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Resumo. Este trabalho tem a proposta de modelar uma dinâmica populacional
baseado na Teoria de Metapopulações. É utilizado o conceito de difusão para
descrever a dinâmica populacional de uma metapopulação em desequilı́brio,
caracterizada por indivı́duos que vivem em fragmentos de habitat totalmente
isolados. O modelo de difusão-reação é empregado para representar o cres-
cimento populacional periódico e limitado pela capacidade suporte do meio,
além espalhamento dos indivı́duos. O modelo é tratado de forma numérica pelo
método de discretização de Crank-Nicolson, por meio do qual se analisa a in-
terferência dos valores dos parâmetros na equação.

1. Introdução
A dinâmica populacional é o ramo das Ciências Biológicas que estuda a variação na quan-
tidade de indivı́duos de uma população, bem como os fatores que contribuem ou dificul-
tam essa variação. A modelagem da dinâmica populacional é baseada na premissa de
que a variação do tamanho de uma população é dada pela diferença entre o número de
nascimentos e mortes de indivı́duos, além da inserção e/ou retirada de indivı́duos dessa
população (migração).

A Teoria de Metapopulações propõe que subpopulações de uma
mesma espécie, distribuı́das em locais isolados — também chamados de
refúgios [Colombo and Anteneodo 2018] ou fragmentos de um habitat origi-
nal [Assis et al. 2020] — podem interagir por meio da migração. A dinâmica
dessas populações é influenciada por diversos fatores, como reprodução, competição
por recursos (alimento e espaço) e predação. Nesse contexto, uma metapopulação,
ou “população de populações”[Marini-Filho and Martins 2000], é entendida como um
conjunto de subpopulações localizadas em fragmentos de habitat e interligadas por fluxos
migratórios, podendo persistir ou ser extintas localmente[Pinto-Coelho 2000].

Para descrever esses fenômenos, utilizam-se modelos de metapopulação, que
são ferramentas biológicas voltadas à representação da migração entre fragmen-
tos [Harrison and Taylor 1997]. Tais modelos permitem investigar a dinâmica popula-
cional em diferentes cenários ecológicos, auxiliando, por exemplo, na formulação de
estratégias para a conservação de espécies. O foco principal está em compreender os
mecanismos que promovem ou dificultam a persistência das subpopulações ao longo do
tempo [Jorba-Cuscó et al. 2024].

A Figura 1 representa os fragmentos como cı́rculos, cujo tamanho é proporcio-
nal ao tamanho de cada mancha. As manchas pintadas representam os fragmentos de



Figura 1. Figura retirada do artigo Empirical Evidence for Metapopulation Dy-
namics [Harrison and Taylor 1997]. Representação de modelos metapopu-
lacionais onde: (a) clássico/Levins, (b) continente-ilha, (c) população em
mancha (patchy population), (d) metapopulação em desequilı́bio (nonequi-
librium metapopulation), (e) misto.

habitat [Pinto-Coelho 2000, Harrison and Taylor 1997] colonizados pelos indivı́duos, en-
quanto os espaços em branco correspondem aos locais desocupados. As setas indicam o
fluxo migratório, ou seja, a saı́da de indivı́duos de um local para outro, podendo ou não
haver trocas mútuas entre as subpopulações, como é o caso de (c) e (e).

Por fim, os tracejados ao redor de cada mancha representam as fronteiras ou li-
mites de ocupação de cada local. Observa-se que, por maior que seja a subpopulação de
cada mancha, ela nunca ocupa totalmente esses fragmentos. Pode-se dizer que há sem-
pre algum fator (ou fatores) que impede a totalidade da ocupação do habitat. O objetivo
deste trabalho é modelar a dinâmica de uma metapopulação em desequilı́brio (Figura 1.d)
por meio de uma equação de difusão-reação, a fim de compreender em quais condições
uma subpopulação pode se desenvolver em um fragmento com capacidade de suporte K,
variável no tempo, e manter-se nesse ambiente.

2. Modelagem de metapopulação em desequilı́brio
Com base no modelo biológico de metapopulação em desequilı́brio (Figura 1.d), será pro-
posta uma dinâmica metapopulacional considerando uma subpopulação completamente
isolada. Supõe-se que os únicos processos biológicos atuantes sejam a difusão, o cres-
cimento e a competição intraespecı́fica. Assim, desconsidera-se qualquer migração de
indivı́duos entre os fragmentos.

Na ausência de migração entre os fragmentos, a população remanescente pode di-
minuir ao longo do tempo e chegar à extinção, devido à falta de recursos necessários para
sua manutenção. Isso indica que o ambiente não é viável para sustentar a população nesse
horizonte temporal. Nessa condição, a população é incapaz de estabelecer um equilı́brio
entre ocupação e uso dos recursos, o que leva à extinção local. Diante disso, busca-se
entender em quais circunstâncias essa metapopulação pode atingir esse equilı́brio e per-
manecer no ambiente.



A dinâmica de metapopulação em desequilı́brio, em um fragmento com capaci-
dade suporte K, é dada pela seguinte equação de difusão-reação (unidimensional) com
condições de contorno de Dirichlet e condição inicial:
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L
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(1)

com (x, t) ∈ [0, L]×[0,+∞) e N0 o tamanho inicial da população. Esta equação descreve
a variação da densidade populacional ρ(x, t), com um coeficiente de difusão D(x,K) e
uma fonte f(x, t, ρ).

No modelo (1), as condições de contorno indicam que a densidade popula-
cional é nula nos extremos do fragmento de habitat considerado, um intervalo de
comprimento L. Esta condição é chamada de fronteira absorvente (absorbing boun-
dary) [Colombo and Anteneodo 2018, Brauer et al. 2019], que supõe que os indivı́duos
que deixam o ambiente morrem imediatamente ou perdem de forma permanente a ca-
pacidade de retornar. Por sua vez, a condição inicial representa que os indivı́duos estão
uniformemente distribuı́dos no fragmento de habitat no instante inicial.

Nesse problema será considerado que a difusão é variável, representada por uma
função na forma

D(x,K) = D0 e
−K(x−x̄)2 , (2)

na qual D0 é uma constante positiva e x̄ é o ponto do intervalo onde a difusão é
maior. Nesse caso, será considerado o ponto médio do intervalo de x. A motivação
dessa escolha é baseada nas alterações sofridas pelos ambientes à medida que o tempo
avança [Coleman et al. 1979, Bassanezi and Gomes 2021], as quais influenciam a velo-
cidade de espalhamento. Com esta expressão, busca-se representar uma situação popu-
lacional que privilegie a concentração no interior, reduzindo a densidade conforme os
indivı́duos se aproximem dos extremos do fragmento.

Também será considerada uma função de reação que corresponde à função
logı́stica, amplamente estudada e utilizada na modelagem de sistemas fı́sicos e biológicos,
na forma

f(x, t, ρ) = r(t)ρ(x, t)

(
1− ρ(x, t)

K(t)

)
. (3)

Essa função representa o crescimento limitado da população na presença de outros
indivı́duos da mesma população, devido à competição intraespecı́fica entre esses in-
divı́duos [Bassanezi and Ferreira 1988, Coleman et al. 1979].

2.1. Periodicidade

Em geral, observa-se que indivı́duos de muitas espécies têm como caracterı́stica a
reprodução periódica e que locais isolados, como ilhas, também apresentam momen-
tos de maior ou menor viabilidade como moradia. Outro fator, que combina aspectos
geográficos e climáticos, é a diminuição da área de habitat segura em lugares gelados.



Isso porque, devido ao aquecimento global, esses locais têm seu tamanho total reduzido
ou perigosamente transformado. Por outro lado, fatores climáticos como o aumento e
a diminuição da temperatura são condições sazonais que também impactam a dinâmica
populacional [Bassanezi and Gomes 2021], influenciando diretamente o aumento da na-
talidade ou da mortalidade de uma população.

De modo a descrever cenários de oscilações periódicas no ambiente e no cres-
cimento da população, na análise da equação (1) serão consideradas a capacidade su-
porte K e a taxa de crescimento r como funções periódicas [Coleman et al. 1979,
Bassanezi and Gomes 2021]. Assim, estas funções são definidas da seguinte forma

K(t) = k1 + k2 sen
(
2πt

pK

)
(4)

r(t) = r1 + r2 sen
(
2πt

pr

)
, (5)

onde ki e ri (i = 1, 2) são constantes reais positivas, com k1 > k2. As constantes pK e pr
são os perı́odos de oscilação das funções (4) e (5), respectivamente.

3. Metodologia
O método de Crank-Nicolson (CN) consiste em discretizar o domı́nio e calcular o valor
da função num nı́vel intermediário entre os tempos tj e tj+1, como ilustra-se na Figura 2.

Figura 2. Malha com os ı́ndices dos pontos da discretização.

Os pontos pretos na malha (Figura 2) são os pontos a serem calculados no tempo
tj+1 = (j + 1)k, em função dos pontos dados no tempo tj = jk, onde k = ∆t é o
passo da discretização e j = 0, 1, 2, ...,M . Os pontos em formato de “×” representam
os dados conhecidos quando se particiona o intervalo de x. Portanto, são conhecidos os
valores da função nos pontos (xi−1, tj), (xi, tj) e (xi+1, tj) e calculados os demais através
da resolução de um sistema de equações, conforme será mostrado adiante. Outra parti-
cularidade desse método é que, caso haja outras funções dependentes do tempo inseridas
na equação, elas são calculadas no tempo intermediário tj+1/2 = (j + 1/2)k, ou seja, um
ponto que não pertence à malha.



Aplicando a derivada parcial em relação a x no lado direito da igualdade na
equação do modelo (1) e omitindo os argumentos, a equação se expande na forma
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)
, (6)

onde K é dada pela expressão (4) e r é dada por (5). O coeficiente de difusão variável é
dado pela função (2) e sua derivada parcial em relação a x é dada pela expressão

Dx =
∂D

∂x
= 2D0K(t)(x̄− x) e−K(x−x̄)2 (7)

Aplicando o método de CN, a discretização da equação (6) fica na forma
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com i tomando valores de 0 a N e j, de 0 a M .

Após algumas manipulações pode-se colocar a equação discretizada na forma
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j+1
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j+1
i−1 (9)
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i − γD
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i .

e as constantes λ e γ são tais que

λ =
k

4h
, γ =

k

2h2
. (11)

A discretização representada na equação (9), da qual será obtida a solução
numérica, pode ser escrita através do seguinte esquema matricial:

Pρj+1 = Qρj + f j (12)

onde P e Q são matrizes quadradas tridiagonais de ordem M , na forma

P =


1 +B1,j+1/2 A1,j+1/2 0 · · · 0

C2,j+1/2 1 +B2,j+1/2 A2,j+1/2 · · · ...
0 C3,j+1/2 1 +B3,j+1/2 · · ·
...

...
... . . . ...

0 0 0 · · · 1 +BM−1,j+1/2

 (13)



e

Q =


1−B1,j+1/2 −A1,j+1/2 0 · · · 0

−C2,j+1/2 1−B2,j+1/2 −A2,j+1/2 · · · ...
0 −C3,j+1/2 1−B3,j+1/2 · · ·
...

...
... . . . ...

0 0 0 · · · 1−BM−1,j+1/2

 (14)

Além disso, a função de reação corresponde a um vetor coluna de (M − 1) coordenadas
cujo i-ésimo termo é dado por

f j
i = kr j+1/2ρji

(
1− ρji

K j+1/2

)
. (15)

4. Resultados
A partir da discretização do modelo (1), por meio do esquema numérico (9), foram rea-
lizadas simulações com base na resolução do sistema não linear representado pela forma
matricial (12). Essas simulações permitiram analisar a influência de cada parâmetro do
modelo sobre a dinâmica da população, ainda que sem considerar explicitamente suas
unidades de medida. A resolução do sistema foi feita utilizando a biblioteca Numpy e
todas as imagens foram geradas utilizando a biblioteca Matplotlib.pyplot, ambas biblio-
tecas do Python. Para as simulações foram usados os passos h = 2 · 10−3 (espaço) e
k = 4.0 · 10−2 (tempo). Os códigos desenvolvidos são abertos e podem ser acessados na
plataforma GitHub1.

Em relação a difusão variável, os quatro parâmetros que provocam alteração na
forma como os indivı́duos se espalham no fragmento são D0, k1, k2 e pK . Pode-se ve-
rificar que D0 contribui para a velocidade de difusão, pois, quanto maior o valor desse
parâmetro, mais rápido a densidade decresce e se homogeneiza. Na capacidade suporte
(4), k1 contribui para a redução da velocidade de difusão. Isso faz com que a densi-
dade populacional decresça mais lentamente, possibilitando a persistência da população.
O parâmetro k2 provoca aumento e diminuição da capacidade suporte, a depender do
perı́odo de oscilação pK . Quanto maior o valor desse parâmetro, maior a diferença entre
a capacidade suporte máxima do ambiente (K = k1 + k2) e a capacidade suporte mı́nima
(K = k1 − k2).

Na função de reação (3), os seis parâmetros que provocam alteração na forma
como a população aumenta ou diminui são k1, k2, pK , r1, r2 e pr. Os parâmetros k1, k2 e
pK da capacidade suporte limitam o crescimento e o decrescimento da população e, con-
sequentemente, contribuem para que haja alguma estabilização da densidade populacional
ao longo do tempo. A depender do fator limitante

1− ρ(x, t)

K(t)
(16)

da função de reação, pode-se observar o crescimento da população à medida que a capaci-
dade suporte supera os valores da densidade em cada ponto do intervalo, ou seja, quando

1https://github.com/MukRodrigues/Simulacao-difusao-reacao

https://github.com/MukRodrigues/Simulacao-difusao-reacao/blob/Resultados/Difusao_reacao_logisitca_crank_nicolson.ipynb


K(t) > ρ(x, t) (considerando que a taxa de crescimento é estritamente positiva). Caso
contrário, observa-se decrescimento, quando K(t) < ρ(x, t).

Já na taxa de crescimento (5), r1 intensifica o crescimento populacional quando o
seu valor consegue superar a ação do coeficiente básico de difusão D0. O decrescimento
da densidade pode ocorrer quando r1 não é suficiente para sobrepor a difusividade (2).
O parâmetro r2 provoca oscilação de perı́odo pr nessa mesma taxa, permitindo mostrar
as alterações que r provoca no modelo quando atinge o valor máximo (r = r1 + r2)
e o mı́nimo (r = r1 − r2). Ocorre que, tanto no cenário de crescimento populacional
quanto no cenário de decrescimento, pode-se verificar um efeito de “regresso” periódico
da densidade conforme o tempo avança. Quanto maior o valor de r2, maior será essa
regressão.

O crescimento da população indica que o ambiente oferece condições adequa-
das para sua manutenção. Isso significa que os recursos disponı́veis são suficientes para
sustentar os indivı́duos, mesmo diante da competição intraespecı́fica. Por outro lado, o
declı́nio populacional sugere que essa competição se intensifica a ponto de tornar o am-
biente inviável, principalmente devido à elevada densidade de indivı́duos no fragmento.
Assim, a competição intraespecı́fica surge como o principal fator limitante ao crescimento
populacional nesse contexto.

Os resultados das simulações gráficas da solução numérica (9) podem ser obser-
vados na Figura 3. Essa figura apresenta quatro simulações onde se considera diferentes
cenários de difusão variável e crescimento logı́stico. Ela ilustra como a taxa de cresci-
mento r (5) e a capacidade suporte K (4) atuam juntamente com o coeficiente básico de
difusão D0 para descrever cenários de evolução da densidade. Em todas elas verifica-se
a persistência da subpopulação, ou seja, no intervalo de tempo [0, 20] a densidade não é
reduzida a zero.

A Subfigura 3.(a) apresenta uma seta preta indicando a tendência da densidade
diminuir, a partir da distribuição inicial da densidade ρ(xi, 0) = 5. As Subfiguras 3.(b),
3.(c) e 3.(d) apresentam duas setas indicando o efeito de regressão da densidade. Em cada
subfigura, as curvas que transitam do vermelho para o azul indicam a densidade calculada
em diferentes instantes de tempo, de modo que as curvas vermelhas estão mais próximas
do tempo inicial t0 = 0, enquanto as curvas azuis estão mais próximas do tempo final da
simulação2.

Em 3.(a) é ilustrado um cenário de diminuição da densidade. Consideraram-se
as funções r e K constantes, isto é, com r2 = k2 = 0. Observa-se uma tendência de
homogeneização da densidade ao longo do tempo. Nos instantes iniciais, pode haver
um aumento da concentração de indivı́duos no interior do espaço. Esse comportamento
reflete a ação da competição intraespecı́fica, que desacelera o crescimento populacional à
medida que o tempo avança.

De forma semelhante, a Subfigura 3.(b) também apresenta um cenário de
diminuição da densidade. Neste caso, a taxa de crescimento é constante e a capacidade
suporte varia ao longo do tempo (k2 ̸= 0). Nota-se a sobreposição das curvas de den-

2Parâmetros das simulações: (a) D0 = 0.5, k1 = 10, k2 = 0, r1 = 1.5, r2 = 0, (b) D0 = 0.5, k1 =
10, k2 = 2, pk = 8, r1 = 1.5, r2 = 0,(c) D0 = 0.5, k1 = 10, k2 = 0, r1 = 3, r2 = 0.6, pr = 5, (d)
D0 = 0.5, k1 = 10, k2 = 2, pk = 8, r1 = 3, r2 = 0.6, pr = 5.



(a) Diminuição da densidade: r e K
constantes.

(b) Diminuição da densidade: r cons-
tante e K variável.

(c) Aumento da densidade: r variável e
K constante.

(d) Aumento da densidade: r e K
variáveis.

Figura 3. Resultados da simulação numérica da equação de difusão-reação (1)
com fonte logı́stica usando o Método de Crank-Nicolson. Variação da den-
sidade populacional entre os instantes t0 = 0 e T = 20.

sidade nas regiões em azul do gráfico. Esse efeito é causado pela oscilação periódica
da capacidade suporte, que permite a permanência da população, mesmo com a redução
inicial da densidade.

Inicialmente, a densidade tende a se homogeneizar, mas não completamente.
O ambiente ainda oferece condições suficientes para evitar a extinção local, apesar da
competição intraespecı́fica. Quando as curvas estão mais próximas entre si (em vermelho
e azul), a capacidade suporte atinge seu valor máximo (K = k1+k2). Já quando as curvas
estão mais espaçadas, a capacidade suporte atinge o valor mı́nimo (K = k1 − k2).

Os dois últimos cenários, representados em 3.(c) e 3.(d), mostram aumento da den-
sidade populacional, considerando a taxa de crescimento r variável (r2 ̸= 0). O parâmetro
r1 é o principal responsável por esse aumento em ambas as subfiguras. A elevação de r1
de 1,5 (em 3.a) para 3 (em 3.c) resultou em maior concentração de indivı́duos no interior
do intervalo, como evidenciado pelas curvas de densidade mais elevadas.

Esse crescimento, no entanto, continua sendo limitado pela capacidade suporte.
O parâmetro r2 introduz oscilações periódicas em r, promovendo variações na taxa de



crescimento. Isso leva ao reaparecimento do efeito de sobreposição das curvas de densi-
dade — ou regressão — observado anteriormente em 3.(b). À medida que a densidade
cresce, reduções periódicas em r podem ocorrer. Caso essas reduções sejam suficiente-
mente fortes para que a difusividade (2) supere o crescimento, a regressão torna-se visı́vel
nas curvas de densidade.

O último cenário, ilustrado em 3.(d), inclui também variação da capacidade su-
porte (k2 ̸= 0). Observam-se, nesse caso, comportamentos oscilatórios semelhantes
aos das subfiguras 3.(b) e 3.(c), com efeito de regressão mais intenso e permanência da
população no fragmento ao longo do tempo.

5. Conclusão e Discussão
Neste trabalho foi utilizado o conceito de difusão para descrever a dinâmica de uma
metapopulação em desequilı́brio, considerando-se a variação populacional e o espalha-
mento de indivı́duos pelo ambiente. Para isso, foi estudada uma equação de diferencial
parcial de difusão-reação (1). Foi utilizada uma função de difusão variável (2) e uma
função de reação logı́stica (3) para considerar as alterações ambientais no comportamento
da população. Devido a natureza não linear do modelo, foi preciso o uso do método de
discretização de Crank-Nicolson para encontrar a solução numérica da equação de di-
fusão-reação.

Para o modelo estudado foram verificadas as circunstâncias nas quais acorre o
espalhamento dos indivı́duos em um fragmento de habitat isolado, assim como a so-
brevivência dos indivı́duos em cada fragmento. A partir dos resultados encontrados foi
possı́vel verificar que a presença da fonte logı́stica provoca crescimento da densidade de
população limitado pela competição intraespecı́fica. Constatou-se que o modelo permite
descrever crescimento limitado e persistência.

Observou-se, por exemplo, que em ambientes com alta oscilação da capaci-
dade suporte e taxa de crescimento periódica, pode haver alternância entre fases de ex-
pansão e retração populacional, levando a efeitos de “regressão” cı́clica na densidade.
Por outro lado, quando esses parâmetros mantêm-se estáveis e suficientemente altos, a
subpopulação tende à persistência, mesmo sob difusão significativa. Em relação aos
parâmetros dessas funções periódicas, deve-se ter atenção para garantir funções K e r
limitadas e, ainda, restringir a capacidade suporte K a valores não negativos, pelo próprio
significado biológico que esse fator tem.

Do ponto de vista da ecologia aplicada, esses resultados ajudam a identificar
condições mı́nimas para a manutenção de populações isoladas em paisagens fragmen-
tadas. Isso pode orientar ações como a delimitação de áreas prioritárias para restauração
ecológica, a gestão da heterogeneidade ambiental e a definição de limites de viabilidade
populacional em unidades de conservação. Como perspectiva futura, propõe-se incorpo-
rar mecanismos de migração e conectar múltiplos fragmentos, aproximando o modelo de
contextos ecológicos mais realistas e complexos.
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