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Resumo. Este trabalho tem a proposta de modelar uma dindamica populacional
baseado na Teoria de Metapopulagées. E utilizado o conceito de difusdo para
descrever a dindmica populacional de uma metapopulacdo em desequilibrio,
caracterizada por individuos que vivem em fragmentos de habitat totalmente
isolados. O modelo de difusdo-reacdo é empregado para representar o cres-
cimento populacional periddico e limitado pela capacidade suporte do meio,
além espalhamento dos individuos. O modelo é tratado de forma numérica pelo
método de discretizacdo de Crank-Nicolson, por meio do qual se analisa a in-
terferéncia dos valores dos pardametros na equagdo.

1. Introducao

A dindmica populacional € o ramo das Ciéncias Bioldgicas que estuda a variacao na quan-
tidade de individuos de uma populacao, bem como os fatores que contribuem ou dificul-
tam essa variacdo. A modelagem da dinamica populacional é baseada na premissa de
que a variacdo do tamanho de uma populacdo € dada pela diferenca entre o niimero de
nascimentos e mortes de individuos, além da insercdo e/ou retirada de individuos dessa
populacao (migragdo).

A Teoria de Metapopulagdes propde que subpopulagcdbes de uma

mesma espécie, distribuidas em locais isolados — também chamados de
refigios [Colombo and Anteneodo 2018] ou fragmentos de um habitat origi-
nal [Assisetal. 2020] — podem interagir por meio da migracdo. A dinamica

dessas populagdes € influenciada por diversos fatores, como reproducdo, competi¢do
por recursos (alimento e espaco) e predacdo. Nesse contexto, uma metapopulagio,
ou “populacdo de populacdes”’[Marini-Filho and Martins 2000], é entendida como um
conjunto de subpopulacdes localizadas em fragmentos de habitat e interligadas por fluxos
migratorios, podendo persistir ou ser extintas localmente[Pinto-Coelho 2000]].

Para descrever esses fendmenos, utilizam-se modelos de metapopulacdo, que
sdo ferramentas bioldgicas voltadas a representacdo da migracdo entre fragmen-
tos [Harrison and Taylor 1997]]. Tais modelos permitem investigar a dindmica popula-
cional em diferentes cendrios ecoldgicos, auxiliando, por exemplo, na formulagdo de
estratégias para a conservacdo de espécies. O foco principal estd em compreender os
mecanismos que promovem ou dificultam a persisténcia das subpopulag¢des ao longo do
tempo [Jorba-Cusco et al. 2024].

A Figura |1| representa os fragmentos como circulos, cujo tamanho € proporcio-
nal ao tamanho de cada mancha. As manchas pintadas representam os fragmentos de



Figura 1. Figura retirada do artigo Empirical Evidence for Metapopulation Dy-
namics [Harrison and Taylor 1997]. Representacao de modelos metapopu-
lacionais onde: (a) classico/Levins, (b) continente-ilha, (c) populacao em
mancha (patchy population), (d) metapopulacao em desequilibio (nonequi-
librium metapopulation), (e) misto.

habitat [Pinto-Coelho 2000, |[Harrison and Taylor 1997]] colonizados pelos individuos, en-
quanto os espacos em branco correspondem aos locais desocupados. As setas indicam o
fluxo migratdrio, ou seja, a saida de individuos de um local para outro, podendo ou nao
haver trocas mutuas entre as subpopulacdes, como € o caso de (c) e (e).

Por fim, os tracejados ao redor de cada mancha representam as fronteiras ou li-
mites de ocupagdo de cada local. Observa-se que, por maior que seja a subpopulacdo de
cada mancha, ela nunca ocupa totalmente esses fragmentos. Pode-se dizer que ha sem-
pre algum fator (ou fatores) que impede a totalidade da ocupacdo do habitat. O objetivo
deste trabalho é modelar a dindmica de uma metapopulacdo em desequilibrio (Figura[T]ld)
por meio de uma equacao de difusdo-reacdo, a fim de compreender em quais condi¢des
uma subpopulacdo pode se desenvolver em um fragmento com capacidade de suporte K,
variavel no tempo, e manter-se nesse ambiente.

2. Modelagem de metapopulacio em desequilibrio

Com base no modelo biolégico de metapopula¢do em desequilibrio (Figura[l]d), serd pro-
posta uma dinamica metapopulacional considerando uma subpopulagcdo completamente
isolada. Supde-se que os Unicos processos biologicos atuantes sejam a difusdo, o cres-
cimento e a competicao intraespecifica. Assim, desconsidera-se qualquer migracdao de
individuos entre os fragmentos.

Na auséncia de migragdo entre os fragmentos, a populacao remanescente pode di-
minuir ao longo do tempo e chegar a extin¢ao, devido a falta de recursos necessarios para
sua manutencdo. Isso indica que o ambiente ndo € vidvel para sustentar a populacdo nesse
horizonte temporal. Nessa condi¢c@o, a populacdo é incapaz de estabelecer um equilibrio
entre ocupagdo e uso dos recursos, o que leva a extincao local. Diante disso, busca-se
entender em quais circunstancias essa metapopulacdo pode atingir esse equilibrio e per-
manecer no ambiente.



A dindmica de metapopulacdo em desequilibrio, em um fragmento com capaci-
dade suporte K, € dada pela seguinte equacdo de difusdo-reagdo (unidimensional) com
condic¢oes de contorno de Dirichlet e condi¢ao inicial:
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com (z,t) € [0, L] x[0,+00) e Ny o tamanho inicial da populagdo. Esta equagdo descreve
a variagdo da densidade populacional p(z,t), com um coeficiente de difusdo D(x, K) e
uma fonte f(x,t, p).

No modelo (I), as condigdes de contorno indicam que a densidade popula-
cional é nula nos extremos do fragmento de habitat considerado, um intervalo de
comprimento L. Esta condi¢do € chamada de fronteira absorvente (absorbing boun-
dary) [Colombo and Anteneodo 2018, Brauer et al. 2019], que supde que os individuos
que deixam o ambiente morrem imediatamente ou perdem de forma permanente a ca-
pacidade de retornar. Por sua vez, a condicao inicial representa que os individuos estdao
uniformemente distribuidos no fragmento de habitat no instante inicial.

Nesse problema serd considerado que a difusdo € varidvel, representada por uma
funcao na forma
D(w, K) = Dy e =7, 2)

na qual Dy € uma constante positiva e £ € o ponto do intervalo onde a difusdo é
maior. Nesse caso, serd considerado o ponto médio do intervalo de x. A motivacao
dessa escolha é baseada nas alteracdes sofridas pelos ambientes a medida que o tempo
avanca [Coleman et al. 1979, Bassanezi and Gomes 2021]], as quais influenciam a velo-
cidade de espalhamento. Com esta expressdo, busca-se representar uma situacao popu-
lacional que privilegie a concentra¢do no interior, reduzindo a densidade conforme os
individuos se aproximem dos extremos do fragmento.

Também serd considerada uma fun¢do de reacdo que corresponde a fungao
logistica, amplamente estudada e utilizada na modelagem de sistemas fisicos e bioldgicos,
na forma

o) =rionlan) (1- 455 ®

Essa fungdo representa o crescimento limitado da populacdo na presenca de outros
individuos da mesma populacdo, devido a competicdo intraespecifica entre esses in-
dividuos [Bassanezi and Ferreira 1988 |(Coleman et al. 1979]].

2.1. Periodicidade

Em geral, observa-se que individuos de muitas espécies t€ém como caracteristica a
reproducdo periddica e que locais isolados, como ilhas, também apresentam momen-
tos de maior ou menor viabilidade como moradia. Outro fator, que combina aspectos
geograficos e climaticos, € a diminuicdo da area de habitat segura em lugares gelados.



Isso porque, devido ao aquecimento global, esses locais t€ém seu tamanho total reduzido
ou perigosamente transformado. Por outro lado, fatores climaticos como o aumento e
a diminui¢do da temperatura sdo condi¢des sazonais que também impactam a dinamica
populacional [Bassanezi and Gomes 2021]], influenciando diretamente o aumento da na-
talidade ou da mortalidade de uma populagao.

De modo a descrever cendrios de oscilagdes periddicas no ambiente € no cres-
cimento da populagdo, na andlise da equacao serdo consideradas a capacidade su-
porte K e a taxa de crescimento r como funcdes periddicas [Coleman et al. 1979,
Bassanezi and Gomes 2021]]. Assim, estas funcdes sao definidas da seguinte forma

K(t) = ki + ko sen (ﬁ) “)
PK
r(t) = r1 4 ry sen (?) , (5)

onde k; e r; (i = 1,2) sdo constantes reais positivas, com k; > ko. As constantes px € p,
sdo os periodos de oscilag@o das func¢des (@) e (9), respectivamente.

3. Metodologia

O método de Crank-Nicolson (CN) consiste em discretizar o dominio e calcular o valor
da fungdo num nivel intermedidrio entre os tempos t; e ¢;,, como ilustra-se na Figura 2]
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Figura 2. Malha com os indices dos pontos da discretizagao.

Os pontos pretos na malha (Figura [2]) sdo os pontos a serem calculados no tempo
tiv1 = (j + 1)k, em func@o dos pontos dados no tempo t; = jk, onde k = At é o
passo da discretizacdo e 7 = 0,1,2,..., M. Os pontos em formato de “x” representam
os dados conhecidos quando se particiona o intervalo de z. Portanto, sdo conhecidos os
valores da fungdo nos pontos (z;_1,t;), (x;,t;) e (z;4+1,t;) e calculados os demais através
da resolucdo de um sistema de equacdes, conforme serd mostrado adiante. Outra parti-
cularidade desse método € que, caso haja outras funcdes dependentes do tempo inseridas
na equacao, elas sdo calculadas no tempo intermedidrio ¢; /o = (j + 1/2)k, ou seja, um
ponto que nao pertence a malha.



Aplicando a derivada parcial em relacdo a x no lado direito da igualdade na
equacao do modelo (1)) e omitindo os argumentos, a equacao se expande na forma
dp _ 9D Op 0?p p
g tro(1- ).
o " owor o PUTE
onde K é dada pela expressdo (@) e r é dada por (5)). O coeficiente de difusdo varidvel é
dado pela func@o (2) e sua derivada parcial em rela¢do a = é dada pela expresséo

oD —K(z—7)2
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(6)

Aplicando o método de CN, a discretizagio da equagdo (6) fica na forma
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com ¢ tomando valoresde 0 a N e 5, de O a M.

ApO6s algumas manipulagdes pode-se colocar a equacdo discretizada na forma
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A discretizagdo representada na equagdo (9), da qual serd obtida a solucéo
numérica, pode ser escrita através do seguinte esquema matricial:

Qo'+ f! (12)

onde P e () sdo matrizes quadradas tridiagonais de ordem M, na forma
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Além disso, a fungdo de reag@o corresponde a um vetor coluna de (M — 1) coordenadas
cujo z-ésimo termo € dado por

J
J_pedti2 0 (1 P
fi = kr ) 1 K j+1/2 | - (15)

4. Resultados

A partir da discretizagdo do modelo (I)), por meio do esquema numérico (9)), foram rea-
lizadas simulagdes com base na resolucdo do sistema nao linear representado pela forma
matricial (I2)). Essas simula¢des permitiram analisar a influéncia de cada parimetro do
modelo sobre a dindmica da populacdo, ainda que sem considerar explicitamente suas
unidades de medida. A resolucdo do sistema foi feita utilizando a biblioteca Numpy e
todas as imagens foram geradas utilizando a biblioteca Matplotlib.pyplot, ambas biblio-
tecas do Python. Para as simulacdes foram usados os passos h = 2 - 1073 (espago) e
k = 4.0 - 1072 (tempo). Os c6digos desenvolvidos sdo abertos e podem ser acessados na
plataforma GitHu

Em relacdo a difusdo varidavel, os quatro parametros que provocam alteracdo na
forma como os individuos se espalham no fragmento sdo Dy, ki, ks e px. Pode-se ve-
rificar que Dy contribui para a velocidade de difusdo, pois, quanto maior o valor desse
parametro, mais rapido a densidade decresce e se homogeneiza. Na capacidade suporte
(), ki contribui para a reducio da velocidade de difusdo. Isso faz com que a densi-
dade populacional decres¢a mais lentamente, possibilitando a persisténcia da populagio.
O parametro ky provoca aumento e diminuicdo da capacidade suporte, a depender do
periodo de oscilacio px. Quanto maior o valor desse parametro, maior a diferenca entre

a capacidade suporte mdxima do ambiente (K = k; + ko) e a capacidade suporte minima
(K = k1 — ko).

Na funcdo de reacdo (3)), os seis parAmetros que provocam alteragdo na forma
como a populacido aumenta ou diminui sdo ki, ko, pg, 71,72 € p.. Os parametros ky, ko €
px da capacidade suporte limitam o crescimento e o decrescimento da populagdo e, con-
sequentemente, contribuem para que haja alguma estabilizacdo da densidade populacional
ao longo do tempo. A depender do fator limitante

plz,1)

b= K (1)

(16)

da funcdo de reacdo, pode-se observar o crescimento da populacdao a medida que a capaci-
dade suporte supera os valores da densidade em cada ponto do intervalo, ou seja, quando

Thttps://github.com/MukRodrigues/Simulacao-difusao-reacao


https://github.com/MukRodrigues/Simulacao-difusao-reacao/blob/Resultados/Difusao_reacao_logisitca_crank_nicolson.ipynb

K(t) > p(x,t) (considerando que a taxa de crescimento € estritamente positiva). Caso
contrario, observa-se decrescimento, quando K (t) < p(z,1).

Jd na taxa de crescimento (3)), r; intensifica o crescimento populacional quando o
seu valor consegue superar a acdo do coeficiente basico de difusao Dy,. O decrescimento
da densidade pode ocorrer quando 7 ndo € suficiente para sobrepor a difusividade (2).
O parametro ry provoca oscilacdo de periodo p, nessa mesma taxa, permitindo mostrar
as alteracOes que r provoca no modelo quando atinge o valor méximo (r = 7 + 72)
e o minimo (r = r; — ry). Ocorre que, tanto no cendrio de crescimento populacional
quanto no cendrio de decrescimento, pode-se verificar um efeito de “regresso” periddico
da densidade conforme o tempo avanca. Quanto maior o valor de r,, maior serd essa
regressao.

O crescimento da populacdo indica que o ambiente oferece condicdes adequa-
das para sua manutencdo. Isso significa que os recursos disponiveis sdo suficientes para
sustentar os individuos, mesmo diante da competi¢do intraespecifica. Por outro lado, o
declinio populacional sugere que essa competicao se intensifica a ponto de tornar o am-
biente invidvel, principalmente devido a elevada densidade de individuos no fragmento.
Assim, a competi¢do intraespecifica surge como o principal fator limitante ao crescimento
populacional nesse contexto.

Os resultados das simulagdes gréficas da solu¢do numérica (9) podem ser obser-
vados na Figura 3| Essa figura apresenta quatro simulacdes onde se considera diferentes
cendrios de difusdo variavel e crescimento logistico. Ela ilustra como a taxa de cresci-
mento 7 (5] e a capacidade suporte K () atuam juntamente com o coeficiente basico de
difusdo D para descrever cendrios de evolucdo da densidade. Em todas elas verifica-se
a persisténcia da subpopulagdo, ou seja, no intervalo de tempo [0, 20] a densidade ndo é
reduzida a zero.

A Subfigura [3|(a) apresenta uma seta preta indicando a tendéncia da densidade
diminuir, a partir da distribui¢do inicial da densidade p(z;,0) = 5. As Subfiguras 3|(b),
Bl(c) e[3(d) apresentam duas setas indicando o efeito de regressdo da densidade. Em cada
subfigura, as curvas que transitam do vermelho para o azul indicam a densidade calculada
em diferentes instantes de tempo, de modo que as curvas vermelhas estao mais proximas
do tempo inicial £, = 0, enquanto as curvas azuis estdo mais préximas do tempo final da
simulagﬁoﬂ

Em [3](a) € ilustrado um cendrio de diminuigdo da densidade. Consideraram-se
as fungdes r e K constantes, isto é, com 7, = ko = (. Observa-se uma tendéncia de
homogeneizacdo da densidade ao longo do tempo. Nos instantes iniciais, pode haver
um aumento da concentracdo de individuos no interior do espaco. Esse comportamento
reflete a acdo da competicao intraespecifica, que desacelera o crescimento populacional a
medida que o tempo avanca.

De forma semelhante, a Subfigura [3}(b) também apresenta um cendrio de
diminuicdo da densidade. Neste caso, a taxa de crescimento € constante e a capacidade
suporte varia ao longo do tempo (k; # 0). Nota-se a sobreposi¢do das curvas de den-

ZParametros das simulacdes: (a) Dy = 0.5,k; = 10,ko = 0,71 = 1.5,75 = 0, (b) Dy = 0.5,k =
10, k2 = Q,Pk = 8,7'1 = 1.5,7’2 = 0,(C) D() = 0.5,k1 = 10,]€2 = 0,7'1 = 3,?"2 = 0.6,pr = 5, (d)
DO = 0.5,]{1 = 10,k2 = 2;pk = 8,7‘1 = 3,7"2 = O.G,pr =35.



Evolugdo da densidade p(x, t) Evolugdo da densidade p(x, t)
Dy=0.5 k=10, k;=0.0,,=1.5r,=0.0 Do=0.5, k=10, ko =2.0, py=8.0,rn=15,r,=0.0

N
N
—

0.0 0.2 0.4 0.6 0.8 1.0
x x

(@) Diminuicdo da densidade: r e K (b) Diminui¢do da densidade: r cons-
constantes. tante e K varidvel.

Evolugdo da densidade p(x, t) Evolugao da densidade p(x, t)
Do=0.5ky=10,k;=0.0,1=3,,=0.6p,=5 Do=0.5 ki =10,k;=2.0, py=8.0,n=3,,=06,p,=5

pix.t)

x X

(c) Aumento da densidade: r varidvel e (d) Aumento da densidade: r e K
K constante. varidveis.

Figura 3. Resultados da simulagdao numérica da equacao de difusao-reacao (1)
com fonte logistica usando o Método de Crank-Nicolson. Variacao da den-
sidade populacional entre os instantes ¢, = 0 e 7' = 20.

sidade nas regides em azul do grafico. Esse efeito é causado pela oscilagdo periddica
da capacidade suporte, que permite a permanéncia da populacdo, mesmo com a redugdo
inicial da densidade.

Inicialmente, a densidade tende a se homogeneizar, mas ndo completamente.
O ambiente ainda oferece condi¢des suficientes para evitar a extin¢ao local, apesar da
competi¢do intraespecifica. Quando as curvas estdo mais proximas entre si (em vermelho
e azul), a capacidade suporte atinge seu valor maximo (K = k; + k). Ja quando as curvas
estdo mais espacadas, a capacidade suporte atinge o valor minimo (K = k; — k»).

Os dois altimos cendrios, representados em@(c) e@(d), mostram aumento da den-
sidade populacional, considerando a taxa de crescimento r varidvel (5 # 0). O parametro
r1 € o principal responsavel por esse aumento em ambas as subfiguras. A elevagdo de r;
de 1,5 (em[3]a) para 3 (em [3]c) resultou em maior concentragdo de individuos no interior
do intervalo, como evidenciado pelas curvas de densidade mais elevadas.

Esse crescimento, no entanto, continua sendo limitado pela capacidade suporte.
O parametro 75 introduz oscilagdes periddicas em r, promovendo variagdes na taxa de



crescimento. Isso leva ao reaparecimento do efeito de sobreposi¢do das curvas de densi-
dade — ou regressdo — observado anteriormente em (b). A medida que a densidade
cresce, reducdes periddicas em r podem ocorrer. Caso essas reducdes sejam suficiente-
mente fortes para que a difusividade (2)) supere o crescimento, a regressio torna-se visivel
nas curvas de densidade.

O ultimo cenario, ilustrado em (d), inclui também variacdo da capacidade su-
porte (ko # 0). Observam-se, nesse caso, comportamentos oscilatorios semelhantes
aos das subfiguras [3](b) e [3](c), com efeito de regressdo mais intenso e permanéncia da
populacao no fragmento ao longo do tempo.

5. Conclusao e Discussao

Neste trabalho foi utilizado o conceito de difusdo para descrever a dindmica de uma
metapopulacdo em desequilibrio, considerando-se a variagdo populacional e o espalha-
mento de individuos pelo ambiente. Para isso, foi estudada uma equacao de diferencial
parcial de difusdo-rea¢do (I). Foi utilizada uma fun¢do de difusdo varidvel € uma
fung¢do de reacdo logistica (3) para considerar as altera¢des ambientais no comportamento
da populacdo. Devido a natureza nao linear do modelo, foi preciso o uso do método de
discretizacdo de Crank-Nicolson para encontrar a solucdo numérica da equacao de di-
fusdo-reacao.

Para o modelo estudado foram verificadas as circunstincias nas quais acorre o
espalhamento dos individuos em um fragmento de habitat isolado, assim como a so-
brevivéncia dos individuos em cada fragmento. A partir dos resultados encontrados foi
possivel verificar que a presenca da fonte logistica provoca crescimento da densidade de
populacao limitado pela competicdo intraespecifica. Constatou-se que o modelo permite
descrever crescimento limitado e persisténcia.

Observou-se, por exemplo, que em ambientes com alta oscilacdo da capaci-
dade suporte e taxa de crescimento periddica, pode haver alternancia entre fases de ex-
pansdo e retracdo populacional, levando a efeitos de “regressdo” ciclica na densidade.
Por outro lado, quando esses parametros mantém-se estaveis e suficientemente altos, a
subpopulacdo tende a persisténcia, mesmo sob difusdo significativa. Em relacdo aos
parametros dessas funcdes periddicas, deve-se ter atencdo para garantir funcdes K e r
limitadas e, ainda, restringir a capacidade suporte K a valores ndo negativos, pelo proprio
significado bioldgico que esse fator tem.

Do ponto de vista da ecologia aplicada, esses resultados ajudam a identificar
condi¢cdes minimas para a manutencao de populacdes isoladas em paisagens fragmen-
tadas. Isso pode orientar acdes como a delimitagdo de areas prioritdrias para restauracao
ecoldgica, a gestao da heterogeneidade ambiental e a defini¢do de limites de viabilidade
populacional em unidades de conservacdao. Como perspectiva futura, propde-se incorpo-
rar mecanismos de migracdo e conectar multiplos fragmentos, aproximando o modelo de
contextos ecoldgicos mais realistas e complexos.
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