃗ = {5, 20} on the expansion
of burned areas over successive iterations, roughly doubling the burned area (b)
rate. Heterogeneous vegetation varies in fire susceptibility, with certain scenar-
ios, like Rupestrian Cerrado and Clean Camps, suffering more damage. Our
simulations can aid wildfire management, emphasizing the importance of con-
sidering environmental factors to effectively mitigate fire risks in the Cerrado
biome.

1. Introduction

The Cerrado biome, known for its rich biodiversity and unique ecosystems, faces the
ongoing threat of forest fires, exacerbated by urban expansion and global warming. As
a resilient biome, the Cerrado plays a crucial role in preserving life by providing habi-
tats for diverse flora and fauna species, many of which are endemic and endangered
[Alvarado et al. 2019, Castro et al. 2002]. However, the increasing frequency and inten-
sity of forest fires pose significant challenges to the preservation of this vital ecosystem.
Urgent action is needed to address the root causes of forest fires, including deforestation,
agricultural expansion, and climate change, in order to protect the Cerrado and its in-
valuable contributions to biodiversity conservation, ecosystem services, and human well-
being [Eloy et al. 2019].

In this context, Sete Cidades National Park, located in the northern region of Piauı́
state, Brazil, spans Brasileira and Piracuruca municipalities over 7,700 hectares, with
26.21% in Brasileira and 73.77% in Piracuruca [Castro et al. 2002]. The park is sur-
rounded by the Serra da Ibiapaba Environmental Protection Area, covering 1,592,550
hectares, established in 1996 [Matos and Felfili 2010]. It hosts the Cerrado Biome’s arid
savannas, babassu forests, and transitional zones, providing sanctuary for diverse wildlife
and vital water resources. Geological formations, cave paintings, and prehistoric inscrip-
tions enhance its natural and cultural significance [Araújo et al. 2020].

Taking this into consideration, modeling forest fires in the Cerrado biome is cru-
cial for enhancing security measures and implementing effective strategies to mitigate the
impact of wildfires on both human populations and the environment. There are various
methods to simulate forest fire propagation, including the use of differential equations



and cellular automata (CA). In our study, we will employ a probabilistic two-dimensional
cellular automaton to model forest fires. This approach builds upon a previous model that
utilized CA to simulate fire spread. Here, we present a practical application of forest fire
spread within the Sete Cidades National Park.

In this context, our objective is to evaluate three distinct scenarios within Sete
Cidades National Park using cellular automata on a grid of 200 × 200 cells, enhancing
the precursor model [Brasiel and Lima 2023] for application with real images. This eval-
uation will take into account the heterogeneous vegetation, which significantly influences
fire behavior. Specifically, we will consider six different vegetation types, with fire behav-
ior being altered accordingly. Additionally, we will examine the impact of varying wind
directions, as they play a crucial role in shaping fire spread patterns and the geometry of
fire fronts. Finally, we will analyze the effect of different wind velocities on fire prop-
agation dynamics within the park, as these factors can either slowly or rapidly destroy
vegetation during the simulation iterations.

2. Theoretical foundation
In this theoretical foundation section we will present the definitions related to the topic
in question, with the aim of clarifying the concepts and foundations necessary for under-
standing the subject.

2.1. Cerrado biome

The Cerrado biome, renowned for its vast array of species (approximately 12,300) and
significant endemism, stands out globally as a biodiversity hotspot within savanna ecosys-
tems. However, rapid development since the 1960s has caused alarming destruction (50%
loss), mainly due to agriculture [Alvarado et al. 2019]. Despite lacking national heritage
status, the Cerrado’s value is undeniable. Encompassing diverse vegetation types, it show-
cases distinct cerrado subtypes. The northwestern “distal marginal cerrados” act as a bio-
diversity hotspot. Conservation efforts (covering 9.4% of the biome) prioritize ecological
conditions and species survival through protected areas. Plant ecology research plays
a crucial role in informing effective conservation planning. Building on Castro’s char-
acterization [Castro et al. 2002] of a Cerrado biome in Sete Cidades National Park, we
present a fire propagation model to aid conservation efforts. Fires in the Cerrado, natural
or human-caused, threaten biodiversity. Frequent fires degrade the ecosystem and worsen
climate change [Oliveira et al. 2007]. The Cerrado’s unique species and vulnerability to
fires necessitate urgent action for prevention and management.

2.2. Cellular automata

Cellular automata (CA) are computational systems based on sets of cells interacting
with each other according to predefined rules, where each cell is represented by a state
[Lima and Lima 2014]. Proposed as mathematical models to simulate the complexity of
natural systems, CA are widely used in various scientific fields to model complex sys-
tems characterized by numerous local interactions and unpredictable behavior, such as
robotics, disease modeling, and forest fire modeling [Brasiel and Lima 2023]. CA can be
represented by a vector or matrix L and are classified based on the number of dimen-
sions in which cells are arranged, such as one-dimensional (1D), two-dimensional (2D),
or three-dimensional (3D).



One well-known CA is the Game of Life proposed by John Conway in 1970,
which exhibits emergent complexity as live and dead cells interact according to prede-
fined rules [Brasiel and Lima 2023]. These rules are applied simultaneously to every cell
in the grid, generating dynamic patterns of live and dead cells over successive generations
[Ferreira et al. 2022].

Cellular automata serve as valuable computational tools for modeling dynamic
and complex systems, offering a realistic alternative to numerical simulations from dif-
ferential equations. By simulating state transformations through transition rules, CA can
effectively capture the dynamic behavior of various systems across different domains,
including fire propagation modeling and pedestrian evacuation simulations in panic sce-
narios [Ferreira et al. 2022]. In our study, we focus on 2D cellular automata applied to
fire modeling, a complex task influenced by variables like topography, climate, vegetation
type, region, and wind.

2.3. Related works
In our model, we incorporated six vegetation types with unique propagation probabil-
ities linked to humidity and dryness, similar to [Brasiel and Lima 2023]. Additionally,
we integrated a wind preference matrix derived from an evacuation matrix designed for
pedestrian movement [Schadschneider et al. 2011]. Rooted in the real-world context of
Sete Cidades National Park, our model enhances the authenticity and applicability of our
simulation by employing machine learning clustering algorithms, specifically k-means, to
group pixels with similar colors in real maps [Zheng et al. 2018]. The first analyzed study
[Jellouli and Bernoussi 2022] improved real-world integration by introducing a wind flow
model that accurately calculates wind parameters based on topography and land use,
demonstrating dynamic wind effects on fire spread. In paper of [Ferreira et al. 2022]
proposed genetic algorithms for adjusting fire propagation model parameters, enhancing
parameter optimization in fire spread models. [Zan et al. 2022] proposed a data-driven
approach to derive cell burning probabilities from historical forest fire data, enabling var-
ied fire spread speeds under diverse geographical conditions.

In the paper proposed in [Brasiel and Lima 2023], it is important to note that the
authors introduced a model based on cellular automata (CA), building upon the model de-
scribed in [Lima and Lima 2014]. However, they did not consider real scenarios. In our
paper, we applied these models in a real scenario by adapting them to the context of Sete
Cidades National Park. To achieve this, we combined the CA-rule update from precursor
models with a machine learning clustering algorithm, specifically k-Means. This adapta-
tion ensures that real scenario images from biomes such as the Cerrado can be effectively
evaluated using the CA model.

3. Materials and methods
Initially, as depicted in Figure 1, the cellular automata (CA) states are initialized at TA

(t = 0). Subsequently, a fire focus is introduced into the 5× 5 grid, igniting fires at lattice
points TBi

, where 1 ≤ i ≤ 4. These fires exhibit varying intensities represented by differ-
ent colors, reflecting the duration of vegetation burning. In this example, the burning time
(tbi) is set to 2 time steps, indicating that the fire’s intensity changes every t = 2 steps. If a
cell xij has neighboring cells on fire, it has a non-zero probability (p(xij)) of catching fire
(TA → TB) at a later time, with a probability of ignition (p(xij)) typically set to 0.6 in ho-
mogeneous forest scenarios. Eventually, as the fire progresses to a certain burning state,
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Figure 1. Squares (1-6): CA transitions depicting states between cells: (TA) alive
(green), (TBi

) burning (light yellow to red), and (TD) dead (black). Last square (7):
Burning probabilities per neighboring cell, with w⃗ = 20.

the trees are completely destroyed (dead) and transition to state TD. The evolution of the
CA is depicted using lattice representations at various time points t = {0, 2, 4, 6, 8, 10},
illustrating the spread of flames throughout the forest over time.

When creating 2D CA wildfire models, considering wind’s effect is crucial.
It dictates fire’s behavior, influencing its direction, speed, size, and shape. Integrat-
ing wind speed and direction boosts simulation accuracy and realism. A fixed ma-
trix field denotes wind speed and direction for each cell throughout the simulation.
This wind field matrix informs the probability of cell ignition and fire spread based on
wind direction and speed. The wind preference matrix, derived from previous stud-
ies [Schadschneider et al. 2011, Lima and Lima 2014, Ferreira et al. 2022], is depicted in
Figure 1, with w⃗ = 20. Cells downwind from burning cells are more likely to ignite, while
those upwind are less likely. Moreover, wind direction can influence the shape and size
of the fire front, with perpendicular winds causing elongated spreads and parallel winds
leading to circular spreads. Wind’s role in fire propagation is crucial, particularly in het-
erogeneous landscapes where different vegetation types interact. Therefore, integrating
wind effects into CA models is imperative for accurate wildfire simulations, facilitating a
deeper understanding of fire behavior and aiding in the development of effective wildfire
prevention and control strategies.

Forest fire spread hinges on vegetation types, especially fire-prone ones like dry
grasslands and wood-rich forests, heightening ignition risk and rapid spread. Additional
factors like fuel, temperature, humidity, and wind also play key roles. When using CA
models for wildfire simulation, considering vegetation type is crucial. Models may be
homogeneous [Lima and Lima 2014], ideal for studying uniform vegetation fire behav-
ior, or heterogeneous [Brasiel and Lima 2023], offering realistic scenarios with diverse
vegetation and landscape interactions. In heterogeneous models, diverse vegetation types
and landscape features, like rivers as barriers or varying flammability levels, influence
fire behavior. Including vegetation diversity, such as the 6 types in Sete Cidades National
Park, improves simulation accuracy and aids in wildfire prevention and control strategy
development. Vegetation diversity, influenced by topography and water availability, re-
quires considering transitional states where vegetation shows characteristics of multiple
types. Incorporating these factors in CA modeling enables more accurate simulations for
specific environments, aiding in wildfire management strategies.

The chosen image of Sete Cidades National Park was utilized to construct a ma-
trix representing the cellular automata (CA) lattice L, with each pixel collected in RGB
(red, green, blue) format. Subsequently, clustering was conducted to assign each cell
xij in the matrix to a distinct state, representing different vegetation types. Six vegeta-
tion categories were identified, including mesophytic cerrado (evergreen forest), flooded
gallery forest (riparian), semideciduous dry forest (savanna), typical cerrado, rocky cer-
rado (rupestrian), and open grassland (clean camp), as depicted in Figure 2. This analysis



is crucial for grasping the heterogeneity of the Cerrado’s characteristic vegetation, essen-
tial for modeling real scenarios using stochastic two-dimensional cellular automata.

Regarding territorial extension, typical savanna covered the largest proportion
(37.6%), followed by mesophytic savanna (24.3%) and open camp (14.3%), confirming
the predominance of savanna formations in the park. However, as only three parts of the
park were utilized in the simulation, depicted in Figure 2, these proportions may have
varied. In Figure 2, numbered 1 through 5, a flowchart outlines the process of clustering
image pixels representing the Sete Cidades National Park maps. This includes matrix
and vegetation state initialization, fire focus creation, burning probability calculation, cell
state updating, and fire evaluation. The k-means clustering process assigns pixels to veg-

Figure 2. Algorithm proposal considering image clustering and cellular automata
rule update for modeling fire propagation.

etation type states, forming the initial input for the 2D-CA representing the park map.
Euclidean distance is used for pixel clustering and reference color attribution. Six vege-
tation types are identified, and the process iterates until all pixels are assigned a state.

In this study, we utilize CA techniques to simulate forest fire propagation in
the Cerrado biome, capable of modeling complex systems. We conduct various exper-
iments considering different vegetation types, including homogeneous and heterogeneous
forests. The simulation algorithm begins by selecting a real Cerrado map and performing
vegetation clustering based on RGB colors. This process creates a realistic simulation
using Euclidean distance between map pixels p and RGB reference colors (centroids) q.
The process iterates until all pixels are assigned distinct states. Then, a CA lattice matrix
Lm×n is initialized, representing vegetation areas, with each cell xij initially set to state
0 for t = 0. Fire starts (state 1) are placed in the forest. Neighboring cells then have a
chance to ignite based on wind, vegetation, and surrounding fire. Cell states are updated
for the next iteration, incrementing burning cells’ states by 1 and marking fully burned
cells as TD. Establish distinct fire probabilities for various land cover types: (TD11) Ru-
pestrian cerrado with p(xij) = 80, (TD12) Clean camp with p(xij) = 65, (TD13) Typical
cerrado with p(xij) = 40, (TD14) Dense cerrado with p(xij) = 25, (TD15) Evergreen forest
with p(xij) = 10, and (TD16) Riparian forest with p(xij) = 0. These steps are repeated
for defined iterations, updating L states according to the CA probabilistic rule. Finally,
fire propagation and affected area metrics are evaluated.



4. Results
In this section, we present a visualization of our model’s performance using a grid of
200 × 200 cells and 6 vegetation types, as shown in Figure 2. Different probabilities are
considered for each vegetation type, represented as p(xij) = {80, 65, 40, 25, 10, 0}. These
visualizations offer valuable insights into the interaction between wind dynamics and fire
spread, as well as the resulting vegetation loss. Understanding environmental factors like
wind velocity (herein we used w⃗ = {5, 20}) is essential for developing effective strategies
for wildfire management and mitigation.

Figure 3 depicts the evolution of Scenario 1 experiments with a wind velocity of
w⃗ = 5 across multiple iterations (t = 20, t = 40, t = 60, and t = 80). Each subfigure
provides a snapshot of the landscape at a specific time step, illustrating the propagation of
forest fires within the Cerrado biome. The percentage of burned area (b) is annotated for

(a) t = 20, b = 1.11%. (b) t = 40, b = 5.83%. (c) t = 60, b = 17.03%. (d) t = 80, b = 36.46%.

Figure 3. Scenario 1 experiments with wind (w⃗ = 5).

each iteration, offering quantitative insight into the extent of fire spread over time. No-
tably, the burned area increases dramatically over the simulation period; for instance, at
t = 0, the burned area was 1.11% of the CA grid representing Sete Cidades National Park,
whereas at t = 80, it escalated to 36.46%, reflecting a more than 30-fold increase. This
exponential growth underscores the rapid expansion of wildfires as they advance across
the landscape.

Figure 4 presents the progression of Scenario 2 experiments with a wind velocity
of w⃗ = 5 across successive iterations (t = 20, t = 40, t = 60, and t = 80), with each
subfigure showcasing the landscape at a specific time point. The b (%) percentage is also
indicated for each iteration. For instance, at t = 20, the burned area covered 2.23% of

(a) t = 20, b = 2.23%. (b) t = 40, b = 10.79%. (c) t = 60, b = 27.07%. (d) t = 80, b = 51.85%.

Figure 4. Scenario 2 experiments with wind (w⃗ = 5).

the CA grid representing the Sete Cidades National Park, and this proportion increased to



51.85% by t = 80.
Figure 5 illustrates the progression of Scenario 3 experiments with wind (w⃗ = 5)

over consecutive iterations. Each subfigure corresponds to a specific iteration (t = 20,
t = 40, t = 60, and t = 80), providing visual representations of the evolving forest fire
dynamics within the Cerrado biome. The images depict the temporal evolution of fire
spread and its impact on vegetation cover, highlighting the critical role of wind direction
and intensity in influencing the behavior of wildfires. As the iterations advance, the extent
of burned areas increases, demonstrating the escalating nature of fire propagation under
the influence of east-to-west wind.

Figure 5 illustrates the progression of Scenario 3 experiments with wind velocity
w⃗ = 5 over successive iterations (t = 20, t = 40, t = 60, and t = 80), each accompanied
by the corresponding percentage of burned area (b). At t = 20, the burned area stands at

(a) t = 20, b = 3.52%. (b) t = 40, b = 14.90%. (c) t = 60, b = 32.95%. (d) t = 80, b = 58.29%.

Figure 5. Scenario 3 experiments with wind (w⃗ = 5).

3.52%, indicating moderate fire spread within the Cerrado biome. By t = 40, the burned
area has significantly expanded to 14.90%, suggesting a notable increase in fire propaga-
tion. Subsequently, at t = 60, the burned area has nearly doubled to 32.95%, indicating
a substantial escalation in fire severity and extent. Finally, at t = 80, the burned area
reaches 58.29%, reflecting a significant portion of the landscape affected by the wildfire.

Figure 6 presents the progression of Scenario 1 experiments with a wind velocity
of w⃗ = 20, highlighting the burned area (b) at each iteration (t = 20, t = 40, t = 60,
and t = 80). Initially, at t = 20, the burned area covers 2.99% of the cellular automaton
grid representing Sete Cidades National Park, indicating the early stages of fire spread.

(a) t = 20, b = 2.99%. (b) t = 40, b = 14.16%. (c) t = 60, b = 30.57%. (d) t = 80, b = 40.17%.

Figure 6. Scenario 1 experiments with wind (w⃗ = 20).

By t = 40, the burned area has expanded to 14.16%, demonstrating a significant increase
in fire propagation. Subsequently, at t = 60, the burned area further escalates to 30.57%,



illustrating the rapid advancement of the fire front. Finally, at t = 80, the burned area
encompasses 40.17% of the landscape, indicating substantial vegetation loss and high-
lighting the heightened severity of the wildfire.

Figures 7 and 8 present the progression of Scenario 2 and Scenario 3 experiments,
respectively, with a wind velocity of w⃗ = 20 across multiple iterations (t = 20, t = 40,
t = 60, and t = 80). Each subfigure in both figures showcases the landscape at a specific

(a) t = 20, b = 3.19%. (b) t = 40, b = 15.87%. (c) t = 60, b = 35.32%. (d) t = 80, b = 47.46%.

Figure 7. Scenario 2 experiments with wind (w⃗ = 20).

time step along with the corresponding percentage of burned area (b). At t = 20, the
burned areas were 3.19% and 3.85% for Scenarios 2 and 3, respectively. As the simu-
lation progresses, the burned areas increase, reaching 15.87% and 10.51% at t = 40 for
Scenarios 2 and 3, respectively. By t = 60, the burned areas further escalate to 35.32%
for Scenario 2 and 26.40% for Scenario 3. Finally, at t = 80, the burned areas peak at
47.46% for Scenario 2 and 39.56% for Scenario 3. These visual representations offer a

(a) t = 20, b = 3.85%. (b) t = 40, b = 10.51%. (c) t = 60, b = 26.40%. (d) t = 80, b = 39.56%.

Figure 8. Scenario 3 experiments with wind (w⃗ = 20).

step-by-step depiction of the expansion of forest fires over time, providing valuable in-
sights into the dynamics of fire spread and the resulting vegetation loss under varying
wind conditions.

To summarize the results for visual step-by-step observations, we created Fig-
ure 9, which is a line graphic comparing all experiments described above. The graphic
depicts burned area progression across scenarios and wind velocities at iterations t =
20, 40, 60, 80. In Scenario 1 with w⃗ = 5, the burned area rises from 1.11% at t = 20
to 36.46% at t = 80, whereas with w⃗ = 20, it starts at 2.99% and reaches 40.17% by
t = 80. Similar trends occur in Scenarios 2 and 3, where higher wind velocities lead to
larger burned areas. Notably, Scenario 3 consistently exhibits the highest burned areas.
Ramping up the fire intensity to w⃗ = 20 results in its spread beyond the grid boundaries,



Figure 9. Comparison of burned areas between different scenarios and wind
velocities.

significantly accelerating propagation compared to w⃗ = 5. For instance, in Scenario 1, the
burned area reaches b = 17.03% at t = 60 with w⃗ = 5, whereas it surges to b = 30.57%
at the same time with w⃗ = 20.

Finally, it is worth mentioning that Scenario 3 spreads more fire along the grid due
to the presence of open fields, which allow for greater wind propagation. Following that is
Scenario 2, characterized by a riparian forest near water bodies. Lastly, Scenario 1, with
more green areas and higher humidity, presents greater difficulty in fire spread. Therefore,
it is crucial to calculate the optimal strategies for fire management and mitigation based
on the specific environmental conditions and characteristics of each scenario.

5. Conclusion and future works

In conclusion, this study sheds light on the dynamics of forest fire spread in the Cerrado
biome, particularly within the context of Sete Cidades National Park. Through the uti-
lization of cellular automaton models and exploration of wind w⃗ = {5, 20} velocities and
3 vegetation scenarios, we have uncovered valuable insights into the factors influencing
fire propagation. Our findings underscore the significant impact of wind velocity on the
extent of burned areas, as well as the varying susceptibility of heterogeneous vegetation
compositions to fire.

Moving forward, future research endeavors could focus on refining the models
used in this study to incorporate additional environmental variables and improve the ac-
curacy of fire spread predictions. Furthermore, exploring the efficacy of different wildfire
management strategies in mitigating fire risks in the Cerrado biome would be a pertinent
avenue for further investigation. By continuing to deepen our understanding of the com-
plex interplay between environmental factors and fire dynamics, we can develop more
effective measures for wildfire prevention and control, ultimately safeguarding the biodi-
versity and ecological integrity of the Cerrado biome.
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