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Abstract. Efficient solid waste management is crucial for making the city a clean 

and sustainable environment. This paper presents a methodology composed of 

well-established algorithms for volume estimation in urban solid waste 

management using single-view images. The proposed system was built using 

state-of-the-art model-based algorithms including instance segmentation, depth 

estimation, and point cloud-based volume calculation The methodology 

demonstrates the ability to accurately estimate the volume of individual and 

multiple plastic bags containing municipal solid waste. We evaluated our 

approach using real-world data. Numerical results showed that the proposed 

system is promising even in complex scenarios. Despite challenges, such as: 

manual distance rescaling and limited datasets, our system holds considerable 

potential for further refinement and enhancement targeting scenarios as 

complex as real urban environments. The proposed methodology contributes to 

advancing management technologies in smart cities.  

Resumo. A gestão eficiente de resíduos sólidos é crucial para tornar a cidade 

um ambiente limpo e sustentável. Este artigo apresenta uma metodologia 

composta por algoritmos bem estabelecidos para a estimativa de volume na 

gestão de resíduos sólidos urbanos usando imagens de visualização única. O 

sistema proposto foi feito a partir de algoritmos baseados em modelos de última 

geração, incluindo segmentação de instâncias, estimativa de profundidade e 

cálculo de volume baseado em nuvem de pontos. A metodologia demonstra a 

capacidade de estimar com precisão o volume de sacolas plásticas individuais 

e múltiplas, contendo resíduos sólidos urbanos. Avaliamos nossa abordagem 

utilizando dados do mundo real. Resultados numéricos mostraram que o 

sistema proposto é promissor mesmo em cenários complexos. Apesar dos 

desafios como reescalonamento manual de distância e conjuntos de dados 

limitados, nosso sistema possui um potencial considerável para refinamento e 

aprimoramento adicionais visando cenários tão complexos quanto cenários 

urbanos reais. A metodologia proposta contribui para o avanço das tecnologias 

de gestão em smart cities. 

1. Introduction 

The generation of waste is a consequence of the increasing population, urbanization, and 

economic development. Despite the Solid Waste Management (SWM) problem, that 



 

 

affects every individual and government in every country in the world. All this 

inadequately handled waste directly affects both public health and the environment 

[Arbeláez-Estrada et al., 2023]. 

 Since the major waste disposal methods include collection, treatment, recycling 

and final disposal, hazards and risks from short-term contamination must be prevented 

[Azancort Neto et al., 2021]. Despite the National Solid Waste Policy demanding the end 

of dumps through the country of Brazil, in the state Pará, the landfill located in the 

municipality of Marituba receives solid waste from the capital Belém and its metropolitan 

region, that together collect around 40 thousand tons per day [Brito et al., 2020]. 

 There is no doubt about the importance and challenge in the process of efficient 

waste management. The Integrated Sustainable Waste Management (ISWM) model 

shows all the necessary parts for an efficient and responsible process of waste disposal. 

The model is based on five points: Collection, transfer and transport; Generation and 

separation; Treatment; Recycling and Final disposal [Guerrero et al., 2013].  

 However, there are three very important items to be analyzed before the collection 

process, which is not commented on by the ISWM model. The process of identifying the 

location, volume and type of waste to be collected. Furthermore, accurately estimating 

the volume of waste is essential for efficient collection, transportation and processing.  

Technology can become an important instrument of environmental education, capable of 

minimizing environmental problems as it allows communication between responsible 

agents [Oliveira et al., 2019]. 

 This paper presents a methodology for validating the estimation of the volume of 

solid waste present in garbage bags using only single-view images. Our system leverages 

cutting-edge model-based algorithms, including instance segmentation, depth estimation 

and point cloud-based volume calculation. This robust approach demonstrates the 

capability to accurately estimate the volume of both individual and multiple solid waste 

objects within an image. The implementation of this system can directly impact various 

aspects, including social-environmental factors, health, ecology, and the economy of the 

region where it is applied, contributing to a smarter and more sustainable city.  

2. Related Work 

 For years now, different authors have used distinct approaches in identifying 

different types and pin-pointing the location of solid waste, all in an automatic manner. 

The most commonly used system is Machine Learning (ML), especially with 

Convolutional Neural Network (CNN), as used by Mao et al. (2022). Other techniques 

like infrared (IR) cameras by (Calvini et al. 2018) and support vector machines (SVM) 

by (Korucu et al. 2016), are also used.    

 Ozdemir et al. (2021) analyzed ML algorithms used in recycling systems. The 

reviewed techniques were: CNN, SVM, K-nearest neighbor and Artificial Neural 

Network (ANN). According to the authors, the black-box nature of the models and a large 

amount of meaningful data required for training are some of the biggest obstacles 

presented in this field. 

 Representing the CV research field, we have Lu and Chen (2022). They critically 

reviewed the sorting of municipal solid waste (MSW) using computer vision-based 

methods. In their paper, the author encountered limitations: simplified datasets lacked 



 

 

real-world complexity and public datasets were scarce. Furthermore, the visible-image 

based approach struggled to distinguish materials with similar appearances. 

 Nevertheless, waste volume estimation has not been a very popular research 

theme. This may be due to the fact that the state of the art of volume estimation is not yet 

completely defined. Although, different authors have been using completely diverse 

methodologies, some based on Computer Vision (CV) and others in ML based-models. 

The background complexity and lack of quality and representative data are problems that 

affect every type of volume estimation method, solid waste is no different. 

 In summary, model-based, volume estimation methods often face limitations due 

to the challenge in obtaining high-quality ground truth data. Image depth estimation, for 

example, requires high-fidelity image capture. These limitations prevent existing methods 

obtaining accurate and consistent quantitative estimates [Alexandros Graikos et al. 2020]. 

To overcome these challenges, this work presents a hybrid deep learning algorithm that 

exploits the strengths of different methods to obtain the best volume object estimation. 

This framework aims to overcome the limitations of previous methods in order to improve 

performance in terms of accuracy and efficiency. 

3. Methodology 

The methodology outlined in this paper, aims to enhance the precision of volume 

estimation from single-view object images through the utilization of cutting-edge model-

based algorithms. The proposed system pipeline can be divided into three distinct parts: 

segmentation network, depth estimation and point cloud-based volume estimation, Figure 

1.  

 

Figure 1. Proposed Framework adapted from Alexandros Graikos et al. (2020) 

3.1. Waste Segmentation Network 

The model chosen for the instance segmentation network was the Mask R-CNN [He et 

al. 2017], an extension of the Fast Region-based CNN [Girshick 2015], used for object 

detection. With this approach, we are able to locate multiple solid waste objects present 

in an image and predict an individual segmentation mask for each instance, so we can 

estimate each instance volume separately. Although not used in this work, the model is 

also able to discern between the different solid waste types present in a given image. 



 

 

 In line with Alexandros Graikos et al. (2020), who employed the COCO dataset 

[Lin et al. 2014] weights for their segmentation network, we adopted a similar approach 

by initializing our model with these weights. However, our refinement process involved 

fine-tuning the network using a distinct dataset composed of solid waste objects that we 

curated, since we were not able to find a usable and ready to use dataset for our 

application. 

 The curated dataset is composed of 278 images of solid waste in plastic bags, since 

this is the most common form of garbage dumping here in Brazil. The dataset is very 

simple, only with the segmentation masks for the analyzed objects and since we are only 

using one type of solid waste, we ignore and don’t use any objects labels or types, except 

a generic name applied to all called “plastic”, since we used plastic bags as our only 

analyzed object. 

(a)                                            (b)                    

 Figure 2. Single (a) and multiple (b) solid waste examples contained in the 
gathered dataset. 

3.2. Depth Estimation Network 

This paper adopts the network architecture introduced by Godard et al. (2018) for the 

depth estimation task. In their study, a depth estimation network is trained exclusively on 

monocular video sequences, where each step involves the utilization of three consecutive 

frames (IT-1, IT, IT+1) from the video for training purposes. The depth prediction network 

generates a depth map (DT) for the input frame (IT). Simultaneously, a pose estimation 

network produces the camera pose transformations (𝑇𝑡→𝑡−1, 𝑇𝑡→𝑡+1) representing the 

relationships between the current frame and its adjacent frames. Utilizing the predicted 

depth map, pose transformations, and the known camera intrinsic matrix (K), the 

synthesis of the center frame occurs by sampling from the previous and next frames. 

 𝐼𝑡−1→𝑡 = 𝐼𝑡−1〈𝑝𝑟𝑜𝑗(𝐷𝑡, 𝑇𝑡→𝑡−1, 𝐾)〉 

𝐼𝑡+1→𝑡 = 𝐼𝑡+1〈𝑝𝑟𝑜𝑗(𝐷𝑡, 𝑇𝑡→𝑡+1, 𝐾)〉 

(1) 

 Here, "proj" refers to the coordinate projection method detailed by Zhou et al. 

(2017), and "〈 〉" denotes the sampling operator. The ultimate training loss comprises the 

sum of a photometric loss (LP) measuring the disparity between the synthesized and 

original images, along with a depth smoothness error (LS). This depth smoothness error 

is expressed as a function that evaluates the smoothness of the predicted depth map. 

 𝐿 =  𝐿𝑃 + 𝜆𝐿𝑠, (2) 



 

 

 This approach encounters difficulties in producing a meaningful training signal 

when the actual pose transformations are zero. In such instances, the predicted depth 

values have no impact on the image synthesis process. This constraint narrows down the 

selection of videos suitable for training the network to those featuring substantial motion 

between frames. This limitation can be a difficult one to overcome, since solid waste 

videos may exhibit limited inherent motion, depending on how the capture is being made, 

making it challenging to ensure a robust training signal for the network, as the absence of 

significant motion between frames hampers the effectiveness of training mechanisms. 

 This limitation precluded us from training our own model. As previously 

mentioned, suitable datasets for this task are scarce. Gathering such data is not only 

difficult and time-consuming, but it can also pose health risks if handled by unqualified 

personnel. 

 Since Alexandros Graikos et al. (2020) also adopts the use of the network 

architecture introduced by Godard et al. (2018), we used his model and weights used for 

depth estimation. Although in their article, the author used the model specifically used 

for food volume estimation, in our tests, the model trained using the EPIC-KITCHENS 

dataset [Damen et al. 2018], that comprises over fifty hours of egocentric videos capturing 

food-handling activities and later fine-tuned by the authors using 38 videos capture by 

commercial smartphone cameras, demonstrated promising results by comparing volume 

estimation outcomes with the known volumes of solid waste objects.  

3.3. Volume Estimation 

Following the exploration of various volume estimation models, algorithms, and 

techniques in previous works, this paper adopts the method presented by Alexandros 

Graikos et al. (2020). As proposed by the authors, we leverage the depth map (D) 

extracted from the input image and the camera's intrinsic matrix (K) to project each pixel 

(x, y) onto its corresponding 3D point in space. This projection is achieved using 

homogeneous coordinates and the inverse projection model, resulting in a point cloud 

representation (P). 

 𝑃𝑥𝑦 = 𝐾−1 [𝑥 𝑦 1]𝑇 𝐷𝑥𝑦, (3) 

 Therefore, to enhance the differentiation among various solid waste objects and 

partition the set (P) into distinct subsets of solid waste points, we employed the 

segmentation mask generated by the instance segmentation network. From that, 

preprocessing of each point set commences with outlier removal utilizing a statistical 

outlier removal (SOR) filter. Subsequently, principal component analysis (PCA) is 

employed to identify the primary plane upon which the analyzed object resides. Following 

the PCA, the eigenvector corresponding to the minimal eigenvalue is selected to represent 

the normal vector of the base plane on which the object rests. To ensure consistency in 

object orientation, an additional step is implemented to guarantee that the plane is 

positioned at the object's bottom. 

 Although Alexandros Graikos et al. (2020) that proposed this methodology uses 

a planar plate for the volume estimation, we completely ignore this part of the suggested 

approach and use the base, usually the ground, as our plane base. Knowing that this can 

be improved but is not as simple as suggested in the original paper, since there is no 

default behavior in incorrect waste disposal. Subsequently, the projected points are used 



 

 

to construct an α-complex derived from the Delaunay triangulation [Edelsbrunner & 

Harer 2010]. This α-complex partitions the covered area on the base plane into a 

collection of triangles. Then, the estimated volume is defined by the average of each 

triangle vertex from the analyzed solid waste object. 

 Since the videos used for the training of the depth network lack the ground truth 

depth information, the depth predictions are not in a metric scale. To address the absence 

of ground truth depth in the training process, we adopt the median ground truth rescaling 

technique from Zhou et al. (2017). This method scales the predicted depth map (D) by a 

constant factor.  

 
𝑠 =

𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑔𝑡)

𝑚𝑒𝑑𝑖𝑎𝑛(𝐷)
, 

(4) 

 In our experiments, the scaling factor is determined by the median ground truth 

depth (median(Dgt)) which approximates the distance between the camera sensor and the 

food object. For our case, we assumed it to be 0.5 meters for all test cases. However, this 

value can be manually and easily modified, depending on the applied scenario and 

distance to the analyzed object.  

 As commented before, the depth predictions are not in a metric scale, so the 

formula of median ground truth rescaling technique proposed by Zhou et al. (2017) and 

described in (3), is used to obtain the depth value. For the training of the segmentation 

network using the Mask R-CNN algorithm. The input batch size, learning-rate and the 

same data augmentations applied in the depth estimation network. The parameters used 

can be found in Table 1. 

Table 1. Parameters utilized in the Segmentation and Depth Estimation Network. 

Algorithm Parameter Value 

 
Segmentation 

Batch size 1 

Detection min confidence 0.7 

Detection NMS threshold 0.3 

Learning rate 0.001 

Validation steps 51 

Backbone resnet101 

Training epochs 2 

Depth Estimation 

Input resolution 128x224 

Depth outputs range  0.01 to 10 

Smoothness Term  10−2 

Training Epochs  20 

Learning Rate  10−4 

Ground Truth Expected Median Depth 0.50 

 The model was then trained with the pre-trained weights of COCO dataset [Lin et 

al. 2014] on a split of 221 used for training, 28 for validation and 29 for testing the volume 



 

 

estimation. All items had the same class called “plastic”, since the main object was plastic 

bags, which is the most common way to throw household solid waste. In the volume 

inference, we change the value of the field-of-view angle of the camera sensor, which 

was changed from 70° to 79.5°, this value is to generate the same intrinsic data. We did 

not change the values of the Z-Score for the SOR filter or α-complex. 

5. Results, Difficulties and Discussions 

To assess the proposed system, we measured the volume of 29 plastic bags that we are 

going to name “Domestic waste”. Each domestic waste had 2 or 3 images taken, either 

on a different angle or in a different distance from the analyzed object. For that matter, 

each type of domestic waste may have multiple Relative Percentage Error (RPE) 

analyzed. 

 For the real measurement we calculated all plastic bags as an irregular polygon, 

more specifically a rectangle. Although some works use methods like water displacement, 

this approach not only fails to accurately represent the true value of the object under 

analysis but also isn't suitable for the type of objects we are handling. To evaluate the real 

results of the volume estimation of solid waste, in Table 2, we present the RPE of each 

image of the analyzed type, and the respective mean absolute percentage errors (MAPE) 

of the images with a single instance of solid waste, and in Table 2, with multiple instances. 

Table 2. Real volume measured, the RPE of each variation and the MAPE estimated from 
single and multiple instances of solid waste. 

Type Volume (L) RPE 1 

(%) 

RPE 2 

(%) 

RPE 3 

(%) 

MAPE 

(%) 

Single Domestic Waste 1 0.9285 0.49 3.18 2.29 1.98 

Single Domestic Waste 2 0.9936 10.29 1.05 39.19 16.84 

Single Domestic Waste 3 1.6128 58.94 5.54 8.11 24.19 

Single Domestic Waste 4 0.5440 36.98 13.18 11.88 20.68 

Multi. Domestic Waste 1 2.2495 2.65 5.33 33.33 13.77 

Multi. Domestic Waste 2 3.146 1.71 4.51 19.87 8.69 

Multi. Domestic Waste 3 3.6752 5.94 10.10 26.25 14.09 

Multi. Domestic Waste 4 3.4532 3.99 9.63 14.63 9.41 

 When the segmentation network divided a single object into its component parts, 

we addressed this by summing the predicted volumes of each individual segment. Since 

the proposed system is capable of identifying multiple volumes, we tested this feature by 

estimating the volume of multiple plastic bags in one image.  

 In cases where the bags overlapped, we had two different but expected results. In 

one of the cases, the algorithm tried to estimate the volume for every single instance of 

the solid waste object. In other cases, the system used all solid waste instances together, 

calculating them all as a single value, this method had better results in multi-instance 

volume estimation. More useful data might enhance the decision-making process when 

employing these two types of analysis. 

 Given the lack of a generalist solution to the object volume estimation problem, 

we evaluated our framework's performance by comparing its results to those presented in 



 

 

state of the art. In a head-to-head comparison, both our single-instance and multiple-

instance MAPE scores outperformed those achieved by the authors. Notably, we achieved 

this with a less complex algorithm, as our framework relies solely on the algorithms 

described earlier and avoids the use of external aids employed by the authors. Despite 

having a smaller test set, our single-instance MAPE yielded a mean MAPE of 15.92%, 

compared to 18.72% for the best four results. Similarly, our multiple-instance mean 

MAPE achieved 11.49%, significantly lower than the 32.07% reported by Alexandros 

Graikos et al. (2020), for example. Our results also showed a max overall MAPE value 

of 24.19% and min of 1.98%, while the referenced paper results had a max of 108.30% 

and min of 15.85%. Therefore, our experiments revealed that when objects overlap, 

segmenting all instances together as a single large item yielded superior results. While 

this approach might hinder precise individual volume determination, the overall accuracy 

gains outweigh this limitation. 

 One of the primary shortcomings of this approach, as well as others that do not 

utilize sensors like LiDAR [Li et al. 2022], is the dependency of manually applying the 

correct median distance rescaling. The wrong applied value can lead to wrongly volume 

estimation and totally ruins any automations methods. By extracting the median depth in 

an automated manner, we are able to change and adapt the median depth value on the go. 

Sensors like LiDAR are often used for this purpose, especially in industry.  

 The biggest challenge lies in acquiring pertinent data. Despite our efforts, we were 

unable to locate a dataset that met our requirements and was readily available. 

Consequently, we had to undertake the time-consuming task of creating and segmenting 

our own data. While this process is slow, it is indispensable. It underscores the critical 

need for additional data, particularly for training the depth estimation network. As 

mentioned previously, dealing with images containing multiple instances of the analyzed 

object that overlap presents a significant challenge. In such scenarios, the algorithm 

struggles to accurately estimate the correct value, further complicating the analysis 

process.  

 Overall, the proposed system showed promising results, especially considering 

the potential for further improvements through training our own models and adjusting 

weights beyond the segmentation aspect. The results align well with the approximate error 

values reported in the literature using similar models. Finally, with the capability to 

estimate volumes through single-view images, the model can be applied to the 

development of low-cost real-world applications, such as mobile apps or embedded 

systems in waste collection services. 

6. Conclusion 

In this work, we presented a methodology that aims to validate the process of volume 

estimation applied in the realm of solid waste management using only single-view 

images. The proposed system used state of the art model-based algorithms such as 

instance segmentation, depth estimation and point cloud-based volume estimation. This 

robust system was capable of accurately estimate the volume of plastic bags containing 

municipal solid waste. 

 In our results, we showcased the effectiveness of the proposed approach. We were 

able to achieve promising results even in scenarios involving multiple instances of 

overlapping objects. Although we encountered some challenges such as the manual 



 

 

application of correct median distance rescaling and the scarcity of readily available 

datasets, our system demonstrates considerable potential for further refinement and 

enhancement. We recognize the importance of meaningful and high-quality data. With 

more data we will be able to train and optimize our model and weights to better suit the 

specific needs of our application and the overall system effectiveness and results. 

 Despite the framework demonstrating effectiveness and promising results, it 

requires further improvements for real-world applications.  A key area for improvement, 

beyond the need for high-quality data, is automating the median distance rescaling 

process. This automation would allow the framework to analyze objects at varying 

distances, leading to better overall generalization of the methodology. Consequently, this 

would improve the Root Mean Squared Prediction Error (RPE) and the Mean Absolute 

Percentage Error (MAPE) results. 

 In general, the proposed system has demonstrated significant advancements in 

waste management technology, providing solutions for accurate quantitative estimates 

with environmental protection, aligning with the evolving needs and requirements for 

sustainable waste disposal practices. The continuation of this article aims to the 

automation process of rescheduling the average distance using model-based sensors or 

technologies such as LiDAR, for instance. Furthermore, it is expected that with this 

improvement, the problem of generalization present in current volume estimation 

methodologies can be overcome. By addressing this issue, we anticipate that the 

framework will become applicable within the context of smart cities. 
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